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CONSPECTUS: The structural degrees of freedom of a solid material
are the various distortions most straightforwardly activated by external
stimuli such as temperature, pressure, or adsorption. One of the most
successful design strategies in materials chemistry involves controlling
these individual distortions to produce useful collective functional
responses. In a ferroelectric such as lead titanate, for example, the key
degree of freedom involves asymmetric displacements of Pb2+ and Ti4+

cations; it is by coupling these together that the system as a whole
interacts with external electric fields. Collective rotations of the
polyhedral units in oxide ceramics are another commonly exploited
distortion, driving anomalous behavior such as negative thermal
expansionthe counterintuitive phenomenon of volume contraction
on heating. An exciting development in the field has been to take advantage of the interplay between different distortion types:
generating polarization by combining two different polyhedral rotations, for example. In this way, degrees of freedom act as
geometric “elements” that can themselves be combined to engineer materials with new and interesting properties. Just as the
discovery of new chemical elements quite obviously diversified chemical space, we might expect that identifying new and different
types of structural degrees of freedom to be an important strategy for developing new kinds of functional materials. In this context,
the broad family of molecular frameworks is emerging as an extraordinarily fertile source of new and unanticipated distortion types,
the vast majority of which have no parallel in the established families of conventional solid-state chemistry.
Framework materials are solids whose structures are assembled from two fundamental components: nodes and linkers. Quite simply,
linkers join the nodes together to form scaffolding-like networks that extend from the atomic to the macroscopic scale. These
structures usually contain cavities, which can also accommodate additional ions for charge balance. In the well-established systems
such as lead titanatenode, linker, and extra-framework ions are all individual atoms (Ti, O, and Pb, respectively). But in molecular
frameworks, at least one of these components is a molecule.
In this Account, we survey the unconventional degrees of freedom introduced through the simple act of replacing atoms by
molecules. Our motivation is to understand the role these new distortions play (or might be expected to play) in different materials
properties. The various degrees of freedom themselvesunconventional rotational, translational, orientational, and conformational
statesare summarized and described in the context of relevant experimental examples. The much-improved prospect for
generating emergent functionalities by combining these new distortion types is then discussed. We highlight a number of directions
for future researchincluding the design and application of hierarchically structured phases of matter intermediate to solids and
liquid crystalswhich serve to highlight the extraordinary possibilities for this nascent field.
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Control of Multipolar and Orbital Order in Perovskite-like
[C(NH2)3]CuxCd1−x(HCOO)3Metal−Organic Frameworks. J.
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dependence of collective Jahn−Teller and molecular orienta-
tional order on composition in a series of hybrid perovskites.
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Shifts as Symmetry-Breaking Degrees of Freedom in Molecular
Perovskites. Phys. Chem. Chem. Phys. 2016, 18, 31881−31894.4
Identification of a new type of degree of freedomnamely,
columnar shiftsin molecular perovskites. This degree of
freedom has no analogue in conventional ceramic frameworks.

■ INTRODUCTION

Framework materials are a broad and important family of solids
that include zeolites, perovskites, metal−organic frameworks
(MOFs), and coordination polymers (CPs).5−9 Their network
structures are composed of nodes and linkers and may
incorporate counterions and/or neutral guest molecules within
their cavities. These networks can be held together by a variety
of interactions, including electrostatics, covalency, and hydrogen
bonding. A very general formula for the family is AmBXn·{guest},
where A represents the extra-framework counterion(s), B
represents the framework node, and X represents the
corresponding linker. The famous ABX3 stoichiometry of
perovskites such as BaTiO3 and MAPbI3 (MA = CH3NH3

+) is
an obvious example;9 the ReO3 networks are related A-site-
deficient systems (m = 0) that include, e.g., the archetypal MOF-
5, for which B = OZn4

