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Abstract: In order to study the characteristics and laws of nanocrack generation and self-healing
behavior of asphalt materials under tensile action, the molecular dynamics (MD) method was
used to simulate the continuous “tensile failure—self-healing” process, and this study remedies
the shortcomings of existing experimental and observational methods. It is found that the MD-
reproduced formation process of asphalt binder nanocrack contains four stages: “tensile extension”,
“nanocrack generation”, “crack adding, expanding and penetrating” and “cracking failure”. The
influence of tensile conditions on the tensile cracking simulation of an asphalt binder model was
analyzed, and it was found that low temperature and high loading rate would increase the tensile
strength of the asphalt binder model. In addition, the MD-reproduced healing process of asphalt
binder nanocracks can be divided into four stages: “surface approach”, “surface rearrangement”,
“surface wetting” and “diffusion”, which is similar to the healing process of polymers. Finally,
from the perspective of energy change, the change rule of dominant van der Waals energy in the
self-healing process was studied. Based on the existing research, the influence of damage degree on
the healing performance of asphalt binder and its mechanism were further analyzed. The research
results further enrich the theoretical research on microlevel cracking and healing of asphalt materials,
and have certain theoretical value for the further development of self-healing asphalt materials.

Keywords: asphalt binder; nanocrack; molecular dynamics; self-healing

1. Introduction

Asphalt binder is a main building material with complex components but good
viscoelasticity. The pavement built by it often has a flat surface, is jointless and has
comfortable driving, wear resistance, low noise and other strong points. Therefore, it has
been widely used in transportation [1]. According to the survey, more than 90% of the
pavements in modern cities are composed of asphalt materials [2], and how to avoid or
repair the cracking of asphalt pavement has always been a hot issue that many researchers
are concerned about.

In the early stage of cracks in the asphalt pavement, the nanocracks inside the as-
phalt material have little impact on the smoothness and driving comfort of the pavement.
However, in a humid environment, these nanocracks will expand and cause water dam-
age and other diseases, which will seriously affect the performance and longevity of the
pavements [3,4]. Current researchers tend to use two methods to avoid asphalt pavement
cracking failure, by developing stronger asphalt pavement materials or studying the healing
properties of asphalt pavement materials.

The self-healing mechanism of asphalt binder was originally developed from the
polymer self-healing theory. In 1980, Wool and O’Connor [5,6] first proposed that the
self-healing of polymer materials includes the following five stages by studying the healing
phenomenon of polymer materials: (1) surface rearrangement, (2) surface approach, (3) wet-
ting, (4) diffusion and (5) randomization. Figure 1 shows a diagram about the self-healing
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stages of polymer materials proposed by Liang Bo [7]. In this figure, it is assumed that
the blue dot and gray dot represent the molecules at both ends of polymer materials after
complete cracking. Observing this figure, we can find the characteristics of the five stages
in the healing process of polymer materials: the surface rearrangement and the surface
approach stage occur almost at the same time, and after this, there is still a certain void
area at the two interfaces of the crack model; the wetting process shows that the void area
in the interface at both ends of the crack gradually decreases and disappears; the initial
diffusion of molecules between the interfaces is followed—at this time, the phenomenon of
molecular diffusion is concentrated in the vicinity of the crack interface, and there is no
molecule from the other end in the part far away from the crack interface; finally, there is
a comprehensive diffusion and rearrangement. At this stage, it can be clearly observed
that molecules of different colors from both ends have been fully diffused into the whole
model. Theoretically, when this stage is reached, the original crack interface will completely
disappear. At this time, the strength of the material can reach the strength of the raw
material. Inspired by research on polymers, research on the self-healing mechanism of
asphalt materials is also developing rapidly.
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Researchers believed that the self-healing ability of asphalt materials can be regarded
as a complex process of self-healing of stiffness and strength, which can occur during the
damage process, at rest or during high temperature [8]. Subsequently, a large number of
studies and tests confirmed that asphalt materials have a certain self-healing ability to
resist fatigue damage [7,9,10]. Daquan Sun joined two asphalt fragments together with a
small force and observed their healing phenomenon with a fluorescence microscope. The
self-healing process of the asphalt fragments could be divided into a wetting stage and
a molecular diffusion stage. It was found that the crack self-healing speed was slow in
the wetting stage, but significantly increased in the molecular diffusion stage [11]. Shihui
Shen used field-emission scanning electron microscope to verify that the asphalt binder has
self-healing ability, and then simulated the asphalt binder self-healing process by molecular
dynamics. By analyzing the simulation data, the asphalt self-healing is divided into two
stages: short-term healing and long-term healing. Short-term healing is mainly responsible
for the recovery of modulus, while long-term healing can achieve the complete recovery
of fatigue performance [12]. Quan Lv divided the asphalt binder self-healing process into
three stages: gathering, moving and rounding by analyzing the CT scanning images of
the asphalt materials’ self-healing process [13]. Kim [14], Little [15], Hammoumm [16] and
other scholars have confirmed the self-healing ability of asphalt materials in the laboratory
or in the actual pavement.

