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Abstract: Allelochemicals are considered an environment-friendly and promising alternative for
weed management, although much effort is still needed for understanding their mode of action and
then promoting their use in plant allelopathy management practices. Here, we report that Inuloxin
A (InA), an allelochemical isolated from Dittrichia viscosa, inhibited root elongation and growth
of seedlings of Lycopersicon esculentum and Lepidium sativum at the highest concentrations tested.
InA-induced antioxidant responses in the seedlings were investigated by analysing the contents of
glutathione (GSH) and ascorbate (ASC), and their oxidized forms, dehydroascorbate (DHA), and
glutathione disulphide (GSSG), as well as the redox state of thiol-containing proteins. An increase
in ASC, DHA, and GSH levels at high concentrations of InA, after 3 and 6 days, were observed.
Moreover, the ASC/DHA + ASC and GSH/GSSG + GSH ratios showed a shift towards the oxidized
form. Our study provides the first insight into how the cell redox system responds and adapts to InA
phytotoxicity, providing a framework for further molecular studies.

Keywords: ascorbate; garden cress; glutathione; Inuloxin A; redox systems; seed germination; thiol
proteins; tomato

1. Introduction

The sessile lifestyle of plants has required the development of sophisticated and
complex strategies for their adaptation to a wide range of environmental cues, including
biotic and abiotic factors [1,2]. These strategies mainly consist of biosynthesis of secondary
metabolites, which allow plants to compete for limited space, light, water, and nutrients,
and increase production of enzymatic and non-enzymatic antioxidants primarily involved
in counteracting the damaging effects of oxidative stress. Plant-derived secondary metabo-
lites involved in plant-defence and -interactions, commonly referred to as allelochemicals,
exert stimulatory or inhibitory effects on the growth and development of neighbouring
organisms, including plants, insects, and pathogens [3–6]. The growing environmental
and climate concern has increased interest in new efficient and eco-friendly approaches for
weed and pest control, and for a sustainable agricultural management [7,8].

Allelochemicals may represent a valuable tool for developing environmentally friendly
products, and several studies have been conducted that identify the potential herbicide,
fungicide, and pesticide effects of secondary metabolites produced by several plants [4,7,9–11].

Over the last decades, many allelochemicals have been identified and for some of
them the biological role has been also studied [12–15]. Allelochemicals belong to 14 classes
according to their biosynthetic origin, including the more common flavonoids, simple
phenolic acids, quinones, mono- and sesquiterpenes, and alkaloids [16,17].
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Recently, numerous sesquiterpenes, specifically sesquiterpene lactones, were described
and tested in standard target species as promising allelochemicals with herbicidal activ-
ity [5,18]. Among the investigated plants, Dittrichia viscosa (L.) Greuter (formerly named
Inula viscosa (L.) Aiton) was widely described as a source of flavonoids, sesquiterpenes
lactones, acids, and glycolipids showing phytotoxic and allelopathic effects [18–21]. This
perennial weed belonging to the family Asteraceae and widespread throughout Europe,
Africa, and Asia, has been used in traditional medicine for its anti-inflammatory, anti-
fungal, antiulcerogenic, and antioxidant activity [19,22]. Although several studies have
investigated the biological activities of extracts of this plant, few studies have focused on
its herbicidal properties and its potential use in weed management practices [18,23].

