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Abstract

Background

Opioid-related overdose deaths are the top accidental cause of death in the United States,

and development of regional strategies to address this epidemic should begin with a better

understanding of where and when overdoses are occurring.

Methods and findings

In this study, we relied on emergency medical services data to investigate the geographical

and temporal patterns in opioid-suspected overdose incidents in one of the largest and most

ethnically diverse metropolitan areas (Houston Texas). Using a cross sectional design and

Bayesian spatiotemporal models, we identified zip code areas with excessive opioid-sus-

pected incidents, and assessed how the incidence risks were associated with zip code level

socioeconomic characteristics. Our analysis suggested that opioid-suspected overdose

incidents were particularly high in multiple zip codes, primarily south and central within the

city. Zip codes with high percentage of renters had higher overdose relative risk (RR = 1.03;

95% CI: [1.01, 1.04]), while crowded housing and larger proportion of white citizens had

lower relative risks (RR = 0.9; 95% CI: [0.84, 0.96], RR = 0.97, 95% CI: [0.95, 0.99],

respectively).

Conclusions

Our analysis illustrated the utility of Bayesian spatiotemporal models in assisting the devel-

opment of targeted community strategies for local prevention and harm reduction efforts.
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Introduction

Although slightly decreasing from 2017 to 2018, opioid-related overdose remains a leading

cause of injury-related mortality in the US, with nearly 70% of drug overdoses involving opi-

oids [1]. According to the US Centers for Disease Control and Prevention (CDC), while deaths

rates involving all opioids decreased by 2%, rates involving synthetic opioids, such as fentanyl,

saw a 10% increase [1]. Furthermore, recent geospatial analysis on opioid-related overdose has

shown a geographical shift from rural areas to large metropolitan areas [2]. Houston, Texas is

the fourth largest and one of the most ethnically diverse counties in the US. The 2018 census

projections place the total population of the city at 2.3 million [3] and the Houston metropoli-

tan area at 6.9 million people with a growth rate of 2.02% [4]. Like most of the country, Texas

has seen a significant increase in the number of overdose deaths involving synthetic opioids.

However, deaths involving heroin in Texas have more than doubled and prescription opioids

have remained stable [5].

Monitoring of real-time drug overdose patterns is an essential tool in combatting the epi-

demic; yet, federal and state surveillance systems have considerable limitations. National drug

surveillance systems which rely on a top-down approach, are slow to report patterns, and can

even lag behind changing overdose trends [6]. Additionally, state and local level EMS data col-

lection systems are not standardized. EMS agencies differ drastically in resources and local

EMS agencies with limited resources may be reluctant to invest in more sophisticated data col-

lection software. Due to the variability in collection practices, researchers often rely on field

notes and data captured by dispatch systems. Similarly, data from the Survey on Drug Use and

Health (SAMHSA) is limited to self-report data and may underrepresent certain populations,

such as low-income individuals, ethnic minorities [7], homeless, non-English speaking and

technology-impaired individuals [8]. Reliance solely on emergency department (ED) reporting

of opioid-related overdose events may also underestimate incidents, since overdose survivors

often refuse ambulance transport [9]. Finally, the National Vital Statistics System relies on

local coroner and emergency department reported causes of mortality, which may be inconsis-

tent by locality and underreported [10].

Local population-level data, when collected and analyzed in a timely manner, can fill in the

gaps left by other surveillance programs. Emergency medical services (EMS) and first respond-

ers are critical parts of the emergency care system in the US and the first phase of emergency

care. There are more than 20 million EMS transports each year, and emergency 9-1-1 services

offer immediate access to an operator who can provide basic life support coaching until help

arrives on scene [11]. In most urban and suburban areas, EMS is a component of local fire

departments (FDs) [12] and embedded into local communities where they are strategically

positioned to engage with residents. Community FDs often serve as a nerve center for public

health and safety education, from home safety [13] to emergency first aid [14]. Because of their

close ties to the community, local EMS are the first to respond to medical emergencies and

therefore the first to notice new trends, for instance, changes in opioid overdose patterns.