At present, the self-healing mechanism of asphalt materials mainly includes crack
surface free energy theory [17], crack surface molecular diffusion theory [18] and capillary
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flow theory [19,20]. The factors affecting the self-healing ability of asphalt materials mainly
include the chemical composition of asphalt materials, environmental impact, intermittent
time, asphalt modifier, etc. Due to the complex composition of asphalt materials and the
limitations of instruments and technologies, it is very difficult to analyze the microscale
of the generation, evolution and healing process of nanocracks in asphalt materials in
the early stage [7,9]. Molecular dynamics (MD) provides a new method for studying the
micromechanism of asphalt materials. MD simulation is a computer simulation of a large
number of molecular motions based on the physical principles of atoms and molecules. It
is a calculation method based on statistical mechanics and thermodynamics to simulate
the interaction and behavior of various atoms and molecules under certain conditions.
MD simulation was first applied to the study of protein molecules in biology, and was
later developed in petrochemicals. It was used to study the properties of oil and gradually
applied to the asphalt field [21]. Tengjiang Yu used molecular simulation technology to
divide the self-healing process of asphalt materials into three stages: turbulent, distance self-
healing and strength self-healing by analyzing the density change curve in the self-healing
process, and proposed that the second stage is the most influential process of asphalt self-
healing [22]. Daquan Sun created an artificial crack in the asphalt MD model to simulate
the self-healing ability of the asphalt material model, and found that the self-healing ability
of the asphalt materials increases with the temperature; the self-healing ability of SBS-
modified asphalt is better than that of matrix asphalt. In addition, the relationship between
activation energy, preexponential factor and molecular self diffusion in MD simulation
is qualitatively consistent with the observed results of the DSR experiment [23]. Liang
He simulated the molecular diffusion behavior of aged asphalt, SBS-modified asphalt
and virgin asphalt in the self-healing process through molecular simulation technology.
The phenomenon shows that the diffusion coefficient of the asphaltene molecule is the
lowest and that of the saturated component is the highest in the self-healing process of
asphalt materials. The self-healing behavior of asphalt materials is mainly based on the
van der Waals force between molecules. The aging of asphalt binder molecules reduces
the diffusivity of the asphalt binder model, while SBS additives indirectly improve the
diffusivity of asphalt binder [24]. All the findings based on MD simulation are helpful
to further understand the failure process of materials at the microscale, which cannot be
observed under the conventional experimental conditions of asphalt materials.

In this paper, a molecular model of asphalt binder is first developed and then a
constant-rate uniaxial stretching is performed to analyze the mechanical properties of the
model after verifying its accuracy in various aspects. During the uniaxial stretching session,
multiple gradients of temperature and stretching rate will be used as variables to analyze
their effects on the tensile failure of the asphalt model. The resulting tensile failure model
will then be used as the initial model for the next stage of studying the self-healing behavior
of the asphalt materials rather than by inserting artificial cracks into the two asphalt models.
Finally, the influence mechanism will be investigated based on the existing phenomenon
of the influence of the asphalt damage degree on self-healing ability, in order to further
understand the self-healing ability and mechanism of asphalt binder.

2. Research Methods
2.1. Asphalt Binder Molecular Model Selection

Asphalt binder is currently one of the main road materials; it is a mixture of com-
ponents containing a large number of hydrocarbons of different molecular weights, a small
number of heteroatoms (such as nitrogen, oxygen and sulfur) and metal atoms. The inter-
action between atoms determines the physical and chemical properties of asphalt binder.

There are two kinds of models adopted by researchers for asphalt binder molecular
dynamic simulation, which are average molecular model and multicomponent Model.
However, it is difficult to describe various properties of asphalt binder with one molecule
when using average molecular model. Therefore, the 4-component, 12-molecule model in
multicomponent model is used as the object of asphalt binder molecular simulation. The
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4-component theory of asphalt binders proposed by L.W. Colbert classifies complex asphalt
molecules into four groups: saturate, aromatic, resin and asphaltene [25]. Compared with
the average molecular model, the multicomponent model can obtain more accurate results
in the simulation of density, expansion coefficients, and equivalent compression rates. It
can also study the impact of different components in asphalt binder molecular dynamics.

With the continuous development of molecular simulation theory, many researchers
have conducted a lot of work around the establishment of a more accurate asphalt model.
According to the ratio of four components, the mass percentage of carbon, hydrogen,
oxygen, nitrogen and sulfur elements, the atomic H/C ratio and the percentage of aromatic
hydrocarbons and alkanes, Li proposed three kinds of asphalt four-component models in
SHRP schemes. Compared with the previous asphalt models, these three asphalt molecular
models are more reasonable and closer to real asphalt binder in terms of physical properties
and thermodynamics [26].