Four bi- and tri-cyclic sesquiterpene lactones, named Inuloxins A–D extracted for the
first time from the aerial parts of Inula viscosa, were described by spectroscopic and chemical
methods and tested for their phytotoxic features, causing inhibition of seed germination of
the parasitic plants Orobanche crenata Forsk. and Cuscuta campestris Yunck. [18]. The modest
solubility of Inuloxin A (InA), which could have compromised its bioavailability and appli-
cation in pest management, has been overcome by encapsulation with β-cyclodextrins with
different methods [24]. The resulted complexes were characterized by different techniques
and assayed for their bioactivity, showing the complete solubility in water and the ability
to completely inhibit seed germination of Phelipanche ramosa (L.) Pomel., suggesting the
use of InA as a novel natural herbicide for parasitic plant management. Although some
studies have examined the potential role of InA as herbicide, causing necrosis of leaves,
inhibition of germination of seeds and rootlet elongation [18,21,23–25], these studies have
not explored the mechanism of action of this allelochemical. Understanding the molecular
mode of action is a critical point for further exploring the practical use of allelochemicals as
natural agrochemicals and to ascertain their possible no-target effects.

There is evidence in the literature for the involvement of ROS in the inhibition of
root elongation, mediated by allelochemical or other abiotic stress [26–28]. A recent study,
aimed at elucidating the response of Panax notoginseng (Burk) F.H. Chen to the triterpenoid
saponins ginsenoside Rg1 via transcriptomic and cellular approaches, showed that some
genes involved in plant growth and development were down-regulated after the roots
were exposed to the allelochemical [29]. Furthermore, there is evidence that allelochemicals
can cause oxidative stress in target plants and induce responses of the cellular antioxidant
defence system [13,30,31]. Among the antioxidant metabolites, ascorbate (ASC) and glu-
tathione (GSH) play a key role in defence system against biotic and abiotic stress [32,33].
These metabolites are both involved, together with some antioxidant enzymes, in the
ASC-GSH cycle.

Therefore, in this study we explored the potentiality of the allelochemical InA as a
natural herbicide for weed management, by assessing the effect of different concentrations
of InA on the cell redox state of two target plant species, Lycopersicon esculentum and
Lepidium sativum. In particular, non-enzymatic primary antioxidants in plants, such as
ASC, GSH, and their oxidized forms, dehydroascorbate (DHA), and glutathione disulphide
(GSSG), were analysed. The regeneration rates of ASC and GSH, expressed as ratios
ASC/DHA + ASC and GSH/GSSG + GSH, respectively, were also obtained for evaluating
the effect of InA on the efficiency of the ASC-GSH cycle. Moreover, the effect of InA on
weight and root elongation, as well as the thiol-redox profiles in proteins were examined.

2. Materials and Methods
2.1. Plant Materials and Chemicals

Tomato (Lycopersicon esculentum Mill. var. marmande, Solanaceae) and garden cress
(Lepidium sativum L., Brassicaceae) seeds were purchased from Sementi Gianfranco Fuscello
(Andria, Italy) and Emanuele Larosa Seeds (Andria, Italy), respectively. These plant
species were used as the model because of their well-known high germinability and good
repeatability of root length measurements [24]. InA was extracted, purified, and provided
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by Professors Marco Masi and Antonio Evidente [18]. All reagents used in this study were
of the highest grade available.

2.2. Effect of InA on Rootlets and Biomass

The effects of InA on the inhibition of the seed germination on the two selected species
according to the procedure previously described by Vurro et al. [34] with some modification.
Briefly, InA was dissolved in methanol and then diluted in methanol-water (2:98, v/v) to
obtain the final concentrations of 10−3 M, 10−4 M and 10−5 M. Seeds (0.5 g) of Lycopersicon
esculentum and Lepidium sativum were sanitized with 1% sodium hypochlorite solution
(v/v) for 10 min, soaked with distilled water for 2 h, and placed into Petri dishes (12 cm
diameter) on one layer of filter paper (Whatman Grade 4) moistened with 3 mL of distilled
water to allow the germination. The Petri dishes were incubated at 25 ◦C in the darkness
for 2 (L. sativum) and 4 (L. esculentum) days, respectively. Then, batches of ten seedlings
(one batch for each treatment), chosen for homogeneity and health, were transferred to
the filter paper in smaller Petri dishes (6 cm diameter). Each filter was moistened with
1 mL of InA solution at the above-described concentrations. Each treatment was replicated
three times. Plates were placed in a growth chamber at 25 ◦C with a photoperiod of 12 h
light/12 h dark for 3 and 6 days. Methanol (2% in water) was added to control seedlings.
After 3 and 6 days, the rootlet length and weight were measured.

