
ORIGINAL RESEARCH
published: 23 June 2021

doi: 10.3389/fgene.2021.639246

Frontiers in Genetics | www.frontiersin.org 1 June 2021 | Volume 12 | Article 639246

Edited by:

Alessandro Romanel,

University of Trento, Italy

Reviewed by:

Paolo Gandellini,

University of Milan, Italy

Xiaojie Zhao,

Rosalind Franklin University of

Medicine and Science, United States

*Correspondence:

Jingwei Zhang

zjwzhang68@whu.edu.cn

Specialty section:

This article was submitted to

Cancer Genetics and Oncogenomics,

a section of the journal

Frontiers in Genetics

Received: 14 February 2021

Accepted: 25 May 2021

Published: 23 June 2021

Citation:

Song W, He X, Gong P, Yang Y,

Huang S, Zeng Y, Wei L and Zhang J

(2021) Glycolysis-Related Gene

Expression Profiling Screen for

Prognostic Risk Signature of

Pancreatic Ductal Adenocarcinoma.

Front. Genet. 12:639246.

doi: 10.3389/fgene.2021.639246

Glycolysis-Related Gene Expression
Profiling Screen for Prognostic Risk
Signature of Pancreatic Ductal
Adenocarcinoma
Wenjing Song 1, Xin He 1, Pengju Gong 1, Yan Yang 1, Sirui Huang 1, Yifan Zeng 1, Lei Wei 2

and Jingwei Zhang 1*

1Department of Breast and Thyroid Surgery, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical

Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China, 2Department of Pathology and Pathophysiology, School

of Basic Medical Sciences, Wuhan University, Wuhan, China

Objective: Pancreatic ductal adenocarcinoma (PDAC) is highly lethal. Although progress

has beenmade in the treatment of PDAC, its prognosis remains unsatisfactory. This study

aimed to develop novel prognostic genes related to glycolysis in PDAC and to apply these

genes to new risk stratification.

Methods: In this study, based on the Cancer Genome Atlas (TCGA) PAAD cohort, the

expression level of glycolysis-related gene at mRNA level in PAAD and its relationship

with prognosis were analyzed. Non-negative matrix decomposition (NMF) clustering was

used to cluster PDAC patients according to glycolytic genes. Prognostic glycolytic genes,

screened by univariate Cox analysis and LASSO regression analysis were established to

calculate risk scores. The differentially expressed genes (DEGs) in the high-risk group

and the low-risk group were analyzed, and the signal pathway was further enriched

to analyze the correlation between glycolysis genes. In addition, based on RNA-seq

data, CIBERSORT was used to evaluate the infiltration degree of immune cells in PDAC

samples, and ESTIMATE was used to calculate the immune score of the samples.

Results: A total of 319 glycolysis-related genes were retrieved, and all PDAC samples

were divided into two clusters by NMF cluster analysis. Survival analysis showed that

PDAC patients in cluster 1 had shorter survival time and worse prognosis compared with

cluster 2 samples (P < 0.001). A risk prediction model based on 11 glycolysis genes was

constructed, according to which patients were divided into two groups, with significantly

poorer prognosis in high-risk group than in low-risk group (P < 0.001). Both internal

validation and external dataset validation demonstrate good predictive ability of themodel

(AUC= 0.805, P< 0.001; AUC= 0.763, P< 0.001). Gene aggregation analysis showed

that DEGs highly expressed in high-risk group were mainly concentrated in the glycolysis

level, immune status, and tumor cell proliferation, etc. In addition, the samples in high-risk

group showed immunosuppressed status and infiltrated by relatively more macrophages

and less CD8+T cell.

Conclusions: These findings suggested that the gene signature based on

glycolysis-related genes had potential diagnostic, therapeutic, and prognostic value

for PDAC.
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INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is the most common
type of pancreatic cancer, accounting for about 90% of pancreatic
cancer cases. PDAC is a highly fatal cancer with a 5-year overall
survival rate of 6% (2–9%) (Ilic and Ilic, 2016). By 2030, PDAC is
projected to be the second leading cause of cancer-related deaths
(Rahib et al., 2014). Surgical resection is considered to be the only
treatment for PDAC, which can significantly prolong the survival
time. However, due to the hidden onset, rapid progression,
early metastasis and lack of sensitive screening methods (Singhi
et al., 2019), most PDAC are confirmed in its advanced stage
and lost the thus become unresectable. Therefore, about 80% of
people diagnosed with PDAC will die within a year and thus
early diagnosis of PDAC is particularly important (Zhang et al.,
2017). For diagnostic methods, the specificity and sensitivity
of tumor biomarkers for predicting PDAC are not satisfactory
(Zhou et al., 2015), and it is difficult to find small lesions by
computed tomography (CT) (Fox et al., 2016; Zhang et al.,
2017). Although pathological examination is the gold standard
for the diagnosis of PDAC, the deep location of pancreas limits
its application. Therefore, it is urgent to develop a method and
strategy for early detection of PDAC, which will be beneficial
to the diagnosis and treatment of PDAC patients. In addition,
radiotherapy, chemotherapy, targeted molecular therapy and
immunotherapy have also been shown to be effective in the
treatment of PDAC (Kamisawa et al., 2016). The diversity of
treatment options requires more individualized management of
PDAC patients, which can improve both the treatment of cancer
and the quality of life. Tumor progression and drug response in
PDACpatients are closely related to themolecular characteristics,
phenotypic differences and tumor microenvironment (TME).
According to these characteristics, different classification systems
for PDAC subtypes could be established to predict the prognosis
of patients and select therapeutic drugs and therapies (Collisson
et al., 2011; Moffitt et al., 2015; Bailey et al., 2016; Puleo et al.,
2018). Advances in tumor molecular biology have led to the
development of new predictive tools based on prognostic genes.
These prognostic markers reflecting tumor progression at the
molecular level may contribute to more accurate personalized
survival prediction.