The asphalt binder model used in this study is shown in Figure 2. These in-
clude asphaltene components: asphaltene-phenol, asphaltene-thiophene, asphaltene-
pyrrole; saturated components: squalane and hopane; aromatic components: PHPN
(perhydrophenanthrene-naphthalene) and DOCHN (dioctyl-cyclohexane-naphthalene);
and resin components: quinolinohopane, thioisorenieratane, benzobisbenzothiophene,
pyridinohopane and trimethylbenzeneoxane. The types and numbers of molecular models
for AAA-1 asphalt binder are shown in Table 1. This molecular model has been repeat-
edly validated in previous studies and has been used to analyze the diffusion [27], self-
healing [28,29], rejuvenation [29] and adhesion [28] of asphalt materials at a nanoscale.
Therefore, this model is suitable for molecular dynamics research on the generation and
self-healing of nanocracks in asphalt binder systems in this paper.
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Table 1. Molecular compositions of asphalt binder model.

Components Name Molecular Mass Number

Asphaltene
Asphaltene-phenol 575.0 3
Asphaltene-pyrrole 888.5 2

Asphaltene-thiophene 707.2 3

Saturated
Squalane 422.9 4
Hopane 483.0 4

Aromatic
PHPN 464.8 11

DOCHN 406.8 13

Resin

Quinolinohopane 554.0 4
Thioisorenieratane 573.1 4

Trimethylbenzeneoxane 414.8 5
Pyridinohopane 530.9 4

Benzobisbenzothiophene 290.4 15

2.2. Details of the Molecular Dynamics Simulation

In this study, large-scale atomic/molecular massively parallel simulator (LAMMPS) [30]
was used to simulate the direct tensile failure and self-healing behavior of asphalt materials
at the nanoscale, and the PCFF (polymer consistent forcefield) was used to describe the
forces between individual atoms. The PCFF is a second-generation forcefield based on the
improvement of the CFF91 force field, which contains very complex potential energy forms
and parameters. The PCFF force field has been extended in the scope of application, mainly
for the simulation of polymers and organic materials. Now the parameters of this forcefield
have been modified and supplemented many times, and it has been able to simulate other
materials such as inorganic materials and metals. The PCFF forcefield has been used in
many asphalt MD studies and accurately predicts the relevant material properties, so it is
suitable for the molecular dynamics study of asphalt binder systems in this study [2,31].
Visual Molecular Dynamics (VMD) [32] and Open Visualization Tool (OVITO) [33] were
used for visual processing of the model.

After establishing 12 representative molecules of AAA-1 asphalt binder, the combined
model of AAA-1 asphalt binder was established by Packmol; the initial model size was
140 Å × 140 Å × 140 Å, and the density was approximately equal to 0.1 g/cm3. The
simulation steps used in this paper are shown in Table 2. Figure 3 shows the picture of the
asphalt binder model after these processes.
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Table 2. MD simulation steps.

Steps Time Timestep Temperature Ensemble Command

1 * * * * min_style cg
2 50 ps 0.1 fs 600 K NVT *
3 100 ps 1 fs 600 K-298.15 K NVT *
4 400 ps × 5 1 fs 298.15 K-600 K-298.15 K NVT *
5 3 ns 1 fs 298.15 K NPT *

* The parameter is not present in the corresponding simulation step.

2.3. Tensile Simulation of Asphalt Binder Model

After the stable asphalt binder model is obtained, this asphalt binder model is then
subjected to tensile simulation. The loading method adopted in this study is to assign
a constant deformation to both ends of the asphalt binder model atoms, which can be
regarded as a tensile deformation of the entire asphalt binder model in one direction with a
constant velocity. When the model starts to be stretched, the atoms at the two ends move to
the outside first, while the atoms at the inside move under the influence of the molecular
force generated by the movement of the atoms at the two ends. The whole process will
be adjusted to the specified temperature using the NVT ensemble and apply a constant
outward deformation in the z-axis direction.

In order to study the effects of tensile rate and tensile temperature on the tensile
simulation results of asphalt binder model, five temperatures (−25 ◦C (248.15 K), 0 ◦C
(273.15 K), 25 ◦C (298.15 K), 50 ◦C (323.15 K) and 75 ◦C (348.15 K)) were selected to simulate
and analyze the tensile properties of asphalt binder models from low temperature to
extreme high temperature [34]. In addition, Hao Wang used MD to simulate and analyze
the bond strength of the asphalt–aggregate interface. He studied the effect of loading rate
in the separation process of the asphalt–aggregate interface by applying a constant tensile
load from 50 m/s to 0.1 m/s to the asphalt–aggregate model [35]. Due to the limitation of
hardware and MD time scale, the strain rates adopted in tensile MD simulation are often
higher than the actual strain rate. In this study, four strain rate conditions of 50 m/s, 25 m/s,
10 m/s and 5 m/s are selected to study the influence of strain rate on tensile simulation
of asphalt binder model. The tensile simulation will stop when the model strain reaches
100% on the z-axis; Figure 4 shows images of asphalt binder model under different strains
at 25 ◦C and 10 m/s.
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2.4. Self-Healing Simulation of Asphalt Binder Model