Early recognition of these hot spots is crucial for timely and targeted intervention and investi-

gation over time, shed light on changes in opioid use and demographics, and projections of

future hot spots. The use of Bayesian spatiotemporal models, which have recently gained popu-

larity in research on opioid-related overdose and mortality [15], could be used to provide

insight into the spatiotemporal risk of opioid-related incidents and hence guide subsequent

policymaking and intervention design. Model based risk estimates offer advantages over the

observed risks in that the model-based approaches examine a phenomenon that exists in a par-

ticular place and point in time by observing variables that are shared by geographical locations

in addition to individual characteristics. The observed EMS data often present a lot of noise,

PLOS ONE Patterns and risk factors of opioid-suspected EMS overdose in Houston

PLOS ONE | https://doi.org/10.1371/journal.pone.0247050 March 11, 2021 2 / 11

Science Center at Houston and the City of Houston

Fire Department. The data underlying the results

presented in the study are available from Office of

Emergency Medical Services, City of Houston Fire

Department. The contact information of the EMS

office, City of Houston Fire Department is below.

Additional questions of the EMS data used in this

manuscript submission, including data request,

can be made directly to 1801 Smith, Suite 860

Attn: Records Dept Houston, TX 77002

832.394.6860 (Office) 832.394.6882 (Fax) email:

hfdemsrecs@houstontx.gov.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0247050
mailto:hfdemsrecs@houstontx.gov


particularly in less populated areas. Model-based approaches allow us to tease out the noise

and reveal the true underlying pattern, and to identify “hot spots” of disease incidence and

forecast risks. In addition, the model-based approaches allow the investigation of the potential

contributing factors to the “hotspots”, that can inform policy and public health intervention,

and aid the resource allocation and distribution of state and federal funds to combat the opioid

crisis.

Materials and methods

Study design

We used a retrospective cross sectional study design of prehospital data between January 1,

2015 and December 31, 2019, and mapped suspected opioid-overdose events to zip codes in

the Houston metropolitan area. The study population was approximately 24% white, and 48%

Hispanic. We assessed the geographical and temporal patterns in opioid-suspected overdose

incidents. We developed Bayesian spatiotemporal models to identify zip code with excessive

opioid-suspected incidents (i.e., hot spots), and assessed how the incidence risks were associ-

ated with zip code level socioeconomic characteristics.

Data sources

We relied on de-identified incident location data extracted from the patient care record system

of the Houston Fire Department database, which was provided under a business associates

agreement between the University of Texas Health Science Center at Houston and the fire

department. We defined the opioid-suspected overdose as an incident which involves adminis-

tration of naloxone, an overdose reversal medication that is effective for opioids [16]. For the

spatiotemporal analysis, we included a total of 2630 EMS calls on opioid-suspected overdose

incidents in 84 zip codes concentrated in the densely populated inner-loop area in Houston,

TX (S1 Fig) between January 1, 2015 and December 30, 2019.

Demographic and socioeconomic variables

Zip code demographic and socioeconomic status (SES) variables were obtained from the US

Census Bureau American Community Survey (ACS) 5-year estimates. ACS data were only

available for years between 2015 and 2018, and so we used the data from 2018 for 2019. These

variables included total population, race/ethnicity (% of White and % of Hispanic), employ-

ment (% unemployed), poverty (% living under poverty), education level (% with bachelor

degree or higher), income (in dollars), insurance (% of population uninsured), occupation (%

of population working as blue collar) and housing (% of renters and % of population living

with crowded housing). The complete ACS variables and their summary statistics are shown

in Table 1, for the 84 zip codes in Houston metropolitan areas included in this analysis. From

2015 to 2018, we observed a decrease from 5.54% to 4.12% in the average percentage of unem-

ployment, a decrease from 19.1% to 17.3% in the average percentage of living with poverty, a

decrease from 25.8% to 22.5% in the average percentage of population with no health insur-

ance, and an increase from $29,700 to $32,700 in average per capita income. However, sub-

stantial spatial variation of these demographic and SES variables was observed at these zip

codes, see Fig 1. Additional details of the SES variables are included in S1 Fig.

Bayesian spatiotemporal models

We followed the general inseparable Bayesian spatiotemporal modeling framework by first

assuming the appropriate distribution of the observed data, then assign the structures to the
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spatial and temporal components. Specifically, let Yit denoted the observed opioid-suspect

EMS overdose counts in year t and zip code i, we assumed a Poisson distribution with relative

Table 1. Summary statistics of the SES variables at zip-code level for Houston metropolitan area, 2015–2018.