Microenvironment is the cellular environment where
cells grow, proliferate and invade, and tumor cells are no
exception (Wang et al., 2018). Most solid tumors rely heavily on
aerobic glycolysis for energy production due to the metabolic
reprogramming of tumor cells to facilitate the aerobic glycolysis
process to adapt to their heterogeneous microenvironment.
In addition to the tumor cells, the TME also includes the
surrounding immune cells, fibroblasts and immune cells. Because
of the dense connective tissue and vascular microenvironment
of PDAC, PDAC cells are difficult to penetrate and in a
low-perfusion environment, which promotes metabolic
rearrangement in the PDAC so that tumor cells can make full
use of oxygen even in a hypoxia state (Fu et al., 2018; Weniger
et al., 2018). Thus, PDAC generally displays enhanced glycolysis,
including overexpression of glycolytic enzymes and increased
lactic acid production, which is caused by mitochondrial

dysfunction, abnormal expression of oncogenic genes, specific
transcription factors, hypoxic tumor microenvironment, and
tumor-associated macrophage (Cheng et al., 2019; Karasinska
et al., 2020; Yang et al., 2020). This energy metabolic pathway not
only provides energy to cancer cells, but also produces metabolic
intermediates that promote cell proliferation, invasion and drug
resistance of cancer (Deberardinis et al., 2008). Reprogramming
of metabolism in cancer cells is regulated by multiple factors and
signaling pathways, such as hypoxia inducible factor (HIF-1),
Myc, p53, and the PI3K/Akt/mTOR pathway (Pelicano et al.,
2006; Dang et al., 2009; Liao et al., 2009; Masui et al., 2013).
Some preclinical and clinical studies have shown that drugs
targeting these factors and signaling pathways and the use of
anti-glycolysis agents to deprive the basic metabolic needs of
cancer cells and interfere with cancer growth are effective as
therapies to inhibit cancer progression (Abdel-Wahab et al.,
2019; Jagust et al., 2019). In addition, it is gratifying to note that
anti-glycolysis agents have been found to have the potential to
increase the sensitivity of cancer cells and improve treatment
resistance. Therefore, it is of great significance to search for
molecules related to glycolysis and explore their expression
characteristics and functional involvement in PDAC.

In the present study, 11 prognostic glycolysis-related genes
were selected based on high-throughput sequencing results and
clinicopathological features of the PDAC data sets, and the
prognostic gene signature was proposed, which was used to
describe the glycolytic level in PDAC samples. Multivariate
Cox regression confirmed that prognostic gene signature was
independent prognostic influential factor of PDAC, and was
validated using GEO data sets. In addition, we described the
gene expression at the protein level, and investigated in depth
the correlation between the signal pathways involved in the
gene signature and biochemical processes and tumor immunity.
These results may be helpful for the study of glycolysis-related
molecules in PDAC.

METHODS

Patient Data Acquisition
The Cancer genome atlas (TCGA) (https://portal.gdc.cancer.
gov/) is a cancer research project established by the national
cancer institute and the national human genome research
institute jointly, covering 33 kinds of cancer. Download RNA-seq
and corresponding clinical data of PDAC patients (survival time,
survival status, diagnostic age, gender, history of smoking, history
of alcohol, history of diabetes, history of chronic pancreatitis,
tumor site, histological grade, pathological T, N,M, stage, residual
tumor and radiation therapy). After data cleaning, a total of
173 patients with PDAC had complete survival data, and 73
patients had complete clinicopathological data. Data download
and online analysis has been commenced on 1 November 2020
(TCGA: V21.0).

Identification of Glycolysis-Related Genes
TheMolecular Signature Database (MSigDB) (https://www.gsea-
msigdb.org/gsea/msigdb/index.jsp) (Subramanian et al., 2005;
Liberzon et al., 2011, 2015) provides a collection of annotated
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gene sets to analyze. Search for “glycolysis” by keyword,
download all glycolysis-related data sets, extract and sort out the
contained genes. Then, we performed Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses on these 319 glycolysis-related genes to verify whether
these genes are involved in regulating the process of glycolysis.

PDAC Subclasses Identification Based on
Glycolysis-Related Genes
The obtained 319 glycolysis-related genes were used for non-
negative matrix factorization (NMF) clustering. The purpose of
NMF was to identify potential features in the gene expression
profile by decomposing the original matrix into different
non-negative matrix. Use the “NMF” R package to perform
unsupervised NMF clustering with 1,000 repeat samples and a
maximum grouping of 6 on the metadata set. The cumulative
distribution function (CDF) and consensus heatmapwere used to
evaluate the optimal k value, and the TCGA-PAAD samples were
divided into different clusters according to the glycolysis level of
tumor tissues.

Prognosis Analysis
Kaplan-Meier (K-M) method was used to plot the survival
curves between the expression level of 319 glycolysis-related
genes and the overall survival time (OS) of PDAC patients
(cutoff by the median expression level). The significance of the
difference was tested by log-rank test, and the genes whose P
< 0.01 were screened for subsequent study. Differences in OS,
histological grade and pathological stage between the two groups
were compared and visualized by box plot using R language
(version 3.6.1).