2.3. Determination of Ascorbate and Glutathione Pools

Treated and control seedlings (0.5 g) were homogenized with four volumes of cold 5%
metaphosphoric acid in a porcelain mortar. The homogenate was centrifuged for 15 min at
20,000× g (4 ◦C) and the supernatant was collected and immediately assayed for ascorbate,
dehydroascorbate, glutathione, and glutathione disulphide determination according to
Zhang and Kirkham [35].

2.4. Determination of Total Proteins and Protein Thiol Labelling

Six day-old seedling of L. esculentum and L. sativum (0.5 g) were ground to a powder
in liquid nitrogen with a mortar and pestle. SH-groups of proteins were labelled with
monobromobimane (mBBr) according to Buchanan et al. [36] and Paciolla et al. [37], with
some modification. One mL of 0.1 M Tris-HCl buffer (pH 7.9) containing mBBr 2 mM,
(previously dissolved in acetonitrile), was added to each sample and homogenate for 1 min.
Then, 25 µL of 100 mM 2-mercaptoethanol were added to 200 µL of mBBr-labelled sample
for stopping the reaction and derivatizing the excess of mBBr. The protein assay was carried
out as described in Mastropasqua et al. [38]. For the visualization of the thiol proteins,
100 µg of proteins of each sample were loaded on sodium dodecyl sulphate (SDS) gel
(10% T, 4% C). SDS-PAGE was prepared according to Laemmli [39]. After electrophoresis
run, gels were incubated with 12% (w/v) trichloroacetic acid solution for 1 h to fix the
proteins and then with methanol:acetic acid:water (4:1:5 v/v) solution for 8–10 h to remove
the mBBr excess. The fluorescence of mBBr-SH-groups was visualized under 365-nm UV
light and photographed. The resulting fluorescence emission is indicative of the relative
thiol/disulphide state of proteins analysed. The intensity of fluorescent bands was analysed
with the UTHSCA Image Tool software.

2.5. Statistical Analyses

All data were statistically analysed using one-way analysis of variance (ANOVA)
followed by Tukey’s post-hoc test, whenever significant differences were found (p ≤ 0.05).
Statistical analyses and graphical representations were performed on GraphPad Prism
software version 9.0.0 for Windows (GraphPad Software, San Diego, CA, USA)). Statistical
significance was accepted at p < 0.01 (*), p < 0.001 (**), and p < 0.0001 (***). The data
presented are the mean of at least 3 different replicates. The error bars represent standard
deviation of the means.
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3. Results and Discussion

Over the last decades, the increasing herbicide-resistant weeds and public concern
about human health and the environment caused by the widespread use of synthetic
herbicides, has made the use of sustainable weed management mandatory [40,41]. Much
effort has been focused on natural compounds with an emphasis on new chemicals involved
in plant–plant interactions for the discovery of potential herbicides [15,42]. Although a
growing number of new allelochemicals have been described over the years, understanding
the mechanism of action as herbicide and the ecotoxicological impact of those target
molecules remain a major challenge [43,44].

In this study, we analysed the effect of various concentrations of InA on plant biomass
and root growth, as well as the activity of some antioxidants involved in the detoxifica-
tion and balance of cell redox state. InA concentrations used in the experimental design
(see Section 2.2) were selected according to previous studies conducted on other plant
species [18,24].

The root length and seedlings weight in Lycopersicon esculentum and Lepidium sativum
exposed to three concentrations of InA, are presented in Tables 1 and 2, respectively.

Table 1. Effect of different concentrations of InA on root length in seedlings of Lycopersicon esculentum
and Lepidium sativum. Values are expressed as mean ± standard deviation (n = 3). * Statistical
significance at p < 0.01 (*), p < 0.001 (**), and p < 0.0001 (***).

