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Abstract

Human leukocyte antigen (HLA) genes are among the most polymorphic of our genome, as a likely consequence of
balancing selection related to their central role in adaptive immunity. HLA-A and HLA-B genes were recently suggested to
evolve through a model of joint divergent asymmetric selection conferring all human populations, including those with
severe loss of diversity, an equivalent immune potential. However, the mechanisms by which these two genes might
undergo joint evolution while displaying very distinct allelic profiles in populations are still unknown. To address this
issue, we carried out extensive data analyses (among which factorial correspondence analysis and linear modeling) on
2,909 common and rare HLA-A, HLA-B, and HLA-C alleles and 200,000 simulated pathogenic peptides by taking into
account sequence variation, predicted peptide-binding affinity and HLA allele frequencies in 123 populations worldwide.
Our results show that HLA-A and HLA-B (but not HLA-C) molecules maintain considerable functional divergence in
almost all populations, which likely plays an instrumental role in their immune defense. We also provide robust evidence
of functional complementarity between HLA-A and HLA-B molecules, which display asymmetric relationships in terms of
amino acid diversity at both inter- and intraprotein levels and in terms of promiscuous or fastidious peptide-binding
specificities. Like two wings of a flying bird, the functional complementarity of HLA-A and HLA-B is a perfect example, in
our genome, of duplicated genes sharing their capacity of assuming common vital functions while being submitted to
complex and sometimes distinct environmental pressures.

Key words: HLA diversity, peptide-binding predictions, HLA allele frequencies, functional complementarity, balancing
selection, HLA duplicated genes.

Introduction
The three classical HLA Class I genes, namely HLA-A, HLA-B,
and HLA-C, are the first known genes of the major histocom-
patibility complex (MHC) in the human genome. A common
name (HL-A) together with consecutive numbers were first
attributed to the serological specificities detected in the late
1950s and early 1960s (Curtoni et al. 1967) before researchers
discovered that these surface antigens were encoded by two
different genes, further named HLA-A and HLA-B (Kissmeyer-
Nielsen et al. 1968). A third gene found afterward was called
HLA-C (Thorsby et al. 1970; Solheim and Thorsby 1973;
Thorsby 2009), which displays in many tissues, although
not all, lower levels of cell surface expression (Neefjes and
Ploegh 1988; Neisig et al. 1998; Kulkarni et al. 2011; Carey
et al. 2019).

HLA genes, and more particularly Class I genes, are known
to be among the most polymorphic of our genome (Shiina
et al. 2009). According to the IPD-IMGT/HLA Database
(Release 3.37.0 at https://www.ebi.ac.uk/ipd/imgt/hla/; last

accessed December 24, 2020), more than 7,000 alleles have
been reported so far for HLA-B and about 6,000 for either
HLA-A and HLA-C, which encode altogether almost 12,000
distinct HLA Class I molecules (Robinson et al. 2020). The
number of reported HLA alleles does not cease to increase
each year, mostly since the advent of high-throughput se-
quencing technologies, especially Next Generation
Sequencing to the HLA region. Nevertheless, these alleles
are still attributed to a reduced number of allele families
(defined at the first-field level of resolution according to the
official HLA nomenclature), often considered as HLA lineages,
and generally corresponding to the serological specificities
defined decades ago (Marsh et al. 2010).

The extremely high degree of polymorphism in classical
HLA Class I genes is usually seen as a consequence of their
central role in the regulation of adaptive immunity: the gly-
coproteins they encode, expressed on the surface of most cell
types, bind and present small intracellular peptides, typically
9-mer, to the receptors of CD8þ cytotoxic T lymphocytes,
allowing the latter to detect and eliminate virus-infected or
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tumorous cells (Rudolph et al. 2006). Three forms of
pathogen-mediated balancing selection mechanisms were
proposed to explain this diversity (Spurgin and Richardson
2010), namely the heterozygote advantage (Doherty and
Zinkernagel 1975; Prugnolle et al. 2005; Qutob et al. 2012),
the rare-allele advantage (Bodmer 1972; Slade and McCallum
1992), and the fluctuating selection (Hill 1991) models.
Besides, directional selection (either negative or positive) on
particular HLA alleles associated with susceptibility and resis-
tance to certain pathogens has been suggested (Dendrou
et al. 2018; Sanchez-Mazas 2020), although its signatures
might be difficult to detect (Penman and Gupta 2018). For
instance, studies on malaria have suggested soft selective
sweep (Hermisson and Pennings 2005; Messer and Petrov
2013) acting on several HLA-B alleles with moderate protec-
tive effects against Plasmodium falciparum and explaining
why strong signals of selection may not be demonstrated
(Sanchez-Mazas et al. 2017b).

Not surprisingly, the a1 and a2 domains of HLA Class I
molecules, which form the peptide-binding groove, became
the subject of intensive studies, and a concentration of poly-
morphic sites was observed in these domains (Hedrick et al.
1991; Robinson et al. 2017; Goeury et al. 2018, although high
molecular variation was also recently disclosed in HLA genes’
regulatory regions (Souza et al. 2020). These features of HLA
molecules and related peptides may simultaneously affect the
binding processes and peptide-binding preferences (Zhang
et al. 2017). In case of a 9-mer bound peptide, the p2 (position
2) and p9 (position 9 and C-terminus) residues, correspond-
ing to the B and F pockets within the groove, respectively,
were suggested to be the “primary” anchors. These positions
might have stronger impact on the peptide-binding specific-
ity (Saper et al. 1991; Madden 1995) compared with the
“secondary” anchor positions p1 and p3, and to the other
ones (Sidney, Assarsson, et al. 2008; see fig. 1a adapted from
Klein and Sato, 2000 and fig. 1b to be presented in later
sections). As a result, although each specific HLA molecule
is only able to bind a rather limited amount of peptides
compared with the quasi unlimited set of peptides that can
theoretically be derived from pathogens, the binding reper-
toires of distinct HLA molecules greatly differ from each other
(Falk et al. 1991), providing altogether a remarkable binding
potential. This also led to propositions of broad functional
groups, often known as “supertypes,” without any consensual
definition currently in use (Kangueane et al. 2005; Sidney,
Peters, et al. 2008; Wang and Claesson 2014; Mukherjee
et al. 2015). Actually, the fraction of bound peptides varies
depending on the allele encoding each molecule. Some HLA
Class I molecules display larger (or “promiscuous”) repertoires
that would protect individuals to a wider variety of patho-
gens, and thus act as “generalists”; others display narrower but
more specific (or “fastidious”) repertoires that would protect
individuals to new and likely more virulent pathogens, and
thus act as “specialists” (Chappell et al. 2015; Kaufman 2018).