6+ and X is the terephthalate dianion.10,11

What distinguishes molecular frameworks from their conven-
tional inorganic counterparts is that at least one of A, B, or X is
molecular. Some canonical examples are shown in Figure 1.
Historically, the task of developing functional framework

materials has focused heavily on purely inorganic systems, such

as oxide ceramics.18 And for good reason: the charge, spin, spin-
state, and orbital degrees of freedom of (e.g.) transition metals
are key for many important physical properties, and the
interactions among these various components are strongest
when frameworks are dense. The incorporation of molecular
components necessarily opens up a framework structure
molecules occupy more space than atoms, after allsuch that
collective properties dependent on the interaction of electronic
degrees of freedom generally suffer as a consequence.
The flip-side of this coin is that open-framework structures

tend to be more flexible. This flexibility is often cast in terms of
structural degrees of freedom, a famous example of which is the
family of octahedral tilt distortions found in perovskites.19 From
the perspective of exploiting flexibility in terms of functional
response, it seems obvious to focus on mechanical properties
and, indeed, many molecular frameworks exhibit unusual
mechanical phenomena such as negative thermal expansion
(NTE, contraction on heating) and/or negative linear
compression (NLC, expansion on compression).20,21 But a
remarkable development has been the realization that structural
degrees of freedom, chosen carefully, can combine to generate
electronic degrees of freedom.22 This is the basis of so-called
hybrid improper ferroelectricity, whereby bulk polarization
develops as a consequence of coupling among various nonpolar
structural distortions.23 Molecular frameworks have more
structural degrees of freedom than their conventional counter-
parts and so offer many more possibilities for generating
emergent physical properties of this type.1

In this Account, we survey the key structural degrees of
freedom unique to molecular frameworks“unconventional” in
the sense that they are not observed in dense inorganic
frameworks. These include “forbidden” tilts, shifts, and orienta-
tional and conformational degrees of freedom. We cover each of

Figure 1. Some AmBXnmolecular framework structures, with A-site extra-framework ions shown in gold, B-site nodes in gray, and X-site linkers in red.
Interpenetrated framework copies are shown in white. (a) The negative thermal expansion (NTE) material Zn(CN)2, with its two interpenetrating
diamondoid nets.5,12 (b) In [NMe4]CuZn(CN)4, only one net remains, with [NMe4]

+ ions occupying the network cavities.5 (c) The three
interpenetrating nets of Ag3[Co(CN)6] (= Co[Ag(NC)2]3), a material known for its colossal NTE and strong negative linear compressibility (NLC)
effect.13,14 The hybrid perovskites (d) [Gua]Mn(HCOO)3 (Gua = guanidinium) and (e) [MDABCO][NH4]I3 (MDABCO = methyl-
dabconium).15,16 The latter is a metal-free ferroelectric. (f) UiO-66, with chemical formula [Zr6O4(OH)4][BDC]6 (BDC = 1,4-benzene-
dicarboxylate), adopts the fcu topology;17 (g) MOF-5, also known as IRMOF-1, has chemical formula [Zn4O][BDC]3 and the pcu topology.10

Neither MOF has any cation on the corresponding A-sites.
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these aspects in turn, emphasizing where possible the scope for
chemical control and some of the various functional
implications. Before doing so, we first summarize briefly the
compositional space accessible to these molecular systems. Our
review concludes with a forward-looking discussion of
opportunities and developments in the field.

■ COMPOSITIONS OF MOLECULAR FRAMEWORKS
Molecules can be incorporated within an AmBXn framework on
any one or a combination of the A-, B-, and X-sites.
A topical example of molecular substitution on the A-site is