Gene Signature Identification and Score
Construction
The prognostic related genes were identified by univariate Cox
regression analysis. After that, least absolute shrinkage and
selection operator (LASSO) regression was employed to identify
independent prognostic influencing genes powerfully associated
(P < 0.05) with OS in PDAC patients. The risk score was
calculated by the following formula:

Risk score =
∑n

i = 1
Coef (i )X(i)

What needs to be commented is that “n” represents the count
of genes in the model, “Coef (i),” that is “coefficient,” represents
the coefficient of each gene, X (i) means the mRNA expression
level of each gene. When the coefficient is>0, it indicates that the
overexpression of this gene increases the risk of PDAC patients,
otherwise, it means that the gene has a protective effect on
patients with PDAC. Download the Gene Expression Omnibus
(GEO) data set (GSE62452) (Yang et al., 2016) to externally
validate the model. Patients in TCGA-PAAD and GEO were
divided into low-risk group and high-risk group according to
the median risk level, respectively. The survival differences of
the two groups were compared and visualized with the survival
status plot, risk heatmap and survival curve. The area under
the curve (AUC) of the 95% confidence interval was determined

according to the receiver operating characteristic curve (ROC),
and the accuracy and specificity of the model were quantitatively
evaluated. Diagnosis of age, gender, history of smoking, history
of alcohol, history of diabetes, history of chronic pancreatitis,
tumor site, histological grade, pathological T, N,M, stage, residual
tumor, radiation therapy and risk score were all included in this
study for univariate and multivariate Cox regression analysis,
which determined that risk score based on 11 glycolysis-related
genes was the independent prognostic factor for PDAC.

Functional Inference
Gene Set Enrichment Analysis (GSEA), a desktop software
used to analyze gene sets, can be downloaded from the
Broad Institute GSEA website (https://www.gsea-msigdb.org/
gsea/index.jsp) (Subramanian et al., 2005). To infer functional
annotations of 11 glycolysis-related genes, GO enrichment
[c5.all.v7.2.symbols.gmt (Gene oncology)] and KEGG pathway
analysis [c2.cp.kegg.v7.2.symbols.gmt (Curated)] of differentially
expressed genes (DEGs) in low-risk group and high-risk group
were enriched by GSEA (version 4.0.1). ChIP - X Enrichment
Analysis Version 3 (ChEA3) (https://maayanlab.cloud/chea3/#
top) (Keenan et al., 2019) is a web-based enrichment tool of
transcription factor (TF) analysis. We predicted the top 25 TF
that are most closely related to the 11 glycolysis-related genes by
using Fisher’s precise test.

Analysis of Tumor Infiltrate Immune Cells
in PDAC
Based on RNA-seq data, the “Cibersort” R package was used to
estimate the abundance of 22 TIICs in a single sample (Newman
et al., 2019), and the stromal, immune and estimated scores were
calculated using the “ESTIMATE” R package (Yoshihara et al.,
2013). The infiltration level and immune scores were compared
between the high-risk group and the low-risk group.

Immunohistochemical Analysis of
Glycolysis-Related Genes in PDAC
Human protein mapping (HPA) (https://www.proteinatlas.org/)
(Uhlén et al., 2015; Uhlen et al., 2017; Thul et al., 2017) of 26,000
human proteins tissue and cell distribution information. In this
database, the researchers used highly specific antibodies and
immunoassay techniques to examine the expression of proteins
in cell lines, tumor tissues and normal samples in detail. The
protein expression of 11 genes in PDAC tissues was analyzed
using HPA database.

Statistical Analysis
Most statistical analysis is done through online bioinformatics
databases and tools. Other statistical analysis was performed
based on R software v3.6.1. When the data is normally
distributed, the mean and median of continuous variables are
compared by Student’s t-test, otherwise, useWilcoxon inspection.
The Chi-square test and Fisher test was used to compare clinical
and pathological parameters and other categorical variables.
Survival rates were assessed using Kaplan-Meier curves and the
log-rank test, and univariate and multivariate Cox regression
were used to analyze the independent parameters associated with
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the OS. All tests were bilateral, and P < 0.05 was considered
statistically significant. Pearson coefficient of correlation was
calculated to measure the correlation between two variables.

RESULTS

Identification of Glycolysis-Related Genes
in TCGA-PAAD
A total of 13 glycolysis-related genes sets were retrieved
(Table 1). These 13 gene sets contain genes involved in
glycolysis, gluconeogenesis and the tricarboxylic acid cycle,
metabolism of fructose 1, 6-bisphosphate and fructose 2,
6-bisphosphate, transmembrane transport of lactic acid and
other biochemical reactions, which are considered to be up-
regulated genes for glycolysis. After summarizing the genes
in the above gene sets, 319 glycolysis-related genes were
included through deduplication. To verify whether these 319
genes were involved in glycolysis, we conducted in-depth
studies using GO and KEGG pathway enrichment analysis.
The results showed that the genes enriched in molecular
function (MF) term were related to monosaccharide binding and
oxidoreductase activity, and that in biological process (BP) term
were related to glycolytic metabolism, and the KEGG pathway
enrichment analysis involved glycolysis/gluconeogenesis,
suggesting that these genes were indeed related to glycolysis
(Figures 1A,B).