Days Treatment

Lycopersicon esculentum Lepidium sativum

Root Length (mm) Root Length
Inhibition (%) a Root Length (mm) Root Length

Inhibition (%) a

3

10−5 M 34.8 ± 2.92 4.13 21.2 ± 0.19 9.97
10−4 M 26.8 ± 1.82 26.2 19.9 ± 2.21 15.5
10−3 M 14.1 ± 0.45 ** 61.2 13.2 ± 1.07 *** 44.1
control 36.3 ± 0.22 - 23.6 ± 1.56 -

6

10−5 M 65.1 ± 3.82 0.04 34.2 ± 1.63 0.91
10−4 M 52.8 ± 5.94 18.9 20.3 ± 2.97 * 41.2
10−3 M 13.9 ± 1.20 *** 78.6 3.73 ± 1.81 ** 89.2
control 65.2 ± 4.67 - 34.6 ± 2.76 -

a Values are expressed as percentage of reduction respect to the control.

Table 2. Effect of different concentrations of InA on weight in seedlings of Lycopersicon esculentum and
Lepidium sativum. Values are expressed as mean ± standard deviation (n = 3). * Statistical significance
at p < 0.01 (*), p < 0.001 (**), and p < 0.0001 (***).

Days Treatment
Lycopersicon esculentum Lepidium sativum

Weight (mg) Weight Inhibition
(%) a Weight (mg) Weight Inhibition

(%) a

3

10−5 M 18.8 ± 4.66 12.1 13.8 ± 0.44 14.4
10−4 M 16.7 ± 0.55 22.3 11.6 ± 1.20 * 28.1
10−3 M 13.3 ± 0.71 ** 37.7 10.6 ± 0.28 ** 34.4
control 21.4 ± 0.84 - 16.1 ± 1.35 -

6

10−5 M 25.0 ± 3.30 0.62 17.6 ± 0.16 4.19
10−4 M 22.7 ± 1.16 9.62 16.1 ± 0.41 12.3
10−3 M 17.0 ± 0.35 ** 32.4 9.16 ± 0.99 *** 50.2
control 25.2 ± 0.74 - 18.4 ± 0.98 -

a Values are expressed as percentage of reduction respect to the control.

Both plants showed significant inhibition of root elongation and biomass production
when treated with the highest concentration of InA (10−3 M). After 6 days, at concentration
of 10−4 and 10−3, L. sativum showed the highest inhibition of root growth (Table 1). Total
plant biomass was significantly reduced after 3 and 6 days when exposed to the highest
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concentration of InA, while at 10−4 and 10−5 M the allelochemical had no or slight effect
on the growth of tomato and garden cress seedlings (Table 2). The dose effect of InA
has previously been observed in other plant species [18,24]. InA completely inhibited
the germination of Cuscuta campestris (field dodder) and Orobanche crenata (broomrape)
at concentrations of 10−3 M and 10−4 M, whereas inhibition activity was lost when the
concentration of 10−5 M was tested [18]. However, at a lower concentration of InA (10−6 M),
Phelipanche ramosa rootlets showed 99% reduction in length compared to the control [24].
Overall, our results are consistent with previous observations showing increased inhibition
of root length with greater exposure concentrations of selected allelochemicals [5,28,30],
although it must be highlighted that effect of InA on seed germination is species specific.
Six days after the treatment with InA at 10−3 M, seedlings of both plant species showed
significant morphological differences respect to the control (Tables 1 and 2, Figure 1).
The cotyledons were developed whereas the length of roots was inhibited and there was
a marked decrease in survival with severe turgor loss (Figure 1). On the other hand,
the seedlings treated with lower concentrations of InA, did not show severe symptoms,
highlighting the ability of plants to counteract the phytotoxicity of the molecule. The
survival of the seedlings could be due to metabolic rearrangements induced by intracellular
ascorbate (ASC) and glutathione (GSH) increase, two primary antioxidant molecules in
plant involved in regulation of cell redox balance.
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Figure 1. Morphological differences in seedlings of Lepidium sativum and Lycopersicon esculentum
6 days after the treatment with InA at three different concentrations.