that of the organic halide perovskites such as MAPbI3, famous
for their photovoltaic performance.24 We will come to discuss
the importance of molecular shape on the structural behavior
and associated functionality of such systems. Whereas single-
atom A-site cations tend to interact with the surrounding BXn
framework predominantly in terms of space-filling (e.g., the
structure-directing tolerance factors) and electrostatic stabiliza-
tion, molecular A-site cations allow for more chemically complex
interactions. A good example is that of hydrogen-bonding
between A-site guanidinium (Gua+) cations and X-site formate
anions in guanidinium transition-metal formates: the inter-
actions are sufficiently strong and directional as to hold the
[Gua]Fe2/3□1/3(HCOO)3 (□ = vacancy) framework together
even when one-third of the B-sites is absent.25 Another
important distinction between monatomic and molecular
cations is that of accessible charge states. Molecular cations
are predominantly univalentdabconium, [H−N(C2H4)3N−
H]2+, being a notable exception16whereas inorganic ions can
often access higher charges.26 Thus, molecular A-site species
offer a larger diversity in terms of interactions and shapes but a
smaller range of available charge states, relative to monatomic A-
site species.
The scope for compositional variation of the B-site is normally

system dependent. By way of example, molecular perovskites
generally comprise univalent A and X species, which thus
requires B to be a divalent octahedral species. As a result,
molecular perovskites are frequently based on first-row
transition metalsrather than molecular ionsas these satisfy
both the charge and geometry requirements.9 This is in contrast
to oxide perovskites, which may feature cations with oxidation
states as high as 6+.26 However, molecular B-site cations have
been incorporated in hybrid perovskite frameworks: a high-
profile example is the metal-free ferroelectric perovskite
[MDABCO]NH4I3 (MDABCO = [H−N(C2H4)3N−CH3]

2+),
assembled by H−I interactions.16 The concept of molecular
nodes is well-established in MOF chemistry, with many
canonical systems based on such architectures: the [OZn4]

6+

and [Zr6O4(OH)4]
12+ B-site clusters in MOF-5 and UiO-66,

respectively, are obvious examples.10,17 One advantage of
incorporating oxometallate clusters is that it allows highly
charged metal cations (up to 4+) to be incorporated, which
often correlates with good thermal and chemical stability.17

Molecular substitution on the X-site leads to the rich families
of MOFs and CPs.5−8 Organic anions are the predominant type
of molecular X-site linkers, but metal-containing species may
also be used, as in the dicyanometallate27 and metalloporphyr-
in28 frameworks. Even simple inorganic molecules and
molecular ions can occupy the X-site: examples include BH4

−,
SiF6

2−, I2, and CN−.5,29−31 Quite obviously the scope for
variation on this site is essentially without limit and includes
linker functionalizationan important tool for property
optimization.32 The linker shape may also guide the topology

of the system and the propensity for distortions.33 Hence, of the
three site types in molecular frameworks, it is the X-site that
offers the richest playground for tuning structure and function.

■ CONVENTIONAL AND FORBIDDEN TILT
DISTORTIONS

Arguably the best studied type of structural degree of freedom in
conventional framework materials is that of tilt distortions. In
perovskites, these are the “octahedral tilts” famously categorized
by Glazer,19 and more generally, they are the rigid-unit modes
(RUMs) relevant to, e.g., the silicate minerals and zeolites.34

Their ubiquity arises from the contrast in energy scales between
the cost of deforming the tightly bound BX2n coordination
polyhedra and flexing the underconstrained B−X−B linkages.
As a consequence, a common structural distortion involves
correlated rotations of corner-sharing coordination polyhedra,
themselves behaving effectively as rigid bodies. By way of
example, the famous tilt instability in SrTiO3 involves counter-
rotation of corner-sharing TiO6 octahedra around a common
axisthe Ti coordination geometry is preserved in the process,
but the Ti−O−Ti angle flexes to reduce the system volume at
low temperatures.35 In general, many different tilt distortions are
possible for a given framework, with each one breaking crystal
symmetry in its own particular way. This symmetry breaking can
be exploited in the design of hybrid improper ferroelectrics,
which has led to the development of so-called “tilt engineering”
approaches,22 whereby framework composition is cleverly
manipulated to introduce tilt distortions of a specific useful
symmetry.
An important distinction between atomic and molecular X-