Variable 2015 2016 2017 2018

(n = 84) (n = 84) (n = 84) (n = 84)

Total population

Mean (CV%) 29083 (45.2) 29425 (45.4) 29945 (45.2) 30237 (45.5)

Median [Q1, Q3] 28154 28059 28725 29015

[20196, 36897] [19957, 37888] [20073, 38362] [20214, 38535]

Whitea, %

Mean (CV%) 24.8 (94.8) 24.5 (96.0) 24.1 (96.4) 23.8 (97.0)

Median [Q1, Q3] 15.2 [6.48, 34.0] 15.3 [6.20, 33.9] 15.1 [6.10, 33.5] 14.1 [5.80, 33.9]

Hispanic, %

Mean (CV%) 47.2 (54.0) 47.8 (54.3) 48.2 (54.3) 48.4 (53.9)

Median [Q1, Q3] 45.3 [26.3, 69.7] 45.8 [26.1, 70.8] 48.2 [26.6, 69.7] 47.8 [26.4, 69.3]

Unemployedb, %

Mean (CV%) 5.54 (44.9) 5.01 (43.2) 4.47 (44.2) 4.12 (42.9)

Median [Q1, Q3] 5.65 [3.80, 7.10] 4.90 [3.30, 6.40] 4.30 [2.90, 5.70] 4.00 [2.90, 5.20]

Bachelorc, %

Mean (CV%) 27.2 (90.3) 27.8 (89.3) 28.5 (87.8) 28.9 (87.1)

Median [Q1, Q3] 16.9 [7.78, 36.5] 16.6 [8.45, 37.2] 17.1 [8.65, 39.7] 17.6 [9.20, 43.1]

Crowded housingd, %

Mean (CV%) 7.28 (64.1%) 7.07 (64.0%) 7.07 (63.1%) 6.97 (64.3%)

Median [Q1, Q3] 6.70 [3.43, 10.6] 6.50 [3.48, 10.0] 6.00 [3.70, 10.3] 5.75 [3.73, 10.0]

Renters, %

Mean (CV) 50.6 (31.6) 50.9 (31.2) 50.7 (31.0) 50.9 (31.5)

Median [Q1, Q3] 49.5 [38.5, 60.7] 50.5 [39.6, 60.2] 50.2 [39.0, 59.7] 49.3 [38.9, 60.0]

Blue collar, %

Mean (CV%) 28.0 (53.3) 28.0 (53.7) 27.8 (53.9) 29.2 (52.9)

Median [Q1, Q3] 30.4 [15.8, 40.4] 30.8 [15.2, 40.1] 30.1 [15.9, 38.8] 33.0 [15.6, 41.1]

Per capita income, $

Mean (CV%) 31415 (91.0) 32303 (92.1) 33573 (90.6) 34586 (89.6)

Median [Q1, Q3] 18529 19196 21169 21088

[14971, 32853] [15234, 33096] [15604, 34292] [16504, 34964]

Living poverty, %

Mean (CV) 19.1 (56.4) 18.5 (55.1) 17.9 (56.1) 17.3 (54.7)

Median [Q1, Q3] 18.9 [10.1, 26.3] 18.8 [10.7, 24.8] 19.2 [10.3, 23.9] 17.6 [10.4, 24.1]

Uninsurede, %

Mean (CV) 25.8 (42.3) 24.6 (44.2) 23.6 (45.7) 22.5 (47.0)

Median [Q1, Q3] 28.1 [19.3, 33.3] 26.2 [18.5, 32.0] 26.2 [17.1, 30.3] 24.1 [16.2, 29.5]

Abbreviations: SES, socioeconomic status; CV, coefficient of variation; Q1: first quartile; Q3: third quartile.

Source: Data are estimates from the 2015 to 2018 American Survey 5-year mean.
a Non-Hispanic Ancestry;
b Civilians aged 16 years and older;
c Persons aged 25 years or older;
d Defined as occupied housing units consisting of more people than rooms;
e Persons in the total civilian noninstitutionalized population.

https://doi.org/10.1371/journal.pone.0247050.t001
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risk (also known as incidence ratio) μit, i.e., Yit|μit~poisson(Eitμit). The offset term here was the

expected count, which was defined as Eit ¼

P
it
YitP

it
Nit

� �

Nit with Nit the total population size. We

chose the expected counts instead of the population size as the offset term in the Poisson

model for two reasons. First, with the calculated expected counts we obtained the observed

standardized incidence ratio (SIR), defined as the ratio of the observed counts to the expected

counts, i.e., SIRit = Yit/Eit. SIRs have a straightforward interpretation, where value greater than

1 indicated more observed counts than the expected, and hence could be defined as high inci-

dence areas or “hot spots.” SIR with a value less than 1 indicated observed counts fewer than

the expected, and therefore “cold spots.” SIR of value 1 indicated equal observed and the

expected counts. Second, we could compare observed SIR and model based relative risk (RR),

as RR provided a smoothed version of SIR and was generally considered more accurate.