Plants have adapted several strategies to ameliorate oxidative toxicity and sustain ROS
homeostasis by modulating antioxidant chemicals, including enzymes and low molecular
weight compounds [45]. Among these molecular compounds, ASC and GSH play a
crucial role in redox homeostasis and signalling because of their high and widespread cell
concentrations, interaction with specific enzymes that couple them to peroxide metabolism,
and the relative stability of the corresponding oxidized forms [45,46]. For this reason, in
this study we have investigated the effect of InA on the ASC and GSH pools. ASC is an
essential component of plant antioxidant system, and it can spontaneously provide electrons
to radical species alleviating the cellular oxidative stress caused by aerobic metabolism,
biotic and abiotic stress [33]. Due to its redox potential (from +0.40 to +0.50 V) [47], ASC
can quickly reduce the ROS, both indirectly contributing to the lipid radical-scavenging
and then avoiding lipid peroxidation and preventing cell injury prior to activation of
antioxidant enzymes, and directly by scavenging tocoferoxyl radicals, lipid peroxides, and
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oxidized metal ions [33,48]. Dehydroascorbate (DHA) was observed to accumulate in the
apoplast after oxidative stress, and to inhibit the enzyme activity and root growth [37,49,50].
Additionally, DHA can be alternatively reduced by glutathione- ferredoxin- and NAD(P)H-
dependent pathways demonstrating a metabolic link between the NAD(P)-dependent
redox system and the low molecular weight antioxidants [51].

The effects of InA on the content of ASC in L. esculentum and L. sativum are shown in
Figure 2.
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droascorbate (DHA) after 3 (A,D) and 6 days (B,E), and the ratio of ASC/DHA + ASC (C,F) of
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replicates in each treatment group. * Statistical significance at p < 0.01 (*), p < 0.001 (**), and p < 0.0001
(***). FW: fresh weight.

Seedlings of Lepidium sativum showed levels of ASC higher than Lycopersicon escu-
lentum both at 3 and at 6 days. As shown in Figure 2A,B, ASC content of seedlings of
L. sativum treated with 10−4 and 10−3 M of InA was significantly higher (p ≤ 0.05) with
respect to the control. DHA content did not change significantly except after 6 days at
concentration of 10−3 M (Figure 2B). A significant increase in the ASC/ASC + DHA ratio
occurred only at 10−4 M after 6 days (Figure 2C). The seedlings of L. esculentum treated
with the higher concentration of InA, showed a significant (p ≤ 0.05) increase in ASC
content at both times, whereas at lower concentration (10−4 M) the increase was significant
(p ≤ 0.05) only at 3 days (1.68 times more than controls) (Figure 2D,E). A similar trend
was observed in DHA levels. After 3 days, the ASC/ASC + DHA ratio decreased with
increasing InA concentration, showing, at the highest concentration, a value 2 times lower
than the control, whereas after 6 days of treatment, the ratio did not change significantly
(Figure 2F). Overall, the increase in ASC in seedlings of L. sativum, at both exposure times,
demonstrated that antioxidative defence responded to the tested concentrations of InA.
However, seedlings of L. esculentum, showed higher levels of the oxidized form (DHA) than
the reduced form (ASC) and the subsequent shift of the ratio towards the oxidized form
(Figure 2D–F). As reported in previous studies higher concentration of the allelochemical
could inhibit the ASC regeneration by down-regulating the activity of some ASC-GSH
cycle enzymes [29,52,53].