site linkers is that, loosely speaking, the former requires
neighboring [BX2n] polyhedra to rotate in opposite directions,
but the latter lifts any such constraint.36 In particular, it is
possible in molecular frameworks for neighboring polyhedra to
rotate in the same sense as one anothera so-called “forbidden”
tilt distortion that has no analogue in conventional frame-
works.37 It turns out that forbidden tilts are a relatively common
phenomenon in many molecular perovskites, with a particular
predominance in azide-bridged systems [Figure 2(a)].33 In the
Prussian-blue-like framework [NH4]2SrFe(CN)6, it is even
possible to switch between conventional and forbidden tilt
distortions through reversible guest binding at the B-site [Figure
2(b)].37

The accessibility of forbidden tilts to frameworks with
molecular X-sites has two clear functional implications. The
first is the profound increase in diversity of symmetry-breaking
distortions one might introduce, which in turn expands the
possibility for tilt engineering.1 The second is an increased
density of low-energy volume-reducing tilt modes in the
vibrational spectrum of these systems. Whereas conventional
tilt modes are localized at the Brillouin zone boundary
reflecting the alternation in rotation sense from polyhedron to
polyhedronforbidden tilts can usually be associated with all
possible wave-vectors (i.e., periodicities), and so their
contribution to macroscopic thermodynamic properties is
more substantial.36 This point is thought to help explain why
many molecular frameworks exhibit particularly strong NTE
effects: on heating, one populates the whole family of volume-
reducing tilt modes, which is sufficient to overcome the usual
positive thermal expansion contribution from other vibra-
tions.20,36 This point is nicely illustrated in the case of the
isotropic NTE material Zn(CN)2, for which the phonon
spectrum is understood well [Figure 2(c)].12,39
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As the length of an X-site anion increases so too does its
capacity to allow for extreme flexing in response to external
stimuli. A topical example is the phenomenology of negative gas
adsorption (NGA), as observed in the Cu-based MOF DUT-
49.40 The effect itself is rather bizarre: on exposure to increasing
gas pressure, the pores of DUT-49 are filled with gas before
collapsing at a critical pressure and releasing some of the
included gas molecules (under pressure!). The transition
between open and dense states is driven by a collective tilt
mode of large multicenter nodes, facilitated by extreme flexing of

polyphenyl X-site linkers [Figure 2(d)]. Although the tilt itself
turns out to be conventional, rather than forbidden, its
magnitude is entirely unconventionalindeed sufficient to
drive a volume collapse greater than 50%.

■ COLUMNAR SHIFTS, BREATHING, AND LOOP
MOVES

Molecular linkers also enable new low-energy deformations
involving collective translations that are impossible in inorganic
frameworks.36 These modes are most straightforwardly under-
stood in molecular perovskites, where they are referred to as
“columnar shifts”.4 They often play an important symmetry-
breaking role in these systems and are well-placed to drive
hybrid improper ferroelectricity.1,4 As for unconventional tilts,
columnar shifts are frequently observed in frameworks with
azide or dicyanamide ligands [Figure 3(a)].33

The asymmetric 2,6-naphthalenedicarboxylate (NDC) linker
induces a similar effect in theMOF known as DUT-8(Ni). Here,

Figure 2. Tilt degrees of freedom in molecular frameworks. (a)
Octahedral tilts in [NMe4]Mn(N3)3 involve a combination of
conventional (out-of-phase) and forbidden (in-phase) rotations.
Reproduced with permission from ref 38. Copyright (2016) John
Wiley and Sons. (b) The octahedral tilt system in [NH4]SrFe(CN)6
can be switched between conventional (left) and forbidden (right)
configurations through reversible (de)hydration at the Sr centers.
Adapted with permission from ref 37. Copyright (2016) American
Chemical Society. (c) The low-energy phonon dispersion curves of
Zn(CN)2 include essentially dispersionless branches associated with
Zn-tetrahedral displacements and tilts (shaded in blue and red,
respectively); the latter partitions into modes involving translations
(2−4 THz) and rotations (8−10 THz) of the X-site cyanide ions.
Adapted with permission from ref 39. Copyright (2013) American
Physical Society. (d) The phenomenon of NGA in DUT-49 involves a
reversible transition between open (left) and dense (right) states.
These two states, which differ in molar volume by a factor of 2, are
related by a large-magnitude collective rotation of the B-site polyhedra
around the ⟨111⟩ axes of the cubic unit cell. The flexibility of the
polyphenyl X-site linker is key to allowing this transformation.40

