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Abstract: The Multidrug and toxin efflux (MATE) gene family plays crucial roles in plant growth and
development and response to adverse stresses. This work investigated the structural and evolutionary
characteristics, expression profiling and potential functions involved in aluminium (Al) tolerance
from a genome-wide level. In total, 211 wheat MATE genes were identified, which were classified
into four subfamilies and unevenly distributed on chromosomes. Duplication analysis showed that
fragments and tandem repeats played the main roles in the amplification of TaMATEs, and Type
II functional disproportionation had a leading role in the differentiation of TaMATEs. TaMATEs
had abundant Al resistance and environmental stress-related elements, and generally had a high
expression level in roots and leaves and in response to Al stress. The 3D structure prediction by
AlphaFold and molecular docking showed that six TaMATE proteins localised in the plasmalemma
could combine with citrate via amino acids in the citrate exuding motif and other sites, and then
transport citrate to soil to form citrate aluminium. Meanwhile, citrate aluminium formed in root cells
might be transported to leaves by TaMATEs to deposit in vacuoles, thereby alleviating Al toxicity.

Keywords: wheat; MATE gene family; molecular evolution; expression profiling; molecular docking;
aluminium tolerance

1. Introduction

Wheat serves as an important staple food crop for 35% of the world’s population.
However, increasing heavy metal pollution, especially Al toxicity, seriously affects crop
growth and sustainable food production [1]. About 30% of the world’s ice free land areas
belong to acid soils, and only 4.5% of the acid soil area is used for arable crops [2]. Under
acidic conditions, Aluminum (Al) is solublised to its ionic form, which shows toxicity
to plants [3]. Thus, it has been recognised as a major abiotic stress factor in low pH
soils and remains a serious obstacle to sustainable food production worldwide [2,4]. In
general, phytotoxic levels of Al hamper plant root growth and lead to small and brittle
root systems [5], which is associated with alterations in several physiological processes and
biochemical pathways [6]. Therefore, it is highly important to develop crop cultivars with
high Al-tolerance in the plant breeding programs.

It is known that the strategies of plants for resisting Al toxicity include external and
internal Al detoxification [7]. Al tolerance can either be mediated via the exclusion of citrate
from the root apex or via intracellular tolerance of Al transported into the plant symplasm.
Among these mechanisms, organic acid anions (OA) with low molecular weight, such
as citrate have important functions in the external and internal detoxification of Al in
different plant species [8,9]. To date, numerous studies have revealed the role of two major
gene families ALMT (aluminium activated malate transporter) and MATE (multidrug and
toxic compound extrusion) in Al tolerance in several plant species that encode membrane
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proteins and facilitate malate and citrate efflux, respectively [10]. The citrate transporters
particularly display varying degrees of constitutive or element responsive (Al-activated)
expression and may play a role in the detoxification of Al in the rhizosphere [11]. These
organic acids can chelate the Al, and then either protect the roots (chelation in rhizosphere)
or cellular components (chelation in the cytosol) from the phytotoxic effects of Al [12]. In
particular, the conserved citrate exuding motif (CEM) present in MATEs was found to
participate in citrate-binding and transportation for Al chelation [13]. Al induced a thicker
mucilage layer around detached border cells, the release of an Al-binding mucilage by
border cells could protect root tips from Al-induced cellular damage [14]. Thus, the strong
and rapid binding of Al can alter cell wall structural and mechanical properties, at the same
time, reducing the Al in the cell [12].

The internal tolerance mechanism is involved in the chelation and detoxification of
Al in the symplast with carboxylate anions after it enters the plant. For instance, the
buckwheat could accumulate Al to a high level in its leaves when the plant was grown on
acid soils [15]. Most of the Al was complexed with Al-citrate (1:1) in Hydrangea leaves [16].
Leaf compartmental analysis showed that 80% of the Al in buckwheat leaves was stored in
vacuoles as a 1:3 Al-oxalate complex [17]. This internal detoxification mechanism includes
Al chelation in the cytosol and subsequent storage of the Al-carboxylate complex in the
vacuole. At the same time, an oxidative burst is probably involved in the toxicity of Al in
roots and plants react to the increased reactive oxygen species (ROS) [18].