In regard to glutathione (GSH), it is known that it is involved in storage and transport
of reduced sulphur, gene expression regulation, pathogen resistance and, response to
abiotic stress [46,54]. The contents of GSH, glutathione disulphide (GSSG), and the ratio of
GSH/GSH + GSSG in the two plant species exposed to InA, are shown in Figure 3.



Biomolecules 2022, 12, 302 7 of 11

Biomolecules 2022, 12, x  7 of 11 
 

abiotic stress [46,54]. The contents of GSH, glutathione disulphide (GSSG), and the ratio 
of GSH/GSH + GSSG in the two plant species exposed to InA, are shown in Figure 3. 

 
Figure 3. Effects of different concentration of InA on the contents of glutathione (GSH) and gluta-
thione disulphide (GSSG) after 3 (A,D) and 6 days (B,E), and the ratio of GSH/GSSG + GSH (C,F) of 
Lepidium sativum (A–C) and Lycopersicon esculentum (D–F) seedlings. Vertical bars indicate SD of 
three replicates in each treatment group. * Statistical significance at p < 0.01 (*), p < 0.001 (**), and p 
< 0.0001 (***). FW: fresh weight. 

In both the tested species of seedlings, the highest concentration caused a significant 
(p ≤ 0.05) increase of GSH after 3 and 6 days. However, in L. sativum the GSH content was 
more than 2 and 4-fold higher after respectively 3 and 6 days than control, whereas in L. 
esculentum an opposite trend was observed, showing a more marked increase of GSH level 
at 6 days (Figure 3). Plants treated with 10−4 M of InA showed a significant increase of 
GSH level after 6 days (L. sativum, Figure 3B) and 3 days (L. esculentum, Figure 3D). In 
contrast, InA had little or no effect on GSSG level in all treatments analysed. Conse-
quently, the GSH/GSH + GSSG ratio was significantly decreased in the L. sativum seed-
lings treated with 10−4 M of InA after 3 days, whereas after 6 days there was a significant 
increment of the ratio value from 0.79 in control to 0.91, and 0.95 in the seedlings treated 
with 10−4 and 10−3 M of InA, respectively (Figure 3C). 

The GSH/GSH + GSSG ratio in L. esculentum seedlings significantly increased after 3 
days, ranging from 0.45 in control to 0.73, and 0.82 in the samples treated with 10−4 and 
10−3 M, respectively (Figure 3F). After 6 days, a significant increment was observed only 
with the highest concentration of InA. 

The role of GSH is also crucial in radical scavenging and in preventing oxidative de-
naturation of proteins, by protecting their thiol group [54]. For this reason, we have also 
investigated the effect of the InA on the redox state of the proteins containing thiol groups. 
The thiol/disulphide status of proteins extracted from L. sativum and L. esculentum seed-
lings exposed to InA treatment for 6 days was detected by SDS-PAGE, using mBBr as 
fluorescent probe. The electrophoretic pattern of thiol-proteins group in seedlings of L. 
sativum and L. esculentum not- and treated is shown in Figure 4A,B, respectively. 

Figure 3. Effects of different concentration of InA on the contents of glutathione (GSH) and glu-
tathione disulphide (GSSG) after 3 (A,D) and 6 days (B,E), and the ratio of GSH/GSSG + GSH
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In both the tested species of seedlings, the highest concentration caused a significant
(p ≤ 0.05) increase of GSH after 3 and 6 days. However, in L. sativum the GSH content
was more than 2 and 4-fold higher after respectively 3 and 6 days than control, whereas in
L. esculentum an opposite trend was observed, showing a more marked increase of GSH
level at 6 days (Figure 3). Plants treated with 10−4 M of InA showed a significant increase
of GSH level after 6 days (L. sativum, Figure 3B) and 3 days (L. esculentum, Figure 3D). In
contrast, InA had little or no effect on GSSG level in all treatments analysed. Consequently,
the GSH/GSH + GSSG ratio was significantly decreased in the L. sativum seedlings treated
with 10−4 M of InA after 3 days, whereas after 6 days there was a significant increment of
the ratio value from 0.79 in control to 0.91, and 0.95 in the seedlings treated with 10−4 and
10−3 M of InA, respectively (Figure 3C).