Figure 3. Translational degrees of freedom in molecular frameworks.
(a) The columnar shifts of hybrid perovskites involve translations of
columns or planes of connected polyhedra, as shown here for
[(CH3)4N]Ca(N3)3.

4 Note the coupling between the shift displace-
ment pattern and A-site molecular shape. Adapted with permission
from ref 4. Copyright (2016) Royal Society of Chemistry. (b) The low
shear modulus of MOF-5 is understandable in terms of low-energy
planar shift degrees of freedom. Adapted with permission from ref 41.
Copyright (2014) Royal Society of Chemistry. (c) The large-pore/
narrow-pore transition of MIL-53 involves adsorption-driven frame-
work shear. Adapted with permission from ref 42. Copyright (2002)
American Chemical Society. (d) In some molecular frameworks, such
as those with the augmented kagome (left) or augmented pyrochlore
(right) nets, localized multinode translational degrees of freedom exist
that correspond to collective rotations of large structural units (green
regions). These emergent degrees of freedom are termed “loop moves”.
Adapted with permission from ref 36. Copyright (2006) American
Physical Society.
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neighboring columns of DABCO-bridged nickel-carboxylate
paddlewheels (DABCO = [N(C2H4)3N]) are shifted relative to
one another as a consequence of the step-like NDC geometry.43

Whereas in hybrid perovskites the shifts are usually well-
ordered, in DUT-8(Ni), they exhibit a strongly correlated
disorder governed by strict local rules: each square pore is
bounded by two NDC steps-up and two steps-down.44 The
particular type of disordered arrangement can even be
controlled reversibly by guest (de)sorption, which imparts the
system with an unusual type of structural flexibility.45

In the long-wavelength limit, shift modes correspond to a
shear distortion of the framework structure. Hence, the
propensity for molecular frameworks with cubic or square
topologies to exhibit shift-type instabilities is reflected also in
their low shear modulias in MOF-5 (ref 41)and, e.g., the
existence of ferroelastic open-pore/narrow-pore transitions
[Figure 3(b,c)]. Such transitions are known as “breathing
modes” in flexible MOFs.42 Perhaps the best known example is
MIL-53, where hydration leads to a winerack-type contraction of
the framework due to the hydrogen bonding interactions
between guest water and the terephthalate linkers.42 Conversely,
the isoreticular series of MIL-88 exhibits a remarkable expansion
upon guest absorption, with a volume change of up to 300%.46

The breathing ability renders these MOFs suitable candidates
for diverse applications such as drug delivery,47 removal of
hazardous materials,48 and gas separation.49 In addition to
sorption-induced strain, winerack-type hingeing can sometimes
be triggered by pressure, leading to the rare and counterintuitive
phenomenon of negative linear compressibilityexpansion in
one or two directions upon the application of hydrostatic
pressure.50 This has been observed in several MOFs and CPs,
including the triply interpenetrated Prussian-blue-like Ag3[Co-
(CN)6].