In the Poisson model above, we further decomposed the relative risk into the following

components

log mit ¼ aþ x0 itβþ φi þ dit; ð1Þ

where α was the overall intercept, and xit is the vector of zip code level covariates with coeffi-

cient vector β. We included a random effect φi to account for the spatial correlation, and a ran-

dom effect δit to account for the spatiotemporal interaction. In Bayesian spatiotemporal

models, there random effects were assumed to have different distributions as priors. Here we

considered several popular spatial models for random effects φi, and compared model perfor-

mance using three model selection criteria: deviance information criterion (DIC), widely

applicable Bayesian information criterion (WAIC) and conditional predictive ordinate (CPO).

In all three criteria, models with the smaller values of these measures were considered better

[17].

The spatial models we considered here included the Besag, York, and Molliè (BYM) model

[18], the Besag’s proper spatial model [19] and Leroux model [20]. Details of the models can

be found in their original papers but we provided a brief summary here. The BYM model con-

sidered the random effect φi the summation of a spatially structured term ui and a spatially

unstructured term vi. The spatially structured term was assumed to have an intrinsic autore-

gressive (ICAR) model, where the spatial dependency between area i and j was encoded in the

adjacency matrix W. The entries in W were assigned value 1 if two areas shared the same geo-

graphical boundary, and 0 otherwise. The spatial unstructured term was assumed to be

Fig 1. Maps of the zip code social economic (SES) variables for year 2018. SES variables were obtained from US Census American Community

Survey (ACS). Geographic boundary files were downloaded from the US Census TIGER database.

https://doi.org/10.1371/journal.pone.0247050.g001
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independently and identically distributed. The ICAR model was also called “Besag improper”

model as its joint distribution was improper (i.e., the precision matrix was singular). The

Besag proper model overcame this issue by constructing a non-singular precision matrix. The

third model considered here was the Leroux model where the conditional distribution of the

spatial random effect was

φijφ� i ¼ N
r
Xn

j¼1;j6¼1
wijφj

r
Xn

j¼1;j6¼1
wij þ 1 � r

;
s2

r
Xn

j¼1;j6¼1
wij þ 1 � r

8
<

:

9
=

;
: ð2Þ

The parameter ρ quantified the degree of spatial correlation of φi, with ρ = 0 corresponding to

independence and ρ = 1 representing strong spatial correlation throughout the region. Resid-

ual variation not explained by spatial correlation was captured by the variance parameter σ2.

We used Integrated Nested Laplace Approximation (INLA) for Bayesian inference as an alter-

native to the Markov Chain Monte Carlo (MCMC), for its fast computation [21]. All analyses

were performed in R using package INLA (R Studio, Boston MA).

Results

EMS calls for opioid-suspected overdose incidence increased from 449 in 2015 to 666 in 2019

(Fig 2). We observed a slight decrease in 2017 (n = 473) compared to 2016 (n = 487), with a sig-

nificant increase in calls in 2018 (n = 555) and again in 2019. In addition, we also investigated

the temporal trend of incidents by month, day of the week and time of the day. Opioid-sus-

pected overdose incidents occurred more frequent during the summer time between May and

September, on Saturdays, and around the time between 7pm and 11pm.

The observed SIRs of opioid-suspected overdose EMS incidents are shown in Fig 3, where

we clearly observed the spatial patterns. Darker shades indicated areas with higher risks, primar-

ily in the south and central area of Houston. We also observed substantial changes in the spatial

variation over time, which provided strong evidence to include spatiotemporal interaction in

the Bayesian spatiotemporal models. Without the interaction term, we essentially assume the

same spatial pattern and hotspots every year. With the interaction term in the model, we cap-

ture the changing spatial pattern over time and allow different hotspots every year. The analysis

Fig 2. Temporal characteristics of opioid-suspected EMS calls in Houston metropolitan area, 2015–2019.