In this context, direct approaches to measure the binding
repertoire of HLA molecules using the peptide elution
method (Falk et al. 1991) were limited by experimental com-
plexity and labor costs and urged the development of in silico

methods predicting HLA-binding specificities (Zhang et al.
2005; Jojic et al. 2006; Jacob and Vert 2008; Hoof et al.
2009). Among these methods, NetMHCpan (Hoof et al.
2009), a neural network-based predictor trained on eluted
MHC peptide-binding data contained in the Immune
Epitope Database (Vita et al. 2015), was shown to be an ef-
fective and state-of-the-art tool in better understanding the
evolution of HLA genes (Rasmussen et al. 2014; van
Deutekom and Keşmir 2015; Buhler et al. 2016; Pierini and
Lenz 2018). Recently, Pierini and Lenz (2018) studied the di-
rect correlation between pairwise sequence divergence and
the corresponding peptide-binding repertoire across different
HLA genes and supported the divergent allele advantage
(known as DAA) as a meaningful quantitative mechanism
of pathogen-mediated selection. In another study, Buhler
et al. (2016) revealed that the level of functional diversity
was maintained in worldwide populations when HLA-A
and HLA-B molecules were considered simultaneously,
whereas the diversity of HLA-C molecules would not increase
significantly the peptide-binding repertoire. The particularity
of HLA-C is possibly due both to its lower level of surface
expression in many somatic tissues and to the more impor-
tant role of HLA-C molecules as ligands of killer-cell immu-
noglobulin-like receptors (KIRs). The authors thus suggested
that HLA-A and HLA-B genes coevolved through a model of
“joint divergent asymmetric selection” conferring all popula-
tions, including those with severe loss of genetic diversity, an
equivalent immune potential. However, still unknown are the
mechanisms by which these two genes might undergo joint
evolution while displaying very distinct allelic profiles in
populations.

To address this issue, we studied a large set of HLA Class I
alleles by putting together amino acid sequence, peptide-

FIG. 1. Schema showing the anchoring residues (p1–p9) of a 9-mer
peptide in the peptide-binding groove (with B and F pockets indi-
cated) of an HLA-B*27:03 molecule taken as an example (a) and its
consensus sequence logo chart produced by MHCcluster conveying
information about the conservation of a binding motif for each res-
idue (b).
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binding affinity and allele frequency data. For 2,909 high-
resolution HLA alleles, we extracted their corresponding
amino acid sequences and estimated peptide-binding affini-
ties in order to consider the relationships between the pri-
mary structure and molecular function, and we gathered their
frequencies in 123 human populations. To our knowledge,
this is the first study treating simultaneously protein diversity,
functional properties, and population profiles of HLA mole-
cules on such a scale. Our results indicate that most selective
signals detected for HLA Class I genes at both inter- and
intraprotein levels can be explained by functional divergence
and complementarity of HLA-A and HLA-B molecules, which
then behave, as our factorial correspondence analysis nicely
illustrates, like two wings of a flying bird.

Results

General Pattern of Functional Relationships among
HLA Class I Molecules
We performed a factorial correspondence analysis (FCA) to
display the functional relationships between the 2,909 HLA-A,
HLA-B, and HLA-C molecules along with the 200,000 simu-
lated peptides for which the binding affinity was estimated
(fig. 2). These relationships show a flying bird-like pattern
along the first three axes of the FCA (fig. 2a and d, online
tool S1 at https://hla-net.eu/interactive/HLA_wings/tool_S1/
(last accessed December 25, 2020) for a 3D plot and online
tool S2 at https://hla-net.eu/interactive/HLA_wings/tool_S2/
providing a user interactive plot; fig. 2e–h to be presented in

later sections). The bird’s two “wings” are represented, respec-
tively, by HLA-A and HLA-B molecules, its “head” by addi-
tional HLA-B molecules, its “tail” by additional HLA-A
molecules, and its tiny “claws” by HLA-C molecules, all sur-
rounded by a cloud of high-affinity peptides. The transition
between these extending parts is continuous and is com-
posed of a heterogeneous set of HLA-A, HLA-B, and HLA-C
molecules. In general, the principal functional divergence is
observed between HLA-A and HLA-B molecules, but the di-
vergence between molecules of the same gene is also consid-
erable in some cases (fig. 2a and b). Despite this large range of
peptide-binding affinities, some molecules do appear to be
functionally very similar to each other (gray framed parts in
fig. 2a and b zoomed in fig. 2c and d, respectively). As for HLA-
C molecules, they concentrate substantially more in the cen-
ter of the plot, indicating that HLA-C is functionally much
more homogeneous than HLA-A and HLA-B in view of its
peptide-binding affinities (fig. 2a–d).

Going into details, HLA-A and HLA-B molecules can be
loosely clustered into three main divergent functional groups,
each of them being characterized by relatively unique
peptide-binding affinities. The first group (group 1) includes
HLA-A*03, *11, *31, *33, *68, and *74 molecules, the second
one (group 2) HLA-B*18, *37, *40, *41, *44, *45, and *50
molecules, and the third one (group 3, mostly visible in
fig. 2b) HLA-A*02 molecules (note that in some cases, mole-
cules belonging to a same lineage, e.g., HLA-A*24 molecules,
cluster in different groups). All the other HLA-A and HLA-B
molecules (among which HLA-B*15 encoded by the most

FIG. 2. FCA of peptide-binding affinity data for 2,909 HLA Class I molecules using 200,000 simulated peptides with two of the first three
correspondences visualized, respectively, representing together �50% of the total variance. Both HLA molecules and peptides are plotted,
distinguished by colors (red for HLA-A, blue for HLA-B, yellow for HLA-C, and gray for peptides). Only the most common molecule belonging
to each HLA-A and HLA-B lineage is labeled by the first-field names (a, b), then the gray framed central part zoomed in with one molecule for each
HLA-A, HLA-B, and HLA-C lineage labeled similarly (c, d), and next, for each HLA molecule, the plot size is proportional to the numbers of
populations in which its corresponding allele was observed (e, f), and finally, as an example of their population distribution, the HLA molecules are
highlighted by labels of different sizes proportional to the allele frequencies they correspond in an Australian Aboriginal population from Cape
York Peninsula (g, h).
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polymorphic HLA lineage) constitute a fourth group (group
4) of HLA-A and HLA-B intermixed with HLA-C molecules in
the center of the FCA (fig. 2c and d and online tool S2 at
https://hla-net.eu/interactive/HLA_wings/tool_S2/, option
“Labeling all molecules encoded by alleles of a same lineage”).