The purpose of this part is to analyze the self-healing behavior of asphalt binder
model and the data changes during this process. The asphalt binder nanocrack model
obtained by tensile simulation in the previous step will be used as the initial model for
multistage analysis of asphalt binder healing model in this part. During the self-healing
simulation of asphalt binder model, NPT ensemble was used throughout the simulation
process; Nose-Hoover thermostats and Berendsen were used to control the temperature
and pressure, respectively; and periodic was selected as the boundary condition. The time
step was 1 fs, the pressure was 1 atm and the cut-off distance was 15.5 Å.
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When previous researchers used MD to study the self-healing behavior of asphalt,
most of them chose to artificially insert a vacuum zone of a specific width between two
periodic asphalt models (as shown in Figure 5a) to simulate the nanocrack in asphalt
binder [23,24,36]. Due to the use of asphalt model with periodic structure, the asphalt
model surface on both sides of the nanocrack has a more suitable and stable structure. This
not only greatly weakens the phenomenon of surface rearrangement in the healing process,
but also forms a consistent contact surface after the two asphalt models make contact
with each other in the simulation process, thus speeding up the self-healing progress
of the asphalt model. In this study, the previous asphalt binder tensile failure model
was used as the initial model for the asphalt binder self-healing simulation (as shown
in Figure 5b). Observation of Figure 5b shows that the initial model of asphalt binder
self-healing simulation selected in this study does not have a high degree of compatibility
between the two crack surfaces. To some extent, using this model as the initial model to
simulate the self-healing process can more accurately represent the initial model of asphalt
binder nanocrack self-healing.
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3. Results and Discussion
3.1. Model Verification

In order to verify the reliability of the asphalt binder model, Table 3 presents the
simulated and experimental data of the (i) density, (ii) glassy transition temperature,
(iii) solubility parameters and (iv) diffusion coefficient.

Table 3. Asphalt binder model validation data.

Calculation Experiment

Density at 298.15 K (g/cm3) 0.981 1.01–1.04 [37]
Glass Transition Temperature (K) 267.7 261.73 [37]
Solubility Parameter ((J/cm3)0.5) 17.50 13.30–22.50 [37]

As an important index in molecular simulation, the density of the asphalt binder
model at 298.15 K is 0.981 (g/cm3), which is lower than the density of 1.01–1.04 (g/cm3)
obtained in the experiment, which may be due to the excessive complexity of the asphalt
binder components, and the asphalt binder model constructed with 12 representative
molecules cannot fully represent the complex composition of the actual asphalt materials.

Glass transition temperature (Tg) is the temperature corresponding to the material’s
transition from a glassy state to high elastic state. Many properties of the material will
change sharply near the glassy transition temperature. The specific volume can be obtained
by using a series of NPT ensemble at different temperatures on asphalt binder models,
and the glass transition temperature could be estimated by observing specific volume–
temperature curves. The glass transition temperature of this model is 267.7 K, which is
close to the experimental data.

The solubility parameter is a physical parameter to measure the compatibility between
substances. If the solubility parameters between two substances are closer, the two sub-
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stances will be easier to mix. The calculation formula of solubility parameters is shown in
Equation (1):

δ =

√
Ecoh
V

(1)

where Ecoh is the cohesive energy and V is the model volume. The physical significance of
the solubility parameter δ can be regarded as the square root of the cohesive energy density
of the material.

3.2. Tensile Simulation and Analysis

In this part, the tensile simulation phenomenon of asphalt binder with 25 ◦C, 10 m/s,
will be used as the analysis object. The stress–strain curve, interaction energy change and
cracking volume change of the system are mainly analyzed. The purpose is to simulate
the tensile fracture process of asphalt materials at the nanosize and analyze the generation
and evolution of asphalt binder nanocracks. Figure 6 shows the stress–strain curve of the
asphalt binder model and the change of interaction energy when the tensile strain is from
0% to 100%.
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It can be seen from Figure 4 that the initial model is gradually separated into two
model fragments under the influence of constant tensile rate. In addition, it can be found in
Figure 6 that the stress in the early stage of tensile simulation increases rapidly with the
increase in strain until the stress–strain curve reaches the peak value (117 MPa) when the
strain reaches 11%, and then begins to decline and approaches 0 MPa when the strain is
about 60%; when the strain is less than 17%, the interaction energy curve shows an upward
trend, and the change rate of the interaction energy increases rapidly before the peak stress
(11% strain), but slows down after 11% strain. It is worth noting that when the model strain
reaches 17%, the interaction energy begins to decline slowly, which is most likely caused by
the rearrangement of atoms at the crack interface. At the same time, it can also explain why
the increase rate of the interaction energy slows down at the 11–17% stage.

Figures 7 and 8 show the distribution function of density on the z-axis of the model
and the change data of each volume under different strain degrees. The density distribution
curves shown in the figure are divided into multiple parts to facilitate the observation of the
difference (except for 0% strain condition, 5%, 10%, 15%, 20%, 30%, 45% and 60% strains
are selected as the time points, and each density distribution map is obtained by averaging
all the density curves of the previous 5% strain). The crack volume was calculated by
OVITO’s Construct Surface Mesh module, which generates a geometric description of the
outer and inner boundaries of an atomistic solid in terms of a triangulated surface mesh.
Aside from visualization purposes, the geometric description of the surface is also useful
for quantitative measurements of the surface area and the solid volume and porosity of



Polymers 2022, 14, 3581 9 of 21

an atomistic structure. It should be noted that the radius of the probe sphere selected in
this paper is larger than the commonly used radius when calculating the crack volume of
the model (the minimum probe radius is selected when the pore volume inside the initial
model is 0, which is 3.7 Å in this paper) to exclude the influence of the original small pores
in the initial model. Selecting a probe sphere with a larger radius will lead to a larger
volume of asphalt completely equal to the total volume at the beginning of the simulation,
and the new pore area in the model will be regarded as a nanocrack.
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Figure 8. (a) Total volume versus asphalt volume change during stretching; (b) volume change of 
each part during 0–20% strain stage. 