https://doi.org/10.1371/journal.pone.0247050.g002
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results from three Bayesian spatiotemporal models with different spatial structures were pre-

sented in Table 2. All model selection criteria of DIC, WAIC and CPO pointed the BYM model

as the best fitting model, and therefore we made inference based on this model. Of all the SES

variables investigated, we found that zip code neighborhoods with higher percentage of renters

were associated with a small increase in the likelihood of higher opioid-suspected EMS relative

risk (RR = 1.03; 95% CI: [1.01, 1.04]), while neighborhoods with more white population were

associated with a small decease in the likelihood (RR = 0.97; 95% CI: [0.95, 0.99]). Neighbor-

hoods with crowded housing, defined as more than one person occupying a room, appeared to

have lower relative risk of opioid-suspected EMS incidents (RR = 0.9; 95% CI: [0.84, 0.96]) No

other SES variables were found statistically significant. Model-based zip code level RR from the

BYM model was presented in Fig 3. The spatial patterns were largely similar compared to the

SIR, with elevated risks in the south part of downtown areas throughout the years, and

Fig 3. Observed SIRs (top row panel) and model-based RRs (bottom row panel) of opioid-suspected EMS calls in Houston

metropolitan area from 2015 to 2019. These RRs are obtained from fitting the Bayesian spatiotemporal models using BYM

spatial structure.

https://doi.org/10.1371/journal.pone.0247050.g003

Table 2. Posterior means and 95% posterior credible intervals (CIs) of the estimated coefficient of zip code level

SES variables. The regression coefficients are exponentiated to represent relative risks (RRs).

BYM Besag Proper Leroux

% Bachelor 1.01 (0.98, 1.04) 0.99 (0.96, 1.03) 0.99 (0.96, 1.03)

% Unemployed 0.94 (0.86, 1.02) 0.96 (0.88, 1.04) 0.96 (0.88, 1.04)

% Uninsured 0.98 (0.95, 1.02) 0.98 (0.94, 1.01) 0.97 (0.94, 1.01)

% Living under poverty 1 (0.97, 1.03) 0.99 (0.96, 1.02) 0.99 (0.96, 1.01)

% Renters 1.03 (1.01, 1.04) 1.02 (1.01, 1.04) 1.02 (1.01, 1.04)

% Hispanic 0.99 (0.98, 1.01) 0.99 (0.98, 1.01) 0.99 (0.98, 1.01)

% White 0.97 (0.95, 0.99) 0.98 (0.95, 1) 0.98 (0.95, 1)

% Crowded housing 0.9 (0.84, 0.96) 0.91 (0.86, 0.97) 0.91 (0.86, 0.97)

% Blue collar 1.01 (0.98, 1.04) 1.02 (0.99, 1.05) 1.02 (0.99, 1.06)

Per Capita Income (per thousand dollars) 1 (0.98, 1.02) 1 (0.97, 1.02) 1 (0.97, 1.02)

WAIC 1920 1926 1926

DIC 1897 1900 1900

CPO 976 978 978

https://doi.org/10.1371/journal.pone.0247050.t002
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increasing over time. The estimated RRs were very similar across different spatial models, and a

comparison of the results were included in S3 Fig.

Discussion

Our study found that the number of EMS calls for opioid-suspected overdose significantly

increased in the Houston metropolitan area between 2015 and 2019, and this trend is continu-

ing into 2020 with 530 suspected overdose calls from January to June; a 16% increase over the

same time last year. Across the nation, opioid overdose rates have seen a 54% increase in

major metropolitan areas from 2016 to 2017 [1]. Originally fueled by prescription opioids,

recent rises in overdoses are now driven by heroin and fentanyl, which is making the urban

drug market a hotbed of overdose mortality. Applying spatiotemporal modeling to overdose

incidence data, as demonstrated in this analysis can help communities struggling with over-

doses, particularly those in rural areas, forecast overdose trends and develop a targeted

approach to early intervention and prevention efforts. Additionally, temporal trends can be

tracked and help inform staffing practices of EMS providers. Our analysis revealed more over-

doses occur in the summer months, between May and September and between 7pm and

11pm. This information, combined with geospatial trends can assist municipalities with hiring

and staffing practices, ensuring enough adequately trained personnel are on duty during those

high-risk times.

Community strategies for understanding their own temporal and spatial patterns could be

useful in positioning resources and developing neighborhood programs. The use of real-time

surveillance data, from hospitals or EMS, offers specific advantages over reliance solely on

death data. For example, discrepancies in reporting by state coroners was estimated in one

study to that nearly 70,000 opioid-related deaths may have gone unreported since 1999 [22].