14

Whereas translational degrees of freedom in cubic and square
network topologies are understood well, the case is much less
clear for other systems. For molecular frameworks with
diamondoid topologies, a very different type of collective
translation occurs: hexagonal loops of connected tetrahedral
[BX4] units rotate such that each tetrahedron translates along a
loop tangent [Figure 3(d)].36 We term these collective
displacements “loop moves”, by analogy to the collective loop
spin degrees of freedom in Ising pyrochlore magnets.51 A
peculiarity of the diamond network is that there are exactly as
many loops as tetrahedral nodes, which has the unexpected
consequence that each BX4 unit retains a full effective
translational degree of freedom.36 This results in the pair of
dispersionless acoustic phonon branches in Zn(CN)2 known to
play a key role in its NTE [blue curves in Figure 2(c)].39

Polyhedral displacements are also observed in the quartz-
structured molecular framework α-Zn[Au(CN)2]2, where a
pressure-induced phase transition is accompanied by a coupled
translation of the [ZnN4] tetrahedra.52 The extension from
these select few examples to a general understanding of
translational degrees of freedom in molecular frameworks of
arbitrary topology, however, remains very much an open
question and work-in-progress.

■ ORIENTATIONAL AND MULTIPOLAR ORDER
An obvious difference between inorganic and molecular species
is the aspherical symmetry of the latter. This distinction can be
exploited in the search for noncentrosymmetric structures.
Curie’s principle states that a crystal will adopt the common
symmetry subgroup of the point symmetries of its components.

Hence, noncentrosymmetric structures can be designed by a
judicious choice of components with specific symmetries.16

Moreover, the anisotropy inherent to molecular species allows
for orientational degrees of freedom that simply do not exist in
conventional frameworks.
Several properties of molecular perovskites depend on

orientational order and disorder of molecular A-site cations.
For example, the dynamics of the methylammonium cations in
the photovoltaic material MAPbI3 affects exciton lifetimes,
which is crucial for its performance in solar cells [Figure 4(a)].53

Furthermore, cyanoelpasolitesA2B[B′(CN)6], where A is an
organic cationtypically display phase transitions upon cool-
ing, driven by progressive freezing of the motion of the A-site
cation. This can be exploited in the development of materials
with switchable dielectric constants.54 The metal-free ferro-
electric [MDABCO][NH4]I3 develops a polarization compet-
itive with that in BaTiO3 through orientational order of the polar
[MDABCO]2+ cations [Figure 4(b)].16

Phase transitions relating to orientational order can often be
described in terms of multipole moments and map onto
relatively simple physical models.57,58 For example, the onset of
rotation of the imidazolium cation in (H2Im)2K[Fe(CN)6]
corresponds to a loss of dipolar order, whereasas the normal
of the imidazolium plane is unchangedthe quadrupolar order
is retained.54 The type of multipolar order is dictated by the
symmetry relationship between the point symmetry of the A-site
cation and its site in the ideal undistorted parent.57 Some control
over the order of the multipole moments may be achieved by
considering the packing efficiency and size of the cavity.3 As a
result, design rules based on multipole moments may be within
reach. An interesting parallel to these examples is the
phenomenology of so-called “hidden-order transitions” in
strongly correlated electronic materials, e.g., the magnetocaloric
Gd3Ga5O12, which also involve the emergence of multipolar
order on lattices of various topologies.59

If the symmetry of the B-site species is lower than the point
symmetry of its crystallographic site, then orientational B-site
order can emerge. A well-known example in conventional
frameworks is that of collective Jahn−Teller ordercrucial to
the physics of many strongly correlated oxides.18 Related
degrees of freedom exist in molecular frameworks. For example,
the hexagonal Zr-MOF PCN-223 features a Zr oxyhydroxide
cluster with threefold orientational disorder at the nodes of the
hexagonal lattice.60 Such disorder can complicate the structure
determination, as recently noted for PCN-221a polymorph of
PCN-223.61 The unusual cubic Zr oxyhydroxide cluster initially
reported in PCN-221 appears to be the result of a superposition
of statically disordered octahedral clusters.61