Figure 7. Cont.
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By observing Figures 7 and 8, it can be seen that when the model strain is 0–5%, the
increment of solid volume occupied by asphalt is equal to the increment of total volume,
and the system is in the volume expansion stage caused by stretching. The fluctuation of
density curve indicates that there are a small amount of pore areas in different positions
inside the model, but these pore areas are not considered as cracks because they do not
meet the requirement of the probe sphere. These phenomena indicate that the asphalt
binder model is in the stage of “tensile extension” during this period. Subsequently, when
the strain is between 5–10%, the cracking volume begins to rise from 0, which means
that there are pore areas in the asphalt binder model that can be detected by the probe
sphere. The asphalt volume continues to increase in this stage, but its rate starts to decrease,
while the crack volume increases at a slower rate compared to the subsequent stages. This
means that although detectable cracks appear inside the asphalt model at this stage, the
asphalt binder model still has a certain elongation capacity and the volume of solids that
grows by elongation is greater than the volume that decreases by cracks, so this stage can
be considered as the asphalt binder model being in the stage of “nanocrack generation”.
When the strain is at 10–20%, the asphalt density distribution curve begins to fluctuate
significantly as the strain rises, and a large and a small density trough appears at 40% and
60% of the z-axis, respectively, which indicates the appearance of new fine cracks around
the main cracks at 40% of the z-axis. The asphalt volume value continues to decrease
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while the crack volume increases rapidly, and the rate of crack volume increase is further
accelerated at this stage. This indicates that the tensile extension capacity of the asphalt
binder model has reached its limit at this point, and new detectable cracks continue to
appear, while the existing cracks within the model continue to expand as they stretch.
These phenomena indicate that the asphalt binder model has entered the stage of “crack
adding, expanding and penetrating”. When the strain is in the 20–100% stage, the analysis
of the asphalt density distribution curve shows that the density value further decreases
at the location of the previous density trough, and all the asphalt binder molecules keep
gathering towards the ends of the z-axis. At this time, the asphalt volume decreases more
and more slowly, and the crack volume growth rate is close to the total volume growth
rate, while the density distribution curve indicates that the cracks at 40% and 60% of the
Z-axis position continue to expand after merging with each other, so the reason for the slow
decline of the asphalt volume curve after excluding the effect of the appearance of new
cracks may be caused by the rearrangement of atoms on the crack surface. This deduction
can also explain the slowing down of the interaction energy increase in the strain range of
12–17% shown in Figure 6, and the slow decrease in the interaction energy after the strain
is greater than 17%. “The cracking failure” will be considered as the last stage in the tensile
simulation of the asphalt binder model in this study

In this part of the simulation, the increase in tensile strain at the beginning of the
asphalt binder model tensile simulation leads to the appearance of small pores inside the
model, which can be regarded as the generation of nanocracks, but the asphalt binder model
in this stage is in a relatively healthy state; the asphalt volume value, interaction energy
and tensile strength are in an increasing trend. However, with the increase in tensile strain,
the nanocracks inside the model keep expanding and generating, some of the nanocracks
merge with each other, and the cohesion of the asphalt binder model decreases until the
entire asphalt binder model is divided into two independent model pieces, which means
that the asphalt binder model undergoes four stages of “tensile extension”, “nanocrack
generation”, “crack adding, expanding and penetrating” and “cracking failure” before
complete destruction and crack damage formation.

3.3. Effect of Temperature and Tensile Rate on Tensile Simulation

In previous studies, Hao Wang [35] analyzed uniaxial tensile simulations of asphalt–
aggregate models using molecular dynamics methods and concluded that model size,
loading rate and temperature have some influence on tensile strength results, which is
similar to the findings of Ye-shou Xu [38], D. Hossain [39] and others for tensile simulations
of rubber models and polymer models. However, the effect of different loading conditions
on the simulation results during uniaxial tensile simulations regarding asphalt binder
models has not been clarified.