PDAC Subclasses Identification Based on
Glycolysis-Related Genes
These 319 glycolysis-related genes were used for NMF cluster
analysis, and the comprehensive correlation coefficient was
used to determine the optimal k value as 2. TCGA-PAAD
samples were then divided into two different clusters, namely
cluster 1 (n = 101) and cluster 2 (n = 72). When k = 2, the
consensus matrix heatmap had clear boundary and minimal
interference between subgroups, indicating that the samples
had stable clusters (Figures 2A–D). In addition, we compared
the differences of survival between two clusters with different
glycolytic status. The survival curve showed that patients in
cluster 1 had the worse prognosis than those in cluster 2 (P =

0.004) (Figure 2E).
In order to better understand the glycolysis status between

the samples of the two clusters, the volcano plot of DEGs
of the two clusters were shown in Figure 2F, in which 343
genes were up-regulated and 37 genes were down-regulated
significantly in the cluster 1 (P < 0.05). And the results
of gene function and pathway enrichment analysis showed
that these DEGs were significantly related to glycolysis and
cell proliferation and migration, such as glycolytic process,
oxidoreduction coenzyme metabolic process, oxidoreductase
complex, glucose binding, glycolysis, citrate cycle (TCA cycle),
cell cycle, autophagy and p53 signaling pathway (Figures 2G,H).
In addition, we compared the infiltrating abundance of
TIICs between PDAC samples in cluster 1 and cluster 2.
The results showed that there were more infiltration of
macrophages M0 and less infiltration of B and T cells in

cluster 1 (P < 0.01) (Supplementary Figure 1A). Besides,
our analysis also found that the samples in cluster 1 had
lower immune score, stromal score, and ESTIMATE score
(P < 0.05), while the tumor purity was higher (P < 0.001)
(Supplementary Figures 1B–E).

Gene Signature Identification and Score
Construction
The screening process for prognostic glycolysis-related genes
was shown in Supplementary Figure 2. The K-M survival
curves showed that among the 319 glycolysis-related genes,
the expression level of 38 genes was significantly correlated
with the OS of PDAC (P < 0.01). Among them, 30 genes
were significantly upregulated in PDAC patients with poor
prognosis (Supplementary Figure 3), and the high expression of
8 genes may indicate a better prognosis in patients with PDAC
(Supplementary Figure 4). In TCGA-PAAD patients, 35 genes
associated with total survival were identified by univariate Cox
regression analysis (P <0.05) (Table 2). To determine the most
powerful prognostic markers, the LASSO regression analysis
was used to screen 11 genes and construct risk score signature
(Figure 3A) to minimize the risk of overfitting. The risk score of
PAAD patients was calculated according to the expression level
of gene and regression coefficient, and the results were as follows:
Risk score = 0.00559311∗ (the expression level of ALDH3B1)
+ 0.021443237∗ (the expression level of PGM1) + 0.0246051∗

(the expression level of MET) + 0.049373852∗ (the expression
level of KIF20A)+ 0.036135631∗ (the expression level of ABCB6)
+ 0.012568672∗ (the expression level of NT5E) + 0.512999189∗

(the expression level of CHST12)+ 0.001510137∗ (the expression
level of GPR87) + 0.036407687∗ (the expression level of CDK1)
+ 0.000281881∗ (the expression level of B3GNT3)+ 0.01548257∗

(the expression level of CACNA1H). LASSOCox regression fitted
11 most powerful genes into a formula related to prognosis. The
PDAC patients were divided into a low-risk group (n = 87) and
a high-risk group (n = 86) based on the median risk score. The
expression levels of 11 prognostic markers in the high-risk group
and the low-risk group were shown in a box plot (Figure 3B).
As can be seen, compared with the low-risk group, ALDH3B1,
PGM1, MET, KIF20A, NT5E, GPR87, CDK1, B3GNT3 were
significantly up-regulated in the high-risk group (P < 0.001), and
CHST12, CACNA1H were significantly down-regulated in the
high-risk group (P < 0.001), while the expression level of ABAC6
was not significantly different between the two groups. Compared
with the low-risk group, the high-risk group had more deaths by
the time of follow-up, and the distribution of survival status and
risk score was shown in Figures 3C,D. The ROC curve showed
a good predictive ability of the model (AUC = 0.805, P < 0.001)
based on the gene signature to predict the prognosis of PDAC
patients (Figure 3E).

To the diagnosis of age, gender, history of smoking, history
of alcohol, history of diabetes, history of chronic pancreatitis,
tumor site, histological grade, pathological stage, residual tumor
and radiation therapy together with risk score into the univariate
and multivariate Cox regression analysis, the results showed
that the risk score based on 11 glycolysis-related genes was an
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TABLE 1 | Thirteen glycolysis-related gene sets screened from MSigDB. Standard name: The name of genes sets in MSigDB.

Standard name Brief description

BIOCARTA FEEDER PATHWAY Feeder pathways for glycolysis

BIOCARTA GLYCOLYSIS PATHWAY Glycolysis pathway

HALLMARK GLYCOLYSIS Genes encoding proteins involved in glycolysis and gluconeogenesis

KEGG GLYCOLYSIS GLUCONEOGENESIS Glycolysis/gluconeogenesis

MODULE 306 Glycolysis and TCA cycle

REACTOME GLYCOLYSIS Glycolysis

REACTOME REGULATION OF GLYCOLYSIS BY FRUCTOSE 2 6 BISPHOSPHATE

METABOLISM

Regulation of glycolysis by fructose 2,6-bisphosphate metabolism

WP COMPUTATIONAL MODEL OF AEROBIC GLYCOLYSIS Computational model of aerobic glycolysis

WP GLYCOLYSIS AND GLUCONEOGENESIS Glycolysis and gluconeogenesis

WP HIF1A AND PPARG REGULATION OF GLYCOLYSIS HIF1A and PPARG regulation of glycolysis

GO LACTATE TRANSMEMBRANE TRANSPORT The process in which lactate is transported across a membrane

GO LACTATE TRANSMEMBRANE TRANSPORTER ACTIVITY Enables the transfer of lactate from one side of a membrane to the other

GO FRUCTOSE 1 6 BISPHOSPHATE METABOLIC PROCESS The chemical reactions and pathways involving fructose 1,6-bisphosphate

independent prognostic factor in PDAC patients (P < 0.001, HR
= 2.916, 95% CI: 1.627–5.227) (Figures 3F,G).