When the binding affinity data are checked for each pep-
tide using the threshold for weak binders (ELrank < 2) to
identify its HLA binders, a total of 57.6% of the 200,000 pep-
tides are predicted to bind at least one of the 2,909 HLA
molecules (fig. 3a), whereas the other 42.4% are not expected
to bind any HLA molecule (as shown by gray dots positioned
far from any HLA molecule in fig. 2a and b). A quarter (25.5%)
of the total peptides are predicted to bind molecule(s)
encoded by a same gene, mostly HLA-A or HLA-B (9.5% by

HLA-A molecules only, 15.4% by HLA-B only, and merely 0.6%
by HLA-C only). Surprisingly, more peptides (32.1%) are pre-
dicted to bind HLA molecules encoded by either two or three
HLA Class I genes (7.4% by HLA A&B, 1.6% by HLA A&C, 4.7%
by HLA B&C, and 18.4% by HLA A&B&C). As expected, when
the threshold for strong binders (ELrank < 0.5) is applied,
only 37.4% of the 200,000 peptides are predicted to bind HLA
molecule(s) (fig. 3b–e to be presented in later sections), and
the majority of them (21.7%) are predicted to bind mole-
cule(s) encoded by a same gene (7.8% by HLA-A only,
13.0% by HLA-B only, and merely 0.9% by HLA-C only),
whereas the proportion of peptides that are predicted to
bind HLA molecules encoded by different genes is severely
reduced (15.7%: with 4.2% by HLA A&B, 1.4% by HLA A&C,

FIG. 3. Venn diagrams showing, with two upper thresholds of the rank of predicted binding score (ELrank< 2, for weak binders and ELrank< 0.5 for
strong binders), the absolute proportion of peptides, among 200,000 random ones, which are predicted to bind at least one of the 2,909 HLA-A,
HLA-B, or HLA-C molecules, respectively, and the proportion of peptides that might bind HLA molecules of two (A&B, A&C, and B&C) or three
(A&B&C) genes (a: weak binders; b: strong binders). The proportion of peptides estimated similarly for different categories of HLA molecules
characterized by the range of distribution in populations are further summarized by line charts (c, e: weak binders; d, f: strong binders).
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3.6% by HLA B&C, and 6.5% by HLA A&B&C). These results
confirm that HLA-A and HLA-B molecules display both a
main functional divergence and specific peptide-binding af-
finities, which is not the case for HLA-C, though the sharing of
specific peptides among HLA molecules of different genes is
definitively not a rare phenomenon.

Interprotein Relationships: Sequence Variation and
Functional Divergence of HLA Class I Molecules
A pairwise divergence matrix of the amino acid sequences of
all the 2,909 HLA Class I molecules was used to plot sequence
divergence histograms for molecule pairs related either to a
single gene or to two different genes, that is, HLA A~A, B~B,
and C~C for one-gene molecule pairs and HLA A~B, A~C,
and B~C for two-gene molecule pairs (fig. 4a, b, and c-l to be
presented in later sections). More than 91% of the one-gene
molecule pairs differ by 5–25 amino acid residues, within a
range of 0–30. HLA-A and HLA-B show greater proportions of
divergent pairs (A~A: mean: 16.33, standard deviation [SD]:
6.71, B~B: mean: 15.88, SD: 5.24) compared with HLA-C (C~C:
mean: 11.06, SD: 4.08). Moreover, contrary to HLA B~B pairs
that show a symmetric distribution, the distributions for HLA
A~A and C~C pairs are somewhat asymmetric and bimodal,

with more pairs displaying lower (0–5) and (for A~A pairs)
higher (20–25) amino acid differences (fig. 4a). Two-gene
pairs differ by much more amino acid residues, within a range
of 10–42. Most HLA A~B and A~C pairs differ by more than
20 amino acid residues (A~B: mean: 32.45, SD: 3.61, A~C:
mean: 31.30, SD: 3.07), which is more prominent compared
with HLA B~C pairs (mean: 23.94, SD: 4.16). The three two-
gene pair distributions are more or less symmetric (fig. 4b).

However, the density distributions of functional distances
between the HLA molecules based on peptide-binding affin-
ity differences are not all in close accordance with those of
their amino acid sequence differences (fig. 4c and d), as con-
firmed by heterogeneous and sometimes low correlation
coefficients (R) between sequence differences and functional
distances (R: 0.81 for HLA A~A, 0.65 for B~B, 0.71 for C~C,
0.14 for A~B, �0.23 for A~C, and 0.43 for B~C pairs; see
online tool S3 at https://hla-net.eu/interactive/HLA_wings/
tool_S3/, panel “Correlation coefficients” with “Minimum
number of populations” at zero). For one-gene pairs, much
greater proportions of high values (0.7–0.9) are observed for
HLA A~A (mean: 0.65, SD: 0.27) and B~B (mean: 0.65, SD:
0.23) pairs compared with C~C ones (mean: 0.44, SD: 0.21)
(fig. 4c). Large functional differences have apparently been

FIG. 4. Histograms of amino acid sequence differences (a1 and a2 domains encoded by exons 2 and 3) and density distributions of pairwise
functional distances between one gene, that is, HLA A~A (red), B~B (blue), and C~C (yellow), and two gene, that is, HLA A~B (violet), A~C
(orange), and B~C (green) molecule pairs, which concern all possible combinations of the 2,909 HLA molecules (a–d); or those of the 240 common
HLA molecules (e–h); or those of the 31 most common molecules (i–l).
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maintained for most HLA A~A and B~B pairs, which are
comparable with the range of functional distances between
two-gene pairs (fig. 4d). Contrary to sequence differences,
HLA A~C (mean: 0.75, SD: 0.12) and B~C (mean: 0.75, SD:
0.13) pairs show similar distributions of functional distances,
less prominent than HLA A~B pairs (mean: 0.80, SD: 0.10). In
consequence, asymmetric distributions were observed for all
pairs, and the distribution for HLA A~A pairs is again bimodal,
with larger proportions of both extremely divergent (0.75–
0.9) and extremely similar (<0.1) pairs.

Intraprotein Relationships: Sequence Variation and
Functional Divergence between a1 and a2 Domains
The specificity of different anchoring pockets within the HLA
peptide-binding groove was investigated in relation to the
predicted bound peptides. High-binding specificity of a
pocket would result in little variation of the amino acid res-
idues at the corresponding position on the bound peptides,
which corresponds to a low value of Simpson’s diversity re-
ciprocal index (SRI). In terms of peptide-binding consensus
sequence logo charts, this would mean that a lower SRI cor-
responds to a larger binding motif (fig. 1b).

As expected, residues at the primary anchor positions (i.e.,
p2 and p9 corresponding to B and F pockets of the HLA

peptide-binding groove, respectively) show much lower SRI
values than other residues, for the three genes (fig. 5a–c).
However, a striking difference was found between HLA-A
and HLA-B: position p9 shows a lower SRI compared with
position p2 for the majority of HLA-A molecules, whereas the
reverse can be seen for HLA-B (fig. 5d). This suggests that F
pocket is more decisive for the binding affinity of HLA-A
molecules, whereas B pocket has a greater effect on HLA-B
binding preference. This distinctive pattern of affinity deter-
mination is also visible in the FCA charts (online tool S2 at
https://hla-net.eu/interactive/HLA_wings/tool_S2/, option
“Highlighting all the peptides with a specific residue at the
positions p2 or p9”): the distribution of peptides with a same p2
residue varies mainly depending on HLA-B molecules, whereas
that of peptides with a same p9 residue is mainly related to
HLA-A molecules. In reference to the concepts characterizing
the binding repertoire of HLA molecules (Chappell et al. 2015;
Kaufman 2018), F pocket would thus be more fastidious (spe-
cialist) and B pocket more promiscuous (generalist) for HLA-A
molecules, whereas B pocket would be more fastidious and F
pocket more promiscuous for HLA-B molecules. Very similar
results were obtained by using thresholds of ELrank to define
bound peptides instead of the proportion of BAscore (results
now shown). As of HLA-C molecules, the difference of SRI be-
tween p2 and p9 is not obvious.