Therefore, this section further investigates the effect of loading rate and temperature
on the evolution of microcracks in asphalt binder by analyzing the differences of tensile
failure process of asphalt binder models under different temperature and deformation
rate conditions during the tensile simulation. In this paper, the selected temperature
conditions are −25 ◦C, 0 ◦C, 25 ◦C, 50 ◦C and 75 ◦C, and the selected tensile rates are
50 m/s, 25 m/s, 10 m/s and 5 m/s. The tensile rate is 10 m/s when analyzing the effect
of the temperature factor, and the temperature is 25 ◦C when analyzing the effect of the
tensile rate factor. All tensile processes were stopped when the z-axis strain of the model
reached 100%. Figures 9 and 10 show the variations of stress and interaction energy for
different temperature and tensile rates conditions.
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Observing Figure 9, we can find that the trends were similar for the different stress–
strain curves in the selected temperature range; as the temperature changed from −25 ◦C to
75 ◦C, the stress–strain curve peak coordinates were (8.852, 143.58), (9.278, 138.77), (10.823,
115.53), (11.339, 102.05), (11.873, 85.72). The tensile stress extremes appear later and later,
while the tensile stress extremes become smaller and smaller; in addition, observing the
interaction energy change curve, it is found that the extreme value increases simultaneously
with the increase in temperature. This may be due to the increase in free volume and the
growth of interatomic distances within the model at high temperatures, which in turn leads
to a decrease in the interaction energy and cohesion capacity of the model. These two
curves indicate that the uniaxial tensile strength of the asphalt binder model decreases with
increasing temperature, but its tensile elongation capacity also increases relatively. (Note
that this part of the interaction energy is always negative, which means that the larger the
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value of the interaction energy change, the closer the interaction energy between model
atoms is to zero, and the smaller the model cohesiveness).

Subsequent observation of Figure 10 shows that the extreme values of the stress–strain
curves increase as the loading rate increases, but they occur at very similar points in time,
and the extreme values of the interaction energy also show an increasing trend and occur
at a later time. In the previous section for the analysis of energy change and crack volume
during the tensile simulation of the asphalt binder model, it was indicated that the model
would experience rearrangement of crack surface atoms to form a lower energy structure
later in the simulation, and the rearrangement of surface atoms would lead to a slow
decrease in the values of interaction energy. In this part of the study, the energy change
curve at high loading rate shows a higher peak and a later peak appearance. Therefore,
after combining the energy change curves in Figure 10 with some conclusions from the
previous part of the study, it can be concluded that the high loading rate slows down
the rearrangement of the crack surface atoms, thus leading to a later appearance of the
interaction energy peak, which also indicates that the energy analysis of the model is more
accurate at low loading rates.

3.4. Multistage Analysis of Self-Healing Behavior of Asphalt Binder Model

The theory of self-healing of asphalt binder was first developed from the theory of
polymer self-healing, so this section will analyze asphalt binder self-healing with reference
to the theory of polymer self-healing research and analyze the different situations and
characteristics of the asphalt binder self-healing process in stages with reference to polymer
model stages.

Figures 11–13 show the variations of multiple properties and model structure during
the self-healing simulation. These figures demonstrate a typical asphalt binder model
self-healing process.
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Figure 11. Density and volume change curves during healing process and density distribution curves
under different time conditions: (a) variation of density and volume with self-healing time; (b) density
distribution curves under different time conditions.
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white area is the asphalt binder fragment surface contact area).

By observing and comparing the changes in the polymer self-healing process shown in
Figure 1 with the asphalt binder healing process model shown in Figure 12, it can be found
that the asphalt binder model has similar stages in the self-healing process as the polymer
model: the surface approach stage, which is mainly characterized by the approach of model
fragments to each other and the short duration of this stage; the surface rearrangement
stage, which is considered as the process of the slow movement of the crack surface atoms
from the unreasonable structure due to tensile damage until the formation of a lower energy
structure, and is therefore a stage highly relevant to the existence of cracks in asphalt binder
model; the surface wetting stage, which generally exists when the asphalt binder model
fragments are close to each other and the surfaces can not be completely fit. At this time,
the pore areas on the surface of the model fragments are not coincident, but will gradually
disappear as the surface wetting. However, this stage is often ignored or merged into the
surface approach stage due to its small time span or unreasonable asphalt binder model
construction; and the diffusion stage, which as one of the stages in the self-healing process
of asphalt binder has the greatest impact on the recovery of material strength [40]. The
diffusion stage is essentially where the surface molecules of one asphalt binder fragment
continue to move after experiencing mutual entanglement in the surface wetting stage, even
crossing the original crack interface into the other asphalt binder fragment. Theoretically,
after a long enough period of diffusion of the two model fragments, the original crack
interface of the material will completely disappear and the strength will return to the
pre-cracking level.