Because national statistics on drug intoxication deaths rely on data derived from state death

certificates, inconsistencies in reporting from state to state can have serious implications since

codes used to report causes of death are applied differently from state to state. Additionally,

rural counties may lack resources for investigating drug overdose deaths and may over-use a

general “presence of unspecified drugs, medicaments, and biological substances” code for

reporting opioid-related overdose deaths. Similarly, overreliance on ED overdose data can

similarly under-estimate overdose events, since many overdoses do not result in an ED visit.

Not every 911-call results in transport to the ED [16] as survivors can refuse transport.

Research has revealed a significant portion of people who inject drugs refuse EMS transport,

citing fear of harassment and discrimination, potential arrest, and anticipated financial costs

[23, 24]. Similarly, Good Samaritan laws have increased bystander administration of naloxone

to suspected opioid overdose victims and although recommended, not every resuscitation is

followed by a call to 911 [25, 26]. Although it is difficult to track, several studies have reported

large percentages of overdose survivors do not get treated by EMS [27]. An estimated 25 to 50

nonfatal overdose occur for every overdose death [28] and EMS call surveillance can provide

the data necessary to fill in the data gaps in identifying overdose trends.

Some communities have implemented programs that utilize EMS incident data for targeted

interventions. A local Fire Department/EMS and law enforcement collaboration, in Columbus,

Ohio provides free transportation to treatment facilities for overdose survivors who decline

transport to the ED [29]. The REACT program also provides harm-reduction and education

outreach to communities that are hard-hit by the opioid crisis [29]. In San Francisco, the

DOPE program also focuses on harm reduction and conducts community outreach, using an

EMS early warning system that monitors call data for any surges in overdose events [30]. Anal-

ysis of DOPE has found the program sites tend to be located in densely populated minority
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communities with significant economic disparity, and who experience more overdose mortal-

ity. Furthermore, the program has demonstrated marked success in its efforts to reduce opi-

oid-related overdose deaths [30]. A program in Houston, Texas, the Houston Emergency

Opioid Response System (HEROES) uses information from EMS runs involving naloxone

resuscitation to deploy a mobile response team including a peer recovery coach and licensed

paramedic to engage overdose survivors into treatment [31]. Geospatial analysis of the most

current data on suspected opioid-overdose calls can inform community programs on trending

hot spots but can also help target specific populations that are experiencing increased overdose

events by including certain demographic characteristics in the analysis. Interventions that tar-

get special populations, such as youth, females of childbearing age, and elder populations can

use geospatial analysis to narrow their target areas. Spatiotemporal modeling provides advan-

tages over monitoring real-time EMS call data. First, it helps visualize a complex and dynamic

problem that fluctuates across time and space. Second, geospatial analysis can actualize

changes across time spans, from days to years and can identify patterns to assist with causation

research. Spatiotemporal models can help inform policy makers with budget allocation and

staffing concerns. Bayesian spatiotemporal modeling approaches can examine existing trends

and apply them to forecast patterns, which is useful for prevention efforts. Altogether, Bayesian

spatiotemporal modeling can help EMS providers, researchers, and lawmakers refine pro-

grams and operate in a constantly changing environment.

Future policies and funding should consider incorporating geospatial modeling of first

responder and other data sources within each community, to provide a more comprehensive

response to the current opioid epidemic.

Limitations

This study has several limitations. First, we focused here on one community and one major

EMS provider, primarily since national EMS data at the location level do not exist. Houston,

Texas is the fourth largest and most diverse city in the United States [3]; however, it may not

be representative of every major metropolitan area in the US that is experiencing an influx of

opioid-related overdoses, nor do our results apply to rural areas which may have different

demographics and risk factors. Additionally, as with most EMS data, not all overdoses

included here were necessarily opioid-related, although they were all suspected opioid over-

doses indicated by the use of naloxone. EMS systems obtained data are subject to distinct limi-

tations of convenience sampling and missing data can cause calculation errors even with

imputation [32]. Finally, EMS data is not completely representative of all overdoses in a com-

munity, since patients may not always call 911 for emergency assistance.

Conclusions

We found that several popular Bayesian spatiotemporal models were useful in identifying the

socioeconomic covariates that were potentially associated with the high EMS incidence risk.

We noted clear patterns emerging geographically, as well as over time. Areas with high rates of

renters had higher overdose incidence risk, while crowded housing and larger proportion of

white citizens had lower rates. Bayesian models could be useful to develop targeted community

strategies for local prevention and harm reduction efforts.
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