Comparison of Clinicopathological
Characteristic Among Risk Groups
To further evaluate the impact of risk score on prognosis of
PDAC patient, K-M analysis showed that the prognosis of high-
risk group was significantly worse than that of low-risk group
(P < 0.001) (Figure 4A). In addition, we found that the high-
risk group included more patients in cluster 1 (cluster 1: cluster
2 = 72:14), and the low-risk group mainly included patients
in cluster 2 (cluster 1: cluster 2 = 29:58), the difference was
statistically significant (P < 0.001) (Figure 4B), indicating that
patients in the high-risk group had a more active glycolysis
status. Besides, we compared the differences in the pathological
stage and histological grade of the cancers between the high-
risk group and the low-risk group in detail. We found that
although there were no statistically significant differences in T,
N, M, Stage and Grade composition between the high-risk group
and the low-risk group (P > 0.05), the high-risk group tended
to include more PDAC samples with late stage and high grade
(Figures 4C–G).

External Validation of the Gene Signature
To further verify the usefulness of the risk score model based
on 11 glycolysis-related gene signatures, we downloaded the
GSE62452 (n = 130) data set from GEO, in which 69 samples
were PDAC samples. After removing samples whose gene
expression was 0 and samples without survival data, a total
of 64 samples were included in the study. According to the
above formula, the risk score of the GEO dataset sample
was calculated and the patients were divided into the low-
risk group (n = 32) and the high-risk group (n = 32). K-
M analysis showed that the high-risk group had a significantly
worse prognosis than the low-risk group (Figure 5A). Compared
with the low-risk group, the high-risk group had more deaths

by the time of follow-up. The distribution of survival status
and risk score of the patients was shown in Figures 5C,D.
Predicting the prognosis of PDAC patients based on this
gene signature, the ROC curve showed a good predictive
ability of the model (AUC = 0.763, P < 0.001) (Figure 5B).
The expression levels of 11 prognostic markers in the high-
risk group and the low-risk group were shown by heatmap
(Figure 5E).

Function and Mechanism Inference
The DEGs between the high-risk group and the low-risk
group were shown in the heatmap (Figure 6A), in which
440 genes were significantly up-regulated and 25 genes
were significantly down-regulated in the high-risk group (P
< 0.05). It is worth noting that GSEA analysis results
showed the DEGs were enriched in glycolysis gluconeogenesis,
primary immunodeficiency and cell cycle pathway (Figure 6B),
which meant that there were differences in glycolysis levels,
immune status, and tumor cell proliferation in the high
and low risk groups. The correlation plot showed that there
were strong positive correlations between MET and other
oncogenic glycolysis genes, such as KIF20A and MET (r
= 0.52961), NT5E and MET (r = 0.634197), GPR87 and
MET (r = 0.522604), etc. (P < 0.001), while there were
negative correlations between MET and ABCB6, CHST12 and
CACNA1H (Figure 6C). Figure 6D depicted a network of top-
25 TF with strong regulatory relationships among 11 genes,
including HIF-1A.

Protein Expression Analysis of
Glycolysis-Related Genes
Finally, in order to study the expression level of glycolysis gene
in PDAC samples at the protein level, immunohistochemical
data of 10 proteins were retrieved from the HPA database,
and immunohistochemical information of GPR87 was lacking.
Figures 7A,B showed the staining and intensity of 10 proteins
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FIGURE 1 | GO and KEGG pathway enrichment analysis of 319 glycolysis-related genes selected from GSEA. (A) The bar plot of GO pathway enrichment analysis.

(B) The bar plot of KEGG pathway enrichment analysis (BP, biological process; CC, cell component; MF, molecular function).

in all PDAC samples. The results showed that ABCB6,
CHST12, and CACNA1H were weakly stained in PDAC samples,
while ALDH3B1, PGM1, MET, KIF20A, NT5E, CDK1, and

B3GNT3 were strongly stained and the protein level was
higher in PDAC samples (Figure 7C), consistent with that at
mRNA level.
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FIGURE 2 | Identification of subclasses identification based on 319 glycolysis-related genes using NMF consensus clustering. (A) Consensus matrix heatmap for k =

2. (B) The CDF value of consensus index. (C) Relative change in area under CDF curve for k = 2–6. (D) The tracking plot for k = 2–6. (E) Kaplan-Meier survival

analysis of PDAC patients in cluster 1 and cluster 2. (F) The volcano plot of the DEGs expression signature in cluster 1 and cluster 2. In the plot, “down” means

down-regulated DEGs, “up” means up-regulated DEGs and “no” means the difference was not statistically significant. (G) The bubble plot of KEGG pathway enriched

with DEGs. (H) The bar plot of GO pathway enriched with DEGs (BP, biological process; CC, cell component; MF, molecular function).
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TABLE 2 | Prognosis-related glycolytic genes in pancreatic cancer based on

univariate Cox regression analysis.