As can be seen from Figure 11, the starting point of the volume curve and density
curve is located at a very large and very small value, respectively, due to the existence of
cracks in the self-healing process of the asphalt binder model. The density distribution
curve shows that a large number of molecules are gathered at both ends of the z-axis
(tensile axis) and there is a vacuum zone in the middle part. As the healing simulation
proceeds, the density curve and volume curve change rapidly in the first 20 ps. It is worth
noting that the middle of the density distribution curve still has a region with a value of 0.
Combined with the model diagram, we can conclude that the two ends of the model are
approaching each other but not in contact, and the asphalt binder self-healing model is at
the stage of surface approach and surface rearrangement. Subsequently, when the time
reaches 30 ps, we can see that the middle part of the density curve starts to rise from 0.
However, Figure 13 shows that the two ends of the asphalt binder model are still separated
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and not in contact, so the model is still in the surface rearrangement and surface approach
stage. When the simulation time reaches 35 ps, Figure 13 shows that a blank area appears
in the crack region of the asphalt binder model, which means that the asphalt binder model
is connected for the first time and the wetting stage starts slightly before this time point,
while the diffusion stage will start slightly after this time point, so the model is in the
surface rearrangement, surface approach and surface wetting stages at this time. When the
simulation time reaches 100 ps, by observing Figure 11a, it can be found that the volume
and density values of the asphalt binder model begin to stabilize at this time, which means
that the stage of interface approach has ended. By observing the asphalt binder model,
we can find that there is still a certain volume of void area in the interface, so the asphalt
binder model is in the stage of surface rearrangement, surface wetting and diffusion at
this time. During the period from 100 ps to 600 ps, the density of the model increases very
slowly, the interatomic interaction ability increases due to the proximity, and the volume of
the voids in the asphalt model binder gradually decreases, at which time the crack volume
in the model is calculated to be less than 1% using a probe of size 3.7 Å. This indicates
that the two originally separated asphalt binder fragments are in a close-contact state and
implies the end of the surface wetting stage, when the asphalt binder model is only in the
diffusion stage.

After analyzing the self-healing state of the asphalt binder model, Figure 14 shows the
distribution of the four stages of asphalt binder self-healing during the “tensile-self-healing”
simulation. It is noteworthy that the asphalt binder self-healing stages in this study are
overlapping structures rather than end-to-end, and this overlapping structure will be more
suitable for the analysis of asphalt binder self-healing when the crack surfaces do not
fit together.
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3.5. Relationship between Self-Healing Behavior and Energy of Asphalt Binder Model

In MD simulations about bituminous materials, researchers generally divide the
energy of the whole system into two major parts: the bond energy present within individual
molecules and the non-bond energy present between molecules. Taking the asphalt model
binder healing process at 298.15 K, 1 standard atmospheric pressure as an example, the
Ebond = bond energy, Eangle = angle energy, Edihed = dihedral energy, Eimp = improper
energy, Evdwl = van der Waals pairwise energy (includes Etail), Ecoul = Coulombic pairwise
energy, Elong = long-range kspace energy inside the system throughout the process will be
determined as the main observation target, recorded in Figure 15. It is easy to find that
Evdwl plays a dominant role in the self-healing process of the asphalt binder model.

In addition, controlling the tensile simulation time at the same temperature and tensile
rate can result in multiple asphalt binder models with different strain levels, which can be
regarded as differences in crack width or crack volume. These models with different degrees
of damage can be used as the initial models for studying the effect of crack size on asphalt
binder self-healing properties. Previous studies have found that crack width or crack
volume play a very important influence on the self-healing ability of asphalt binder [41,42],
and this study will further investigate the mechanism based on this phenomenon in terms
of energy change. Figure 16 shows the variation curves of the dominant energy Evdwl in
the self-healing process of asphalt binder models with different damage degree conditions.
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The trend of the Evdwl change of the model in Figure 16 is approximately the same for
all conditions, which indicates that the degree of damage does not affect the distribution
of stages in the self-healing process. It is further inferred that the conclusions of the
multistage analysis of the self-healing behavior of the asphalt binder model in Chapter 3.4
are applicable to the asphalt binder self-healing process under different damage conditions.
In addition, a similar inflection point can be found for all the curves in the images. This
inflection point splits the entire curve into a curve A, which falls rapidly over a short period
of time, and a curve B, which falls slowly over a long period of time. Due to hardware
limitations, the self-healing simulation time in this study is short, and only a small period of
time before and after the appearance of the inflection point is recorded in Figure 16, which
means that the actual time span of curve B is much larger than that shown in the figure.
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Previous researchers believed that after a long enough interval, small cracks within
the material can heal themselves and the material properties can be restored to their pre-
damage properties, so self-healing is considered the inverse process of cracking [22,43]. The
initial model of healing used in this section is obtained by simulating the same model for
different times of stretching, so it is not difficult to deduce that for a long enough simulation
time, the van der Waals energy values of all healing models will be close to the van der
Waals energy values of the asphalt binder model before the stretching failure E. Due to
the difference in damage degree of asphalt binder models at the beginning of the healing
simulation, the initial van der Waals energy E1 of each healing model is also different. In
addition, if the van der Waals change in curve A can be regarded as ∆E2 and the van der
Waals change in curve B as ∆E3, these values should satisfy Equation (2).

E = E1 + ∆E2 + ∆E3, (2)

Formula (3) is obtained after transposing Formula (2):

∆E3 = E − E1 − ∆E2, (3)

where the van der Waals energy E of the asphalt binder model before tensile failure is a
fixed value (−7411.25699 kcal/mol in this study). The values of E1 and E2 for different
degrees of injury can be obtained by observing Figures 6 and 16; thus, Table 4 is obtained
by calculation.
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Figure 16. Van der Waals energy change during asphalt binder healing at different damage levels:
(a) 100% damage; (b) 75% damage; (c) 50% damage; (d) 25% damage (The red area is the curve A
area, the cyan area is the curve B area).

Table 4. Energy values for different damage levels.