Turning to the X-site, the use of cylindrically asymmetric
anions leads to potential symmetry breaking by rotation around
the B−X−B linkage. This is of particular currency for ZIFs and
has been extensively studied in the specific case of ZIF-8, a
porous material with the SOD topology.62 It readily absorbs
molecules larger than the size of the pore window, which can be
attributed to a rotation of the surrounding imidazolate linker
edges (the so-called “swing effect”) [Figure 4(c)].63 Critically,
the degree of rotation can be tuned by chemical functionaliza-
tion, which has obvious implications for applications within gas
storage and separation.64 Furthermore, a variable-temperature
study on cristobalite-like Cd(Im)2 (Im = imidazolate) revealed
reorientation of the imidazolate linker, causing an anisotropic
and nonlinear thermal response.65 Finally, order/disorder
processes of the polar dicyanamide ligand, N(CN)2

−, likely
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contribute to the dielectric anomaly observed on heating in the
perovskite [NPr4]Mn[N(CN)2]3 (Pr = C3H7).

66 Part of the
interest in these systems arises from the possibility of controlling
order via the application of external electric fields.

■ MOLECULAR CONFORMATIONS
As the structural complexity of molecular components increases,
so too does their capacity for internal degrees of freedom.

Variations inmolecular conformatione.g., torsion anglesare
distinct from the whole-body rotations or translations associated
with displacive and orientational degrees of freedom. A simple
example is the H−N−C−H dihedral angle of the methyl-
ammonium cation, which may influence exciton recombination
rates in MAPbI3.

67 More complex is the case of bis-
(trisphenylphosphine)iminium (PPN), which acts as the A-
site cation in dicyanometallate frameworks and which can adopt
multiple conformations in the solid state.27 When enclosed in
the layered [PPN]0.5Cd[Ag(CN)2]2.5(EtOH), for example, the
phenyl groups are oriented so as to maximize the π−π
interaction between the aromatic rings and the framework. By
contrast, in the perovskite [PPN]Cd[Au(CN)2]3, inter- and
intramolecular interactions are favored.27

If molecular conformations can be interchanged by
application of external stimuli, then it is possible to exploit
such internal, conformational degrees of freedom in a functional
sense. In azobenzene-based porous covalent organic frame-
works, for example, irradiation by ultraviolet light leads to
reversible cis/trans isomerism of the linkers.68 This structural
change tightens the pore size, which effectively switches on and
off the material’s ability to transport molecules beyond a certain
critical size [Figure 5(a)]. A related effect occurs in the
cyclohexane-bridged UiO-66 analogue ZrCDC, where desorp-
tion-driven chair/boat conformation inversion results in a
reversible transition between crystalline and amorphous states.69

In the dicyanometallate-linked diamondoid framework [NEt4]-
Ag[Ag(CN)2]2 (Et = C2H5), the normally achiral NEt4

+ A-site
cation adopts a chiral conformation through its interaction with
the dicyanometallate network.2 At low temperatures, this
chirality is coupled in a complex fashion throughout the crystal
to give an incommensurately modulated “chirality density wave”
of potential interest in advanced photonics [Figure 5(b)]. On
heating, however, the system is eventually able to overcome the
interconversion barrier between enantiomorphic conforma-
tions, and an achiral state emerges. So, again, an external
stimulusin this case temperaturecan switch on and off a
physical property dependent on molecular degrees of freedom.
An appealing variation on this theme is the exploitation of

conformational order/disorder transitions in the design of
barocalorics, for which the high-profile example is [NPr4]Mn-
[N(CN)2]3.

70 On heating above a critical temperature of 331 K,
the tetrapropylammonium A-site cations switch from being
conformationally ordered to a disordered state. A significant
entropy change of ∼42.5 J kg−1 K−1 accompanies the transition.
Because the disordered state has a larger molar volume, the
transition can be suppressed by applying a very modest
hydrostatic pressure [Figure 5(c)]. A solid-state cooling strategy
follows naturally. Starting from the disordered (high-temper-
ature) state, pressure is applied until the A-site cations order; the
entropy loss is expelled as waste heat. As pressure is released, the
system disorders, taking in heat (i.e., cooling its environment) in
order to provide the necessary entropy gain.