The GSH/GSH + GSSG ratio in L. esculentum seedlings significantly increased after
3 days, ranging from 0.45 in control to 0.73, and 0.82 in the samples treated with 10−4 and
10−3 M, respectively (Figure 3F). After 6 days, a significant increment was observed only
with the highest concentration of InA.

The role of GSH is also crucial in radical scavenging and in preventing oxidative
denaturation of proteins, by protecting their thiol group [54]. For this reason, we have
also investigated the effect of the InA on the redox state of the proteins containing thiol
groups. The thiol/disulphide status of proteins extracted from L. sativum and L. esculentum
seedlings exposed to InA treatment for 6 days was detected by SDS-PAGE, using mBBr
as fluorescent probe. The electrophoretic pattern of thiol-proteins group in seedlings of
L. sativum and L. esculentum not- and treated is shown in Figure 4A,B, respectively.

Overall, the samples treated with InA showed lower fluorescence than the untreated
sample (control), and fluorescence decreased with greater exposure concentrations
(Figure 4A,B). In L. sativum, the average percentage decrease in fluorescence intensity,
as compared to control, was −52%, −62% and −50%, in 10−5, 10−4 and 10−3 M InA
treated samples, respectively (Figure 4A). This result indicated that InA treatment induced
a shift towards the oxidized form of the protein thiol/disulphide redox state. However,
at the highest concentration, an additional fluorescent band was observed (indicated by
the arrow in Figure 4A), leading us to hypothesize that a new protein with thiol group
could be synthesized by InA. It is well-known that stress conditions in plants can induce
the disappearance or appearance of new proteins [55]. Furthermore, the presence of an
additional fluorescent band can be due to degradation of a larger thiol-containing protein
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that disappeared in the upper zone of the protein thiol pattern (indicated by the asterisk in
Figure 4A).
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For L. esculentum, at the concentration of 10−4 M InA, the electrophoretic profile of
protein thiols showed lower fluorescence compared to the control (−52%), whereas when
10−3 of InA was used, the presence of a fluorescent smear indicated a probable break down
of the native thiol proteins (Figure 4B). It is noteworthy that the effect of InA on thiols
was not evident when proteins were extracted after 3 days of treatment (data not shown)
likely due to the high GSH levels through glutathiolation, a reversible post-translational
modification consisting in a disulphide bond formation between a protein thiol and GSH.

4. Conclusions

In this work, we elucidated the response of seedlings of Lycopersicon esculentum
and Lepidium sativum to InA, a secondary metabolite extracted from the foliar tissue of
Dittrichia viscosa by analysing some molecular systems involved in the redox state balance.
InA increased the content of non-enzymatic antioxidants ascorbate (ASC) and glutathione
(GSH), involved in the ASC-GSH cycle. Metabolic perturbations were caused by changes
in the pattern of the protein thiols that contributed to imbalance the cell redox state. The
increased availability of ASC and GSH were important in defending against oxidative stress
imposed by InA not only at early exposure, but also with extension of exposure time and in-
crease of exposure dose. Although GSH and ASC are mainly involved in counteracting the
cell redox imbalance, they play multifaceted roles with pleiotropic effects. Hence, further
studies are needed to determine whether specific molecular mechanisms triggered by GSH
and ASC, as well as by all the components included in the ASC-GSH cycle, could occur
to preserve cellular redox balance. It remains to be investigated whether the protection of
some key proteins from oxidation by glutathiolation are also operating as GSH-mediated
protective effects. These results provide a framework for further molecular studies on the
mechanism of action of InA and on the allelopathic abilities of Dittrichia viscosa to compete
with other plants, limiting their development and germination.
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