MATE transporters have been found in both prokaryotic and eukaryotic organisms,
which exhibit a unique topology [19]. These proteins are present in plants in the form of
a transporter gene family containing a large number of genes. To date, some MATE ho-
mologous genes in plants have been identified. For example, at least 56, 49 and 138 MATE
members are present in Arabidopsis, maize, and Nicotiana tabacum, respectively [20–22].
In maize, 49 MATE genes were divided into seven groups, in which subfamily II and
III exhibited differential expression patterns under Al stress conditions [21]. The MATE
members were classified into four major clades in Nicotiana tabacum, and different NtMATE
might show specific functions in the transportation substrate [22]. Besides, MATE involves
the regulation of plant development such as the efflux of heterologous substances, accu-
mulation of secondary metabolites alkaloids and flavonoids, transfer of Fe, and signal
transduction of plant hormones. In Arabidopsis, the MATE family member FRD3 was an
iron chelator in the root xylem, which is necessary for efficient iron uptake out of the xylem
or apoplastic space [23]. EDS5 was homologous with members of the MATE transporter
family, strongly induced by salicylic acid, indicating a possible positive feedback regula-
tion [24]. To date, the identification and functional characterisation of only a few MATE
genes in wheat have been reported [25–28]. In-depth investigations on the structural and
evolutionary characteristics and their functions in Al tolerance are still lacking.

In this work, we used the newly released genome sequence draft (IWGSC RefSeq v2.1,
version 44) to perform a comprehensive genome-wide analysis of wheat MATE family
genes. Our purpose is to reveal their structural and evolutionary characteristics, expression
profiling and potential functions involved in Al stress tolerance. Our results provided new
insights into the molecular evolution and functional characteristics of the plant MATE gene
family, which lay a foundation for the genetic improvement of crop cultivars resistant to
Al toxicity.

2. Results and Discussion
2.1. Genome-Wide Identification and Phylogenetic Analysis of Wheat MATE Gene Family

Through blast search against the Triticum aestivum genome database from WheatOmics
2.1, a total of 211 wheat MATE genes were obtained and named TaMATE1–211. The
results showed that the length of the MATE proteins was 197–642 amino acids with the
molecular weight from 21.66 to 66.29 kDa and isoelectric point from 4.98 to 9.78 (Table S1).
To obtain more information on the wheat MATE gene family, 211 wheat MATE protein
sequences were compared with 56 rice and 45 Arabidopsis MATE protein sequences and
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the phylogenetic tree was reconstructed by the Bayesian method in MEGA (Figure 1).
According to the topological structure of the Bayesian tree of three species, all proteins
were classified into four subfamilies, named Group I, II, III and IV. As expected, wheat
MATE protein family members also had the same four subfamilies, which contained 90, 77,
26 and 18 family members in Group I, II, III and IV, respectively. Since wheat and rice are
monocot plants, their MATE genes showed a close phylogenetic relationship.
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Figure 1. The Bayesian phylogenetic tree of MATE (multidrug and toxin efflux) gene family from
Triticum aestivum, Arabidopsis thaliana and Oryza sativa. Group I, II, III and IV represent four different
subfamilies.

2.2. Structural Characterisation of TaMATE Genes

The website of MEME was used to analyze the motif compositions of TaMATE genes.
As shown in Figure 2A, 10 different motifs were identified among 211 TaMATE genes. Both
Group I and Group II had the same numbers and shared motifs 7 and 9, in which the
majority of members had 9–10 motifs (a few members with four, six and eight motifs). Most
of the Group III members had 10 motifs (a few members with six motifs) while the Group
IV members only had 1–3 motifs. The motif distribution in different subfamily members
displayed certain regularity except for individual members. Motif 9 was possessed by all
subfamily members except TaMATE78, TaMATE123 and TaMATE137, indicating that motif 9
was highly conserved and might play an important role in maintaining the normal structure
and function of TaMATE proteins. Except for a few short TaMATE members, Group I and
II had similar motif compositions while Group IV had the least motif species and quantity.
Compared with Group I, II and III, all Group IV members only included motifs 5, 9 and 10,
indicating that TaMATE genes might undergo obvious structural variations and functional
disproportionation. In particular, the citrate exuding motif (CEM) in the TaMATEs was
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found to play an important role in the citrate exclusion to reduce Al toxicity [28]. Interest-
ingly, only six TaMATEs (TaMATE4, TaMATE9, TaMATE15, TaMATE74, TaMATE85 and
TaMATE93) from the Group IV subfamily contained CEM. This suggests that these TaMATE
genes might have undergone evolutionary selection to adapt to Al stress, and the CEM
variation might occur after the differentiation of the TaMATE gene subfamily.

We further analysed the structure characteristics of 211 TaMATE genes in wheat. The
members of exon-intron exhibited a large change in different subfamilies (Figure 2B). Group
I and B members had the same number of exons, and most members had 6–8 exons (a
few members with one, two, three, five, or nine). Group IV members included 1–2 exons
while most members in Group III contained 12–14 exons (some members with 10 exons),
significantly higher than intron numbers. The intron numbers of different TaMATE genes
were diverse, except for three and 20 TaMATE genes in Group I; Group III had no introns,
and the remaining 188 TaMATE had different numbers of introns. It is known that the
function of genes could be caused by amino acid alterations by substitutions and/or
exon-intron structure [29]. Our results indicate that the motif and exon-intron structure in
different TaMATE subfamily members were diverse while those from the same TaMATE
subfamily were similar. These suggest that functional differentiation of different TaMATE
subfamily genes could be accompanied by specific regulatory motifs and exon-introns.

2.3. Chromosomal Assignment and Duplication Analysis of TaMATE Genes

We used MapInspect to analyze the chromosomal distribution of the identified 211
TaMATE genes (Figure 3). The results showed that 208 TaMATE genes could be assigned to
21 different chromosomes while the location of three genes (TaMATE209, TaMATE210 and
TaMATE211) was not determined. Among them, 70, 70 and 68 TaMATE genes were located,
respectively, on the chromosomes A, B and D, indicating their even distribution on the
three wheat subgenomes. However, the distribution of TaMATE members on individual
chromosomes was uneven. Chromosome 7 had the highest density with 54 TaMATE
members from TaMATE155 to TaMATE208, but chromosomes 1 and 6 only contained 17
TaMATE genes.

Gene duplication, especially segmental and tandem duplication, is generally consid-
ered to be one of the important driving forces in gene family expansion and functional
differentiation. As an allohexaploid species, wheat was formed by crossing three different
ancestor species, and each wheat gene generally has three homologous loci due to poly-
ploidisation [30]. As shown in Figure 3, 192 TaMATE segmental duplication genes were
found which consist of two or three copies from the A, B, and D subgenomes and account
for approximately 91% of all identified TaMATEs. Interestingly, 211 TaMATE genes, 21.33%
(45 of 211) originated from tandem duplications. In addition, the tandemly duplicated
genes had homologous copies in three subgenomes, indicating that most tandem duplica-
tion events occurred before wheat polyploidisation. In addition, the tandem duplication
may lead to an intensification of gene expression, for example, in-tandem MATE genes
showed a high overall expression under the treatment of Al3+ tolerance in maize [31]. These
results also suggested that TaMATE genes were formed by fragment repetition and tandem
duplication during the evolution process.
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Figure 2. The motif and exon-intron organisation of MATE gene family members in wheat. (A) Conservative
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motifs of TaMATE proteins. The motif information was obtained from the MEME webpage and
visualised in TBtools. (B) Exon-intron structures of MATE gene family. The untranslated regions
(UTRs) are indicated by green boxes. Yellow boxes represent exons, and the block line represents
introns. The sizes of introns and exons can be estimated by the scale at the bottom.
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Figure 3. The gene distribution and duplication events of MATE gene family members in wheat
chromosomes. The different colour lines represent the segmental duplication pairs between the
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The red marked TaMATE genes