FIG. 5. Violin charts of SRI of amino acid residues at each position (p1–p9) of the top 1% among the 200,000 9-mer peptides showing the highest
binding affinity (BAscore) to 2,909 HLA-A (a), HLA-B (b), and HLA-C (c) molecules as well as a Box plot synthesizing the results at p2 and p9 for the
three genes (d); a plot of SRI values at p2 against SRI values at p9, for 2,909 HLA-A (red), HLA-B (blue), and HLA-C (yellow) molecules (e); and plot of
log(SRI) at p2 against log(SRI) at p9 , for 194 HLA-A (red) and HLA-B (blue) common molecules (f), in the latter two the symbol sizes representing
the range of their distribution in populations.

Functional Divergence and Complementarity between HLA-A and HLA-B Molecules . doi:10.1093/molbev/msaa325 MBE

1585

https://hla-net.eu/interactive/HLA_wings/tool_S2/


When SRI values at p2 are plotted against those at p9 for
the 2,909 HLA molecules, a reverse relationship is strongly
suggested (fig. 5e;fig. 5f to be presented in later sections).
Linear models (lm1–lm5 in table 1) indicate a significantly
negative correlation by including “gene” as interaction (lm1,
with adjusted R2: 0.4254, P< 0.001). The model can be further
improved by using log(SIR) at p2 against log(SRI) at p9, re-
moving all the HLA-C molecules, and including SRI at the two
secondary anchor positions, p1 and p3, as interactions (lm5,
adjusted R2: 0.6750, P< 0.001). This relationship confirms the
complementary role played by the B and F pockets and
reveals an asymmetric relationship between HLA-A and
HLA-B molecules.

Functional Distances between HLA Molecules in
Relation to Their Distribution in Populations
In our analyses, we systematically considered the different
categories of HLA molecules defined according to the range
of their geographic distribution (table 2). Starting from the
FCA charts, the 2,909 HLA molecules are represented by dif-
ferent sizes proportional to the numbers of populations in
which they are observed (fig. 2e and f). The pattern of the four
functional groups of HLA molecules (group 1–group 4) de-
fined above and the functional divergence among them are
perfectly maintained when only the common molecules (ob-
served in at least five populations), or even only the most
common molecules (observed in at least 75 populations), are
taken into account. For each studied population, HLA mole-
cules are labeled proportionally to the frequencies of their
corresponding allele on the FCA (an example given in
fig. 2g and h, and online tool S2 at https://hla-net.eu/interac-
tive/HLA_wings/tool_S2/ for all populations, option “Labeling

only the molecules observed in one population”). Most in-
terestingly, these plots show the presence of HLA molecules
belonging to different functional groups within each popula-
tion, despite different frequency patterns. Actually, most pop-
ulations exhibit alleles corresponding to the molecules of all
four functional groups: either many alleles at very low (e.g.,
Sudanese and other African populations) or uneven (e.g.,
Albanian and other European populations; Japanese and
other East Asian populations) frequencies or fewer alleles at
relatively even (e.g., Australian Aborigines) or uneven (e.g.,
Navajo and other Native Americans; Taiwanese Aborigines)
frequencies. The only exceptions are a few Papuan popula-
tions (Abelam, Pawaia, and Rabaul) which lack alleles encod-
ing group 3 (i.e., HLA-A*02) molecules. This means that HLA
molecules displaying different functional properties have
been kept in almost all populations and likely play a comple-
mentary role in their immune defense.

When looking at the sharing of bound peptides by the 240
common HLA molecules, the proportion of the peptides that
are expected to bind at least one HLA molecule drops only
from 57.6% to 50.7% for weak binders and from 37.4% to
30.3% for strong binders compared with the results observed
for the total set of 2,909 HLA molecules (fig. 3c and d).
Eventually, the 31 most common HLA molecules, with only
9 HLA-A, 9 HLA-B, and 13 HLA-C molecules, still cover about
39.0% of the total peptides as weak binders (fig. 3c). The
peptide coverage is thus more or less maintained by the
common, or even the most common molecules, which con-
firms the pattern displayed by the FCA. Interestingly, the
proportion of peptides predicted to bind HLA-C molecules
seems independent to the range of their distribution in pop-
ulations (fig. 3e and f).

Table 2. Numbers of HLA-A, HLA-B, and HLA-C Alleles/Molecules of the Categories Characterized by the Minimum Numbers of Populations of
Our Data Set in Which They Were Observed.

Allele/Molecule Categories HLA-A HLA-B HLA-C Total

Estimated for binding affinity 894 1,413 622 2,909
Observed in at least one population 213 350 153 716
Observed in at least 5 populations (common) 67 127 46 240
Observed in at least 10 populations 47 86 37 170
Observed in at least 25 populations 32 52 24 108
Observed in at least 50 populations 14 26 20 60
Observed in at least 75 populations (most common) 9 9 13 31

Null alleles, which are not suitable for peptide-binding affinity estimation, were not included.

Table 1. Procedure of Linear Modeling of SRI Values between p2 and p9 and Results of Analysis of Variance (F statistics) for Pairwise Model
Comparison(All the values of Coefficient of Determination R2 and F statistics are very Significant with P< 0.001), and the Models lm2 and lm6 Are
Retained.

Models Description Adjusted R2 F Statistics

lm1 p9 � p2 3 gene 0.4254 —
lm2 p9 � (p1 1 p2 1 p3) 3 gene 0.5033 lm2 vs. lm1:76.879
lm3 log(p9) � log(p2) 3 gene 0.5091 —
lm4 log(p9) � (log(p1) 1 log(p2) 1 log(p3)) 3 gene 0.6346 lm4 vs. lm3:167.120
lm5 log(p9) � (log(p1) 1 log(p2) 1 log(p3)) 3 gene

HLA-A and HLA-B molecules only
0.6750 —

lm6 log(p9) � (log(p1) 1 log(p2) 1 log(p3)) 3 gene
common HLA-A and HLA-B molecules only

0.7309 —
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At the interprotein level, the histograms of pairwise se-
quence differences remain similar when considering the dif-
ferent categories of HLA molecules (fig. 4e and f for the
common molecules and fig. 4i and j for the most common
molecules; online tool S3 at https://hla-net.eu/interactive/
HLA_wings/tool_S3/, panel “Amino acid sequence differ-
ences”). In contrast, the patterns of density charts of pairwise
functional distances change substantially when only the com-
mon HLA molecules are kept: In these cases, the proportion
of functionally similar pairs decreases and the proportion of
pairs with intermediate functional distances increases; this is
true for HLA A~A, B~B, C~C, A~B, and A~C pairs (fig. 4g and
h for the common molecules and fig. 4k and l for the most
common molecules; online tool S3, panel “Functional dis-
tances”). Actually, the more widely distributed the HLA mol-
ecules (see table 2 and supplementary table S1,
Supplementary Material online), the more marked this ten-
dency, which was confirmed by the Kolmogorov–Smirnov
test (result not shown). HLA A~A pairs also appear to be
more sensitive to these changes than B~B and C~C pairs.
Intriguingly, when considering the most common HLA mol-
ecules, the density distributions of A~A and B~B pairwise
functional distances become very similar and the
Kolmogorov–Smirnov test is no longer able to distinguish
them (fig. 4k and online tool S3).

Within a population, we also notice that, for two different
HLA molecules, the more functionally similar they are, the
lower the expected chance that both are carried by an indi-
vidual (online tool S4 at https://hla-net.eu/interactive/HLA_
wings/tool_S4/). In other words, for a given HLA A~A (non-
identical pairs, i.e., without pairs consisting of identical mol-
ecules, e.g., A*01:01~A*01:01), HLA B~B (same remark, e.g.,
B*07:02~B*07:02) or A~B molecule pair, high frequency can
be rarely reached in a population if its functional divergence is
low. However, in populations with reduced diversity, some
molecules may reach very high frequencies, which inevitably
increases the number of homozygotes (identical pairs, online

tool S4, dots at the y-axis). For such individuals, a high func-
tional diversity is nevertheless maintained by HLA A~B pairs.
This effect is true for all populations we studied and is often
more pronounced at HLA-A than at HLA-B.

At the intraprotein level, the differences observed between
the anchoring B and F pockets of HLA-A and HLA-B mole-
cules become even clearer when only common molecules are
considered (fig. 5f and online tool S5 at https://hla-net.eu/
interactive/HLA_wings/tool_S5/). The best linear model de-
scribing the negative correlation between log(SRI) values
measured for p2 and p9 is finally achieved by only including
the common HLA molecules (the lm6 model in table 1, for
which adjusted R2: 0.7309, P< 0.001). This relationship is fur-
ther supported by the amino acid diversity of the a1 and a2
domains observed in each of the 123 populations (fig. 6): in
most cases, HLA-A molecules show higher amino acid diver-
sity in a2 than in a1, whereas the reverse is observed for HLA-
B molecules. In comparison, HLA-C molecules exhibit lower
and more similar amino acid diversity at both domains.

Ways of Complementary Peptide-Binding Function
between HLA Molecules
Finally, by looking at the predicted bound peptides shared by
HLA molecules, we synthesized, but not exhaustively, three
ways in which HLA molecules, in particular, HLA-A and HLA-
B ones, may exert a complementary peptide-binding func-
tion. First, HLA molecules with moderate fastidiousness at
both B and F pockets (molecules represented in the central
part of the plot shown in fig. 5e and f) display shared residue
preferences at both p2 and p9 positions and are thus pre-
dicted to bind some identical peptides. This means that if
such promiscuous HLA-A molecules were missing in a given
population, they would be functionally replaced by HLA-B (or
HLA-C) molecules sharing similar promiscuous characteristics
and vice versa. Second, for HLA molecules with either an
extremely fastidious B pocket or an extremely fastidious F
pocket (molecules in the two extremities of the plot shown
in fig. 5e), the other pocket is expected to be extremely pro-
miscuous; then a given 9-mer peptide with a p9 residue an-
choring into the fastidious F pocket of an HLA-A molecule
might happen to have its p2 residue anchoring into the fas-
tidious B pocket of an HLA-B molecule. Here again, if one or
several HLA-A molecules specific to such a peptide were
missing in a given population, specialist HLA-B molecules
would be able to bind the same peptide and vice versa.
Third, a long peptide may be cleaved differently during the
degradation of a pathogenic antigen; hence, a p9 residue of a
given 9-mer peptide, which would anchor into the fastidious
F pocket of an HLA-A molecule, might also occur at position
p2 of another 9-mer peptide of the same pathogenic antigen
and anchor into the fastidious B pocket of an HLA-B mole-
cule. One example of each of these three ways of sharing the
peptide-binding function is given in fig. 7.

Discussion
In this study, we analyzed together the amino acid sequences
and functional properties of 2,909 HLA-A, HLA-B, and HLA-C

FIG. 6. Comparison of amino acid diversity between the a1 and a2
domains of HLA-A (red), HLA-B (blue), and HLA-C (yellow) molecules
in 123 populations. For each domain of each gene, the density distri-
bution of the HLA acid amino density estimated for all populations is
visualized by a Violin chart and the interdomain relationship of the
diversity for each population is further indicated using gray lines
linking the corresponding value points.
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molecules (supplementary table S1, Supplementary Material
online) and we related them to the distribution of their
corresponding HLA alleles in a large set of 123 human pop-
ulations from all continents (supplementary table S2,
Supplementary Material online). By applying several comple-
mentary statistical approaches and computer tools, our goal
was to better understand the evolutionary mechanisms that
shaped the patterns of HLA Class I gene diversity in popula-
tions across the world.

Using FCAs, we first explored the functional relationships
of these HLA molecules along with 200,000 simulated 9-mer
peptides they were predicted to bind (fig. 2a and b and online
tool S2 at https://hla-net.eu/interactive/HLA_wings/tool_S2/
). The flying bird-like pattern observed in the FCA charts
indicates a huge divergence of HLA-A and HLA-B molecules
regarding their peptide-binding properties, whereas HLA-C
molecules are much less variable in this respect. As a result,
three main “functional groups” of HLA-A (groups 1 and 3)
and HLA-B (group 2) molecules were defined based on their
likely unique and very divergent peptide-binding affinities (i.e.,
the bird’s wings and tail). In addition, the remaining HLA-A
and HLA-B, together with the HLA-C molecules constitute a
fourth, more heterozygous group (group 4) that shows inter-
mediate functional distances among the other three groups
(i.e., the bird’s body and tiny claws; fig. 2c and d). The pattern
is confirmed by the proportion of peptides predicted to bind
HLA-A and/or HLA-B molecules compared with those only
expected to bind HLA-C molecules (fig. 3a and b).
Interestingly, plenty of common HLA molecules (i.e., present
in at least 5 populations worldwide) can be found in each of
the four groups (fig. 2e and f). By labeling the HLA-A and HLA-

B molecules proportionally to their corresponding allele fre-
quencies in each population, we observed the existence of
molecules belonging to the four groups in almost all popu-
lations of our data set (fig. 2g and h and online tool S2).
Indeed, the proportion of predicted bound peptides is
more or less maintained for the 194 common or the 18
most common HLA-A and HLA-B molecules (fig. 3c–f).

By investigating more in depth the sequence and func-
tional diversity of the 2,909 HLA molecules, we found that
functional distance distributions are asymmetric compared
with sequence difference distributions (fig. 4). In general, HLA
C~C pairs show both lowest sequence differences and func-
tional distances, whereas A~B pairs show both highest ones.
HLA A~A, B~B, and B~C pairs show comparable distributions
of sequence differences, much less prominent than HLA A~B
and A~C pairs (fig. 4a and b), which is barely changed using
the common and most common HLA molecules (fig. 4e, f, i,
and j). In contrast, the distributions of functional distances for
all these pairs display a shift to higher values (fig. 4c and d),
which becomes more pronounced using the common and
most common HLA molecules (fig. 4g, h, k, and l).
Heterogeneous correlation coefficients were thus obtained
between sequence differences and functional distances,
which are relatively high for one-gene molecule pairs (A~A,
B~B, and C~C pairs) and low for two-gene molecules pairs
(A~B, A~C, and B~C pairs). Last, extreme and identical pat-
terns were observed for A~A and B~B pairs when they were
composed of the most common HLA molecules (fig. 4k).
Such patterns of functional distances suggest that natural
selection prevents functionally similar A~B, A~A, and B~B
pairs to prevail in populations, which leads to increase the

FIG. 7. Three examples of HLA-A and HLA-B molecules exerting a complementary peptide-binding function, all the six molecules being predicted
as strong binders (ELrank< 0.5) and with consensus sequence logo charts shown. First, the peptide FMNHISPKL predicted to bind HLA-A*02:05
and HLA-B*13:01 molecules, both with moderate fastidiousness at both B and F pockets (a). Second, the peptide AEMKSIFQK predicted to bind
HLA-A*11:06 molecule with a fastidious F pocket and HLA-B*40:03 molecule with a fastidious B pocket (b). Third, the peptides ALFAVPFVR and
VRFFLINRF from ALFAVPFVRFFLINRF predicted to bind HLA-A*31:01 and HLA-B*27:03 molecules, respectively (c).
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frequencies of functionally distinct HLA-A and HLA-B mole-
cules. Similar, if not so pronounced selective forces might
have been acting on A~C and B~C pairs but not on C~C
pairs. In consequence, the probability of observing several
frequent HLA alleles coding for molecules with similar
peptide-binding affinities, either from the same gene or across
the two genes HLA-A and HLA-B, would be very low within
populations (online tool S4 at https://hla-net.eu/interactive/
HLA_wings/tool_S4/). In some populations, certain alleles of
one HLA gene occasionally reach very high frequencies due to
strong genetic drift or directional selection, resulting in high
numbers of homozygous individuals; in these cases the gen-
eral HLA functional divergence would be more or less main-
tained by molecule pairs encoded by different HLA genes
(online tool S4).

These key results indicate that the divergent functional
properties of HLA-A and HLA-B molecules taken together
cover a large and stable peptide-binding repertoire; they
play an instrumental and complementary role in giving the
immune protection of human populations, in close agree-
ment with the results presented by Buhler et al. (2016)
through a different approach. On the other hand, these
results contrast with the apparently more marginal role of
HLA-C in peptide-binding and presentation, as, compared
with HLA-A and HLA-B molecules, a very low proportion of
peptides would uniquely bind HLA-C molecules (fig. 3a, b, e,
and f). Actually, distinct kinds (e.g., for HLA-C) and/or inten-
sities (e.g., for HLA-A and HLA-B) of selection may have acted
on the different genes, which would have caused the differ-
ences we observed between one-gene and two-gene mole-
cule pairs. It also makes great sense in the context of HLA
molecular evolution, where HLA-C likely emerged from a du-
plication of HLA-B (Kulski et al. 1997). This hypothesis may
explain its sequence and functional similarity with HLA-B
(B~C molecule pairs with higher correlation coefficient com-
pared with A~B and A~C pairs, online tool S3), here shown by
FCA charts (fig. 2c and d), Venn charts (fig. 3a and b), and
amino acid difference histograms (fig. 4b). Thanks to a possi-
ble relaxation of pathogen-driven selection compared with
other, still unknown, selective constraints, the “novel” HLA-C
gene would have allowed itself to assume other specific func-
tions, in particular, as ligands of KIRs, with unique presence on
trophoblast cells and essential role of KIR/HLA-C interactions
in pregnancy complications (Chazara et al. 2011; Colucci
2017).

Based on these observations, we went a step further by
exploring how HLA Class I genes could play a complementary
role in peptide-binding despite the immense functional di-
vergence between them (as shown by the high proportion of
peptides that are predicted to bind molecules of different
HLA genes, fig. 3a and b). Actually, we showed that the bind-
ing preference of a large number of HLA-A and HLA-B mol-
ecules is determined by only one of the two B and F pockets
within the peptide-binding groove (fig. 5 and online tool S5 at
https://hla-net.eu/interactive/HLA_wings/tool_S5/). In terms
of physicochemical properties, B pocket of most HLA-A mol-
ecules recognizes small and aliphatic peptide residues,
whereas F pocket of most HLA-B molecules recognizes

aromatic, aliphatic, and hydrophobic ones. In contrast, F
pocket of HLA-A molecules anchors mostly either aromatic,
basic, or aliphatic residues, whereas B pocket of HLA-B mol-
ecules anchors either aromatic, basic, acidic, or aliphatic res-
idues (Sidney et al. 2008). For the majority of HLA-A
molecules, B pocket is thus expected to be more promiscuous
compared with the more fastidious pocket F, and the reverse
is predictable for HLA-B molecules. As the B and F pocket are
roughly contained in the a1 and a2 domains, such differences
satisfactorily explain our results of amino acid diversity in
most populations: The HLA-A a2 domain displays a higher
diversity than the HLA-A a1 domain, whereas HLA-B a1 and
a2 domains show reverse pattern (fig. 6). Furthermore, SRI at
primary anchor positions p2 and p9 (with SRI at secondary
anchor positions p1 and p3 as interactions) are negatively
correlated to each other and the linear model is significantly
improved by including only the common HLA-A and HLA-B
molecules (table 1). All these results disclose the secret of HLA
Class I functional diversity: natural selection is not in favor of
molecules with excessively large or excessively narrow reper-
toires (i.e., those with either fastidious or promiscuous pock-
ets on both sides of the peptide-binding groove), as shown by
the lack of points at the bottom-left and top right corners of
figure 5e and f. Rather, an extremely fastidious pocket of an
HLA molecule at one side, ensuring a strong binding specific-
ity, usually requests a highly promiscuous pocket on the other
side, maintaining a reasonable repertoire size (fig. 5e and f).
Given the three ways of sharing bound peptides that we
illustrated in fig. 7, HLA molecules encoded by different genes,
in particular, HLA-A and HLA-B, would thus complement
each other by being capable of anchoring overlapping pep-
tides derived from the same pathogens, despite the distinct
residue preferences and fastidiousness at their B and F
pockets.

It is now worthy to reconsider the HLA broad functional
groups, in particular, the HLA-A and HLA-B “supertypes,”
previously defined by other authors with the objective of
better understanding the functional complexity of HLA alleles
(Kangueane et al. 2005; Sidney, Peters, et al. 2008; Wang and
Claesson 2014; Mukherjee et al. 2015). Based on physico-
chemical properties of pockets B and F, these supertypes
were claimed to persist in most human populations, which
was not confirmed, at least for HLA-A, in a previous study
(Dos Santos Francisco et al. 2015). Here, we provide a different
and more complex view of HLA functional groups, which,
unlike the supertype definition, does not treat them sepa-
rately from each other without mutual functional overlap.
We did define three HLA protein groups that displayed
marked functional differences (mostly between groups 1
and group 2, fig. 2a and b), but also one additional group
(group 4) that was intermediate from a functional point of
view and composed of mixed HLA-A, HLA-B, and HLA-C
molecules (fig. 2c and d). We suggest that the peptide-
binding function of an HLA molecule that is occasionally
absent in some populations showing a reduced genetic diver-
sity would be complemented to a certain extent by another
molecule of either the same or a different HLA gene. This idea
is compatible with the model of joint asymmetric selection
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proposed by Buhler et al. (2016) for HLA Class I genes to
explain why all populations likely exhibit comparable poten-
tial to present pathogen-derived peptides through their HLA-
A and HLA-B complexes taken together, even though the
peptide coverage of either of them is substantially depleted.

In our analyses, we have considered different categories of
HLA molecules defined by the range of their geographic dis-
tribution (table 2). All patterns of functional divergence and
complementarity revealed for HLA Class I genes are well
represented by common and most common HLA-A and
HLA-B molecules (figs. 2e, 2f, 3c–f, 4e–l, 5e, and 5f). As to
rare molecules, they merely appear to add some “noise.”
Indeed, by including all the 2,909 HLA molecules, a substantial
number of HLA A~A pairs exhibit very close functional prop-
erties (i.e., low functional distances), whereas slightly more
HLA B~B pairs display intermediate functional distances
(fig. 4c). These patterns may be explained by different mech-
anisms generating the diversity of HLA-A and HLA-B mole-
cules. Actually, more than 80% of the HLA Class I alleles are
very rare (Robinson et al. 2017). They merely differ, at HLA-A,
by one point mutation from older and more common alleles,
whereas HLA-B has been shown to be much more affected by
gene conversion and recombination events (Buhler and
Sanchez-Mazas 2011; Robinson et al. 2017), which partly
explains differences in diversity levels among these genes
(Vangenot et al. 2020). For example, several HLA-B alleles
are hybrids of other HLA-B alleles, for example, B*15:59
(Magira et al. 2000), B*35:31 (Elsner et al. 2002), B*53:01
(Allsopp et al. 1991), B*53:31 (Adamek et al. 2015), which is
much less commonly the case for HLA-A alleles (Robinson
et al. 2017). Interestingly, even single substitutions would
more strongly affect the peptide-binding repertoire of HLA-
B than they would do for HLA-A molecules (van Deutekom
and Kesmir 2015). This may have created greater functional
differences between new and preexisting HLA-B molecules
compared with HLA-A, explaining the patterns observed in
figure 3d. Given the disadvantage of functional similarity, new
HLA-A alleles would thus have more chance to be swept by
natural selection than new HLA-B alleles. An alternative in-
terpretation to the bimodal distribution of the functional
distances between HLA A~A pairs (fig. 4a), with both ex-
tremely similar and extremely divergent pairs, might be the
possible existence of at least two functional groups that are
both very homogeneous and distant from each other. These
groups might have evolved under distinct selective pressures
and/or at different times. This can be related to what has
been described for HLA-DRB1, where a model of DAA was
only sustained for one of two distinct allelic groups, that is,
group B but not group A (Lau et al. 2015).

A main task in the future is, of course, to confirm how close
our results based on in silico predicted data and random
peptides are representing the success or failure of the
peptide-binding function in an individual, which may further
be complicated considering the surface expression level of
HLA molecules, and the composition and type of pathogen
proteins. Nevertheless, recent studies showed that the ability
to predict peptide-binding affinity has been considerably im-
proved by the immense amount of high-quality mass

spectrometry data of eluted HLA ligands (Gfeller and
Bassani-Sternberg 2018).

In conclusion, our results disclose both important struc-
tural and functional divergence between the molecules
encoded by the three classical HLA Class I genes and—
what is completely new in this study—robust evidence of
functional complementarity at both inter- and intraprotein
levels between HLA-A and HLA-B genes, which satisfactorily
explains the joint divergent asymmetric selective model pre-
viously proposed by Buhler et al. (2016). Intriguingly, the com-
plementarity between HLA-A and HLA-B molecules, which
maintains an efficient overall peptide-binding repertoire in
populations, is still reflected today by the mutually exclusive
first-field numbers assigned to HLA-A and HLA-B allele fam-
ilies during the early years of the long history of HLA study.

More importantly, like two wings of a flying bird, the joint
asymmetric relationship between HLA-A and HLA-B in terms
of amino acid sequence diversity and peptide-binding specif-
icity is a perfect example, in our genome, of duplicated genes
sharing their capacity of assuming common vital functions
while being submitted to complex and sometimes distinct
evolutionary mechanisms. Such mechanisms include the
ways of accumulating molecular diversity through either
point mutations or recombination events, selective pressures,
and random variation due to genetic drift and other pro-
cesses related to the history of populations. A key issue
that remains to be investigated is whether such a functional
complementarity between different HLA genes is also
reflected in the maintenance of long, multilocus HLA haplo-
types in distinct populations. We hope that further interna-
tional collaboration helping to gather substantial sets of high-
quality HLA multilocus genotype data will soon allow to ad-
dress this, and other, crucial questions in a future extension of
our work.

Materials and Methods

HLA Functional Data Analyses: Prediction of HLA
Peptide-Binding Affinity
We applied the netMHCpan 4.0 (Jurtz et al. 2017) program for
the estimation of HLA Class I peptide-binding affinity. In order
to quantify the functional relationship between HLA mole-
cules, we used MHCcluster 2.8, a tool to predict peptide-
binding specificity and functionally cluster Class I molecules
(Thomsen et al. 2013). All the 2,909 HLA Class I molecules
currently available in both programs were included. The bind-
ing affinity of each molecule was estimated to a set of 200,000
random natural 9-mer peptides.

With netMHCpan, a binding affinity score (BAscore) vary-
ing between zero and one was estimated, and the percentile
rank of the predicted binding score (%Rank EL or ELrank) was
also reported to determine whether the protein was expected
to bind a peptide, with 2 and 0.5 as upper thresholds for weak
and strong binders, respectively. In the majority of cases,
ELrank achieves improved predictive performance compared
with raw prediction scores (Jurtz et al. 2017).

With MHCcluster, the peptide-binding similarity s be-
tween two molecules was estimated by the correlation

Di et al. . doi:10.1093/molbev/msaa325 MBE

1590



between the top 10% peptides with strongest affinity to each
of them. Then the pairwise functional distance (DF) was com-
puted as follows:

DF ¼
1� s

smax
;

which was standardized to fall into the range between zero
and one (Hoof et al. 2009). Based on these estimations, a logo
chart of binding motifs (as in fig. 1b) was provided for each
HLA molecule and a matrix of functional distances between
each pair of HLA molecules was created using the Seq2Logo
service (Thomsen and Nielsen 2012). Finally, MHCcluster cre-
ated an unrooted phylogenetic tree visualizing the functional
relationships between the HLA molecules.

However, such a phylogenetic tree is not able to show the
relationships between random peptides and HLA molecules,
nor the geographic distributions of the latter. We thus per-
formed FCA using the whole set of BAscore data, without
setting any a priori threshold to evaluate the HLA peptide-
binding affinities. As an extension of principal component
analyses to categorical data, FCAs provide a solution for sum-
marizing and visualizing bivariate relationships between pairs
of variables in multidimensional plots. Using an algorithm
implemented in the R package FactoMineR (Le et al. 2008),
we managed to plot simultaneously the HLA molecules and
peptides. A chi-square statistic was computed to test the
robustness of the FCA results.

The distribution of pairwise functional distances between
HLA molecules was further visualized by using the kernel
density function implemented in R package ggplot2
(Wickham 2016). To compare these results, we applied the
Kolmogorov–Smirnov test that determines if two samples of
data follow the same distribution (Marsaglia et al. 2003). This
nonparametric test is entirely agnostic to what this distribu-
tion actually is. A two-tail test was performed, with the null
hypothesis of no difference between the empirical distribu-
tion of the two the samples, by the ks.test function imple-
mented in R.

HLA Sequence Data Analyses: Estimation of Sequence
Divergence among HLA Molecules
To better understand the link between their peptide-binding
functions and amino acid sequences, the consensual se-
quence data for all the 2,909 HLA molecules were retrieved
from IPD-IMGT/HLA Database (Release 3.37.0 at https://
www.ebi.ac.uk/ipd/imgt/hla/). We focused on the a1 and a2
domains encoded by exons 2 and 3 of each HLA Class I gene,
respectively, to take into account their essential role in the
peptide-binding function. For each pair of HLA molecules,
sequence divergence was estimated by counting the number
of different amino acid residues in the a1 and a2 domains.

To estimate the degree of diversity at each residue of the 9-
mer peptides showing high-binding affinity (top 1% highest
BAscore) to a given HLA molecule, we computed an SRI as
follows:

SRI ¼ 1=
X20

i¼1
f 2
i ;

where fi is the fraction of amino acid residue i at that specific
position (Simpson 1949). The SRI varies between 1 and 20 (i.e.,
the number of distinct residues) and defines a weighted num-
ber for the amount of different residues observed at a specific
position. A higher SRI value at a given residue position means
a lower diversity, also reflecting a higher fastidiousness (or
lower promiscuity) of the corresponding pocket within the
HLA peptide-binding groove. The SRI values computed for
different HLA molecules were summarized by using the Violin
and Box plot functions implemented in R package ggplot2
(Wickham 2016).

Moreover, relationship between SRI values estimated for
positions p1–p9 was assessed by means of linear modeling,
and backward stepwise regression was used to test if other
independent variables such as gene and geographic distribu-
tion could be retained in the final model (Venables and Ripley
2013).

HLA Population Data Analyses: Allele Ranges and
Estimation of Allele Pair Frequencies
A large set of HLA Class I frequency data were collected from
both the literature (published between 1992 and 2020) and
the reports of the 11th–16th International HLA and
Immunogenetics Workshops. We defined the following crite-
ria to control for the quality of the data:

• Samples typed at high resolution, that is, second-field,
third-field, or fourth-field levels for HLA-A, HLA-B, and
HLA-C genes (alleles defined at the third- and fourth-
field levels were recoded and combined to alleles defined
at the second-field level since these resolution levels cor-
respond to identical sequences at the peptide-binding
groove level of the protein);

• Populations not known to have undergone recent admix-
ture or gene flow;

• Frequency of “blank” (i.e., the sum of undefined alleles)
not exceeding 5% for any of the three genes;

• No deviation from Hardy–Weinberg equilibrium
reported.

Our final data set consists of 123 population samples typed
for HLA-A, HLA-B, and HLA-C genes. All population informa-
tion is available in supplementary table S2, Supplementary
Material online.

A total of 744 nonnull HLA alleles were observed in our
population data set, the binding affinities of which were all
estimated by using netMHCpan, whereas 18 null alleles were
excluded because they were not suitable for functional anal-
yses, and 28 alleles were not available in MHCcluster (supple-
mentary table S1a, b, c, Supplementary Material online).
However, as the latter mostly appeared with very low fre-
quencies in the populations, their exclusion was not expected
to change in any substantial way the results of our analyses.

Based on the distribution of HLA alleles at the global or at
regional geographic levels, previous studies defined allele cat-
egories reported in the Common and Well-Documented
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alleles (CWD) 2.0.0 Catalog (Mack et al. 2013), the Common,
Intermediate and Well-Documented alleles 3.0.0 Catalog
(Mack et al. 2013; Hurley et al. 2020) and the European
CWD Catalog (Sanchez-Mazas et al. 2017a). Only allele fre-
quency data were available for the populations used in this
study, which was not suitable for direct allele counting as to
classify the alleles in these categories. We thus defined com-
mon alleles when they were present in at least 5 populations
of our data set, and we applied this criterion to the HLA
molecules they encode. This category of common alleles/
molecules was further extended by increasing the minimal
number of populations in which an allele was observed, that
is, 10, 25, 50, and 75, respectively, the last being referred as the
most common alleles/molecules. Accordingly, the number of
alleles decreases as the range of populations enlarges (table 2
and supplementary table S1, Supplementary Material online).
We did not use higher limits such as 100 populations, as they
left too few alleles to perform analyses.

Combination of HLA Sequence, Functional and
Population Data
For each HLA allele/molecule category we defined (table 2), a
summarized functional distance distribution chart was cre-
ated, and a Box plot chart was also created for the SRI values.
In the FCA and other charts plotting HLA molecules, this
information is represented by different symbol sizes.

From a functional point of view, given two HLA-A and/or
HLA-B nonnull codominant alleles, the probability that both
corresponding molecules (an HLA A~A, B~B, or A~B pair) are
present on a cell surface of an individual is expected to be the
product of the allele frequencies estimated in the population
the individual belongs to. This was used to plot pairwise
functional distances (DF) between HLA molecules against
their expected frequencies in each population.

Moreover, to estimate the degree of polymorphism of each
amino acid residue within the a1 and a2 domains of the HLA
molecules in a population, we created a set of sequences for
all HLA-A, HLA-B, and HLA-C molecules carried by the indi-
viduals of each population sample, using allele frequency data.
Similar to the nucleotide diversity index pi, an amino acid
sequence diversity was computed from these sequences by
using the R package PopGenome (Pfeifer et al. 2014) based on
a method suggested by Nei (1987).

Other analyses and data visualization were performed in R
(R_Core_Team 2018) version 4.0.0 using RStudio
(RStudio_Team 2015), with packages including ggplot2
(Wickham 2016), eulerr (Larsson 2020), rworldmap (South
2011), and reshape2 (Wickham 2007). In order to better or-
ganize and display the large amount of our supplementary
results, we developed several user-interactive online tools us-
ing the R Shiny package (Chang et al. 2018). The data under-
lying this article will be shared on request to the
corresponding authors.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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