■ FUTURE DIRECTIONS
For each of the types of degree of freedom and various
applications discussed above, there is obvious need and scope
for developing clear strategies for chemical control and
performance optimization. This is actually an enormous
challenge, given the chemical and structural diversity of the
broad family of molecular frameworks. There will also be many
other degrees of freedom not covered in this brief Account that
are nonetheless worthy of exploration. Examples include the

Figure 4. Nature and consequences of orientational degrees of
freedom. (a) In MAPbI3, the MA+ cation can orient along a number
of directions (colored arrows). The combination of dipolar interactions
with either antiferroelectric (left) or ferroelectric (right) couplings
leads to polarization textures that influence exciton dynamics. Adapted
with permission from ref 53. Copyright (2015) Springer Nature. (b) In
the metal-free ferroelectric [MDABCO][NH4]I3, bulk polarization
emerges from collective orientational order of [MDABCO]2+ cations.
An applied electric field flips this polarization. Adapted with permission
from ref 16. Copyright (2018) American Association for the
Advancement of Science. (c) Under application of pressure, the
imidazolate linkers in ZIF-8 switch orientations to expand the sodalite
cage windows (the “swing effect”). Sorption profiles within closed-pore
(gray) and open-pore (white) states differ; the latter is sensitive to
particle size (various colors). Adapted with permission from refs 55 and
56. Copyright (2016) Royal Society of Chemistry.
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twist modes of paddlewheel units,71 protonation states of
organic linkers,72 binding modes,33 and the topological degrees
of freedom associated with bond rearrangements;73 there will be
many others.
Just as the manganites have assumed a special role in device

physics because they combine many interacting degrees of
freedomcharge, spin, lattice, and orbitalso is it the case that
we expect the interplay of degrees of freedom in molecular

frameworks to provide a rich source of future discoveries.
Already there are key signs: an obvious example is the complex
synergy of framework distortions and molecular reorientations
in the exciton physics of MAPbI3.

74 In a similar vein lies the
development of clear rules for combining different distortions of
molecular perovskites to engineer specific properties, with the
case of emergent polarization in [Gua]Cu(HCOO)3 as a result
of combined Jahn−Teller and multipolar order as an excellent
example.3,75 Solid-solution chemistrytermed “multivariate”
synthesis in the MOF fieldoffers a surprisingly underexplored
additional dimension for exploration in molecular framework
materials design.76 Here the scope is especially broad, since
substitution of molecular components can involve varying not
only size or charge but also shape, conformation, rigidity, or
functionality.
A necessary consequence of the larger physical separation

between transition-metal centers in magnetic molecular frame-
works is a reduced energy scale associated with collective
magnetic order. And while examples of strong77 and unconven-
tional78 magnetism can be found among this broader family of
materials, one expects that conventional inorganic or
intermetallic systems will always have the upper hand in this
regard. Nevertheless, the orientational degrees of freedom of,
e.g., A-site cations can behave as pseudospins that, in favorable
cases, interact in a manner analogous to various types of
magnetic exchange with strengths of ∼100 K.57 Hence, there is
enormous scope to exploit the way in which molecular
frameworks both organize pseudospin degrees of freedom and
control their interactions to access structural analogues of exotic
magnetic phases.58

One target, for example, is the realization of skyrmionic phases
of the potential application in information storage and
manipulation.79 In such systems, the director field associated
with A-site orientations exhibits the same topological features as
in nematic liquid crystals, now driven by the Dzyalonshinskii-
Moriya physics of skyrmionic magnets.80 Given the extraordi-
nary diversity of structural degrees of freedom found in
molecular frameworks and the varied types of interaction that
exist between those degrees of freedom, one anticipates the
discovery of all sorts of emergent states (like skyrmions) in
molecular frameworks, well beyond those found in the
conventional playgrounds of unconventional physics.
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Castro-García, S.; Artiaga, R.; López-Beceiro, J.; Botana, L.; Alegría, Á.;
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