Damage Degree (%) E (kcal/mol) E1 (kcal/mol) ∆E2 (kcal/mol) ∆E3 (kcal/mol)

25

−7411.2570

−6322.1256 −933.9347 −155.1967
50 −6423.3220 −832.0332 −155.9018
75 −6477.5566 −767.1836 −164.5168

100 −6610.9588 −650.7682 −149.5300

It can be observed in Table 4 that the larger the degree of damage, the smaller the
value of E1 for the asphalt binder model. This phenomenon may be caused by the different
degree of interfacial molecular rearrangement in the initial healing model under different
degrees of injury (discussed in Section 3.2). Subsequently, it can be found that the values
of ∆E2 increase with the degree of damage, but the values of ∆E3 were very close. These
phenomena indicate that the van der Waals energy values of asphalt binder models with
different degrees of damage are different at the beginning of self-healing, but the values
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of van der Waals energy are close for all models after self-healing through the stage A of
the curve. Since van der Waals force is a kind of interaction force between molecules, and
the number of atoms and the cut-off distance did not change during the simulation, the
structure and density of all models should be similar at the end of the self-healing of the
curve A stage. Because the temperature and pressure conditions for the self-healing of
asphalt binder models with different damage levels are the same, the ∆E3 values are close
to each other, and the structure and density of the models are similar after the end of the
curve A stage, it can be speculated that the damage level cannot significantly affect the time
required for the healing of the curve B stage.

Figure 17 records the appearance time of the inflection point and the crack volume
ratio under different damage conditions, where the appearance time of the inflection point
can be regarded as the self-healing time consumed by the curve A stage. It can be seen
that with the increase in damage degree, the increment of time required by curve A under
the adjacent damage degree gradually increases. It can be expected that when the damage
degree rises to a certain value, the healing time will rise rapidly to a huge value, and then
the asphalt binder model will be difficult to self-heal. It is also observed that the crack
volume ratio values for the asphalt binder models with different degrees of damage are
less than 1% at the end of the curve A stage, which means that the asphalt binder models
are very tightly fitted together. After combining the conclusions of Section 3.4, it can be
further inferred that the inflection point of the intersection of curve A and curve B occurs
around the end of the surface approach, surface rearrangement and surface wetting stages.
At the same time, it means that the damage degree can affect the self-healing performance
of the asphalt binder model by changing the time and efficiency of the surface approach,
surface rearrangement and surface wetting.
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In this study, based on the verification of the effect of asphalt crack volume on asphalt
binder self-healing behavior, the influence mechanism was further analyzed from the
perspective of energy change. It is shown that van der Waals energy plays a dominant role
in the self-healing process of asphalt binder models, and different damage levels do not
affect the distribution of stages in the self-healing process. Lower damage levels improve
the efficiency of surface approach, surface rearrangement and surface wetting and shorten
the elapsed time of these stages, thus showing a stronger healing ability.
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4. Conlusions

(1) The tensile failure of asphalt binder was simulated using MD, and the process of crack
generation, expansion and complete formation was analyzed, which could not be
observed in experiments. It was found that the asphalt binder model went through
four stages in the simulation of tensile failure, namely “tensile extension”, “nanocrack
generation”, “crack adding, expanding and penetrating” and “cracking failure”.

(2) Changing the temperature and rate conditions of the asphalt binder model tensile
simulation reveals that the higher the tensile temperature, the faster the growth of the
crack volume at the beginning of the asphalt binder model tensile, thus reducing its
tensile strength; the higher the tensile rate, the weaker the rearrangement of molecules
at the gap or crack–separation interface during tensile.

(3) By performing a multistage analysis of asphalt binder self-healing after referring
to multiple stages of polymer self-healing, the asphalt binder self-healing process
is divided into the four mutually overlapping stages of surface approach, surface
rearrangement, surface wetting and diffusion. The new stage division is suitable for
simulating asphalt binder nanocrack self-healing with low surface fit, which will have
a positive impact on future asphalt binder self-healing MD.

(4) The self-healing ability of asphalt binder in different degrees of damage was studied
from the perspective of energy change. It is shown that van der Waals energy plays
a dominant role in the healing process; the influence of the degree of damage on
the healing ability of asphalt binder is more obvious in the three stages of surface
approach, surface rearrangement and surface wetting, and has less influence on the
diffusion stage.

In this study, MD simulated and demonstrated the nanocrack generation process
and self-healing behavior of asphalt binder, and these works complement the deficiencies
of existing experimental and observational methods at microscopic dimensions such as
the nanoscale. This means that MD has the potential to be one of the tools for pavement
designs in the future. In this study, uniaxial tensile simulation was used to simulate the
failure process of asphalt binder, but the failure of asphalt material is a complex process
involving tension, compression, shear, and bending, so future studies should try to use MD
to simulate the principles of the dynamic shear rheometer or bending beam rheometer. In
addition, due to the time and dimensional scale of MD, few researchers have correlated
the actual experimental results with the MD calculation values, so whether there is some
kind of conversion relationship between experimental results or experimental conditions
that can bridge the gap between experimental and simulated values will be another future
research direction.
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