Gene ID HR 95% confidence interval P-value

ALDH3B1 1.043 1.019–1.067 0.000339

DEPDC1 1.363 1.077–1.725 0.009978

CD44 1.027 1.015–1.040 1.74E-05

NUP160 1.264 1.087–1.471 0.00236

PHKA2 0.750 0.620–0.907 0.003105

PRKACA 0.896 0.835–0.962 0.002368

HMMR 1.396 1.212–1.608 3.57E-06

PGM1 1.067 1.033–1.102 8.05E-05

B4GALT1 1.012 1.005–1.019 0.001039

AURKA 1.090 1.027–1.158 0.004705

PYGL 1.068 1.032–1.106 0.00018

PYGB 1.003 1.000–1.007 0.039495

PGK1 1.007 1.002–1.012 0.009788

MET 1.046 1.033–1.060 3.98E-12

B3GAT1 0.283 0.081–0.990 0.048251

KIF20A 1.329 1.189–1.486 5.46E-07

RARS1 1.112 1.040–1.188 0.001751

CENPA 1.227 1.078–1.395 0.001907

ABCB6 0.469 0.252–0.874 0.017151

P4HA1 1.011 1.002–1.021 0.022624

LDHA 1.011 1.007–1.016 1.38E-06

NT5E 1.040 1.026–1.053 2.75E-09

CHST12 0.305 0.174–0.537 3.73E-05

GPR87 1.049 1.026–1.073 2.64E-05

NUP54 1.198 1.022–1.403 0.025428

LHX9 1.432 1.138–1.545 0.003413

EGFR 1.047 1.012–1.083 0.007303

AK4 1.076 1.009–1.146 0.024863

CDK1 1.201 1.108–1.302 9.18E-06

B3GNT3 1.015 1.006–1.024 0.00069

COPB2 1.049 1.007–1.092 0.021589

PPIA 1.013 1.002–1.025 0.018752

CACNA1H 0.820 0.728–0.924 0.001126

RPE 1.103 1.052–1.157 4.83E-05

ERO1A 1.016 1.005–1.026 0.002958

Analysis of Immune Cell Infiltration in
PDAC
The box plot showed the infiltrating abundance of TIICs
with significant differences (P < 0.05) in PDAC samples
between the high-risk and low-risk groups. It can be seen
that, compared with the low-risk group, the infiltration
abundance of macrophages in the high-risk samples was
higher, and that of CD8+T cells was lower, which was
the same as in cluster 1 (Supplementary Figure 5A). In
addition, our analysis also found that the high-risk group
had lower immune score, stromal score, and ESTIMATE score
(P < 0.05), while the tumor purity was higher (P < 0.05)
(Supplementary Figures 5B–E).

DISCUSSION

PDAC is a common cause of cancer-related death and has
a low survival rate. It is estimated that there will be 57,600
new cases and 47,050 deaths in the United States in 2020
(Siegel et al., 2020). Many methods can be used in the
clinical treatment of PDAC, such as surgery, chemotherapy,
radiotherapy, immunotherapy, targeted molecular therapy, etc.
The individual characteristics of PDAC patients are of great
significance for precision therapy, among which the genetic
characteristic of tumor is a very important aspect. There have
been many studies on gene signatures based on TCGA and GEO
database to predict the prognosis of PDAC patients, including
immune-related genes and mucin genes (Wei et al., 2019; Wu
et al., 2019, 2020; Jonckheere et al., 2020). Pilar Espiau-Romera’s
review summarized the correspondence between the molecular
subtypes and metabolic subtypes of PDAC, and the metabolic
reprogramming involved in PDAC included lipid metabolism,
glycolysis, and amino acid consumption. The survival analysis
showed that the subtype classification of PDAC based on
metabolism was more significant for clinical diagnosis and
treatment, because it can not only indicate the prognosis of
patients, but also reflect the invasion, drug resistance and other
biological characteristics of PDAC (Espiau-Romera et al., 2020).
In this study, we used the TCGA-PAAD cohort to analyze
the effect of glycolysis status on the OS of PDAC patients,
suggesting the potential value of glycolysis-related gene signature
as prognostic markers.

First, we extracted glycolysis-related genes by searching the
gene sets from GSEA, and then according to these 319 gene
expression levels, the PDAC samples were divided into 2
clusters by NMF cluster analysis. It was found that cluster
1 contained more advanced samples and the prognosis of
the patients was worse. Further, 38 prognostic genes were
selected by K-M survival analysis and a risk scoring model
based on LASSO regression analysis. ALDH3B1, PGM1, MET,
KIF20A, NT5E, GPR87, CDK1, B3GNT3 were considered to
play a role in promoting cancer, while CHST12, CACNA1H,
and ABAC611 were thought to inhibit tumor progression,
and similar expression differences were found in the protein
level. Correlation analysis suggested that MET had a strong
positive correlation with other glycolysis-related genes. Current
research has shown that MET can establish connections
between extracellular matrix and cytoplasm by binding to
its ligand, hepatocyte growth factor (HGF). In cancer cells,
abnormal HGF/C-MET axis promoted tumor progression by
inducing PI3K/AKT, Ras/MAPK and other signaling pathways
(Hervieu and Kermorgant, 2018; Zhang et al., 2018). Yan et al.
demonstrated that HGF/C-met enhances the stem-like potential
and glycolysis of PDAC cells by activating YAP/HIF-1 (Yan et al.,
2018). ALDH3B1 was a member of the ALDH family and was
generally considered to be metabolically active, with unique
specificity for various aldehyde substrates (Kitamura et al., 2013).
Expression pattern and clinical significance studies have found
that ALDH3B1 was significantly highly expressed in lung cancer
(Marchitti et al., 2010), and can be an independent prognostic
factor for lung cancer (Sun et al., 2020). PGM1 was an enzyme
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FIGURE 3 | Identification of a 11-gene risk signature for PDAC patients by LASSO regression analysis. (A) LASSO Cox regression was used to select the most

powerful parameter with cross-validation. (B) The heatmap of the 11 glycolysis-related gene expression signatures in the high-risk group and low-risk group. (C) The

distribution of risk score. (D) The plot of survival status. (E) The ROC based on risk score (The risk score was divided into high-risk group and low-risk group with a

cut-off value of 50%.). (F) Tree diagram of a univariate regression analysis. (G) Tree diagram of a multivariate regression analysis (ns., not significant; *P < 0.05, **P <

0.01, ***P < 0.001) (Patients with tumors located in the body and tail of the pancreas received distal pancreatectomy, and patients with tumors located in the head of

the pancreas received Whipple surgery.).
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FIGURE 4 | Survival analysis after risk assessment. (A) Kaplan-Meier survival analysis of PDAC patients in the high-risk group and low-risk group of TCGA cohort. (B)

Sample composition of cluster 1 and cluster 2 in the high-risk group and low-risk group. (C–G) Comparison of tumor composition with different histological grade and

pathological stage between the two groups. The Chi-square test and Fisher test were used to analyze whether the composition of clusters, T, N, M, Stage and Grade

were different between the high-risk group and the low-risk group (cluster 1 vs. cluster 2, T1-2 vs. T3-4, N0 vs. N1, M0 vs. M1, Stage1-2 vs. Stage3-4, Grade1-2 vs.

Grade3-4; ns., not significant; ***P < 0.001).

in the glycogen degradation pathway responsible for converting
glucose 1 phosphate into glucose 6 phosphate. Marion et al.
found that mutations in PGM1 can block its enzyme activity
and prevent cancer-related fibroblast stimulation of glycogen
mobilization (Curtis et al., 2019). Jung et al. found that KIF20A
was up-regulated in a lactate-dependent manner to promote
metastasis in the presence of excess lactic acid resulting from
enhanced aerobic glycolysis in cancer (Jung et al., 2019). Yu
et al. have incorporated NT5E into the glycolytic-based seven-
gene signature of gastric cancer, which was closely related to
the prognosis of gastric cancer patients and tumor immune
infiltration (Yu et al., 2020). GPR87, CDK1, and B3GNT3 were
significantly overexpressed in PDAC cells and clinical tissues,
indicating poor prognosis (Wang et al., 2017; Mishra et al.,
2019; Piao et al., 2019). There have also been previous studies
on glycolysis-related genes in PDAC. For example, Tian et al.

screened 13 glycolysis genes as independent prognostic factors
in PDAC patients through multivariate Cox regression analysis
and survival analysis, and constructed forward stepwise Cox
regression model to calculate the risk score, which was 0.700
× Met + 0.683 × B3GNT3 + 0.662 × SPAG4. Next, risk
score, age, sex, tumor stage, radiotherapy, and residual tumor
were included to establish a nomogram based on multivariate
Cox regression analysis to predict the prognosis of PDAC.
Our analysis and calculation results showed that a total of 11
glycolysis-related genes were included in the calculation of risk
score, and compared with the three-genemodel proposed by Tian
et al., the prediction performance was better (AUC: 0.805 vs.
0.764). Moreover, we considered more factors related to PDAC
pathogenesis and prognosis, such as, history of smoking, history
of alcohol, history of diabetes, history of chronic pancreatitis, and
tumor site (Tian et al., 2020).
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FIGURE 5 | External validation of the risk prediction model using the GEO dataset. (A) Kaplan-Meier survival analysis of PDAC patients in the high-risk group and

low-risk group of GEO dataset. (B) The ROC based on risk score. (C) The distribution of risk score. (D) The plot of survival status. (E) The heatmap of the 11

glycolysis-related gene expression signatures in the high-risk group and low-risk group.
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FIGURE 6 | Function and mechanism inference of DEGs in the high-risk group and low-risk group. (A) The heatmap of the DEGs expression signature in the high-risk

group and low-risk group. (B) The DEGs were enriched in glycolysis gluconeogenesis, primary immunodeficiency and cell cycle pathway. (C) TF networks of 11

glycolysis-related genes. Red represented a positive correlation, blue represented a negative correlation, and ×represented no significant correlation. (D) The

correlation plot of 11 glycolysis-related genes. The thickness of the line indicated the correlation.
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FIGURE 7 | Protein expression analysis of glycolysis-related genes. (A,B) The protein expression score of staining and intensity of 10 proteins in all PDAC samples.

Protein expression score is based on immunohistochemical data manually scored with regard to staining intensity (negative, weak, moderate or strong) and fraction of

stained cells (<25%, 25–75% or >75%). Percentage represented the percentage of each protein expression score and intensity level in all samples. (C)

Immunohistochemical staining of ABCB6, CHST12, CACNA1H, ALDH3B1, PGM1, MET, KIF20A, NT5E, CDK1, and B3GNT3 proteins in PDAC samples.

After grouping according to the risk score, the high-risk
group included more PDAC samples of late stage and high
grade, and patients had a worse prognosis. External data reached
the same conclusion, further demonstrating the specificity and
accuracy of this genetic feature in differentiating PDAC with

different prognoses. Epidemiological studies have found that
history of smoking and drinking can promote the occurrence
and progression of PDAC (Ezzati et al., 2005; Hidalgo, 2010;
Parkin et al., 2011; Bosetti et al., 2012). The incidence of
PDAC was also found to differ by sex, possibly due to
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smoking (Ilic and Ilic, 2016). In addition, chronic pancreatitis
and diabetes were also found to be risk factors for PDAC
(Wolpin et al., 2013; Andersen et al., 2017; Kirkegård et al.,
2017). In addition, traditional AJCC TNM staging is currently
recognized as the most effective prognostic tool for PDAC
(Kamarajah et al., 2017). The tumor site of PDAC also had
a significant difference in the prognosis of patients. Tumors
located in the body or tail of pancreas often predicted a poorer
prognosis, which may be caused by the more hidden onset,
larger tumor size, higher risk of metastasis and difficulty of
resection (van Erning et al., 2018; Tomasello et al., 2019).
The present univariate and multivariate Cox regression analysis
showed that the clinical pathological characteristics, such as
age, gender, smoking history, drinking history, diabetes history,
history of chronic pancreatitis, tumor location, histological
Grade, pathological stage, residual tumor and radiation therapy
had no significant effect on OS in PDAC patients, which
may be due to insufficient sample size. Even so, risk score
was found to be an independent prognostic factor in patients
with PDAC.

In addition, the high-risk group included more cluster 1
samples, suggesting that the high-risk group had a higher level
of glycolysis, leading to a poorer prognosis. GSEA analysis
showed that DEGs higher expressed in high-risk group were
mainly concentrated in glycolysis gluconeogenesis, primary
immunodeficiency and cell cycle pathway, suggesting that
PDAC in high-risk group had higher level of glycolysis, cell
proliferation, and immunosuppression, which is consistent with
the previous theory (Yang et al., 2020). With the discovery
of abnormal glucose metabolism in cancer cells, more and
more drugs targeting the glycolysis process are being developed
and used in clinical trials. There were drugs targeting c-
MET in clinical trials, such as onartuzumab, crizotinib, and
tivantinib (Zhang et al., 2018). The usage of PGM1 inhibitors
may be a therapeutic strategy to reduce the spread of
metastatic abdominal cancers, such as PDAC (Curtis et al.,
2019).

Currently, immunotherapy has been effective in a variety of
cancers (Brahmer et al., 2012; Borghaei et al., 2015; Motzer
et al., 2015; Robert et al., 2015; Sharma et al., 2016), but
has not yet been converted to PDAC (Royal et al., 2010; Le
et al., 2019). Most evidence indicated that there were dense
stromal cells in the microenvironment of PDAC, and the
immune cells were mainly myeloid suppressor cells and tumor-
associated macrophages (TAM), forming an immunosuppressive
environment devoid of nutrients (Dougan, 2017). Due to the
abundant infiltration of bone marrow cells and the relative lack
of T cells in PDAC (Liu et al., 2016), PDAC has poor response to
immunocheckpoint treatment and poor immunotherapy effect.
Raghu et al. found a survival advantage in PDAC patients
with T cell infiltration in the tumor by immunohistochemical
staining and multispectral imaging (Carstens et al., 2017). By
analyzing the infiltration of TIICs in PDAC samples, we found
that, compared with the low-risk group, the infiltration level
of TIICs in the high-risk group was generally lower, M0 and
M1macrophages infiltration abundance was higher, and CD8+T
lymphocytes was with low abundance, which may explain the

poor prognosis of high-risk group from the aspects of the
immune mechanism. Moreover, the above characteristics of
TIICs infiltration also existed in cluster 1 patients, indicating that
the high-risk group had a strong similarity to cluster 1. Despite
the difficulties of immunotherapy for PDAC, current research
offered glimmers of hope, such as depletion or reprogramming
of myeloid cells to reduce immunosuppression and fibrosis,
and recruitment and enhancement of T cell response (Dougan,
2017).

Our study focused on bioinformatics to predict the diagnostic,
therapeutic and prognostic value of glycolysis-related genes
in PDAC, and explored the potential mechanisms by which
glycolytic genes regulated of tumor cell invasion and migration.
In addition, we analyzed the level of TIICs in PDAC and
its relationship with prognosis. Our results indicated that the
high level of glycolysis may suggest a poor prognosis in PDAC
patients, which can be concluded from the comparison of
signaling pathways and immune infiltration. However, we had
to say that this study was a retrospective study with some
limitations. Due to the low incidence of PDAC, the sample
size collected by each study or center was small, which was
a deficiency of this study. Therefore, we call for a larger
sample size prospective study to verify the clinical application of
glycolysis-related genes in personalized management of PDAC
patients. We performed GO and KEGG analyses on these 319
genes, and the results showed that they were indeed enriched
in glycolysis, however these genes may also be involved in
regulating other processes. But complex biological processes
in the human body resulted that nearly every gene could
participate in multiple signaling pathways and perform multiple
functions. Although we haven’t found a suitable method to
solve this problem now, but we will try to develop a more
accurate method to screen genes for further analysis and
research. In addition, this study inferred from the perspective of
bioinformatics that there was a lack of experimental verification,
such as the absence of resolution of glycolysis gene expression
in PDAC cells, and the absence of functional studies to block
or interact with glycolysis gene. In this regard, Li et al. also
conducted a similar analysis and found that glycolysis level was
associated with the prognosis of PDAC patients. It is worth
learning that Li et al. verified that STAT3 signaling pathway
was the key pathway regulating glycolysis in PDAC and there
was a positive feedback between glycolysis level and STAT3
signaling activity at the cellular level (Li et al., 2021). As
a continuation of future research, we will supplement it in
future study.

In present study, we used the TCGA-PAAD RNA-seq data
and clinical data, constructed risk prediction model based on
glycolysis gene. The risk score based on this model was an
independent prognostic factor for PDAC and can potentially
predict the prognosis of patients. The risk prediction model was
useful for verifying PDAC patients with poorer prognoses and
might offer a new view for the research of individual treatment.
In addition, the included glycolysis genes were significantly
correlated with the invasion, cell division and cell adhesion and
abundance of TIICs, and corresponding targeted drugs have
been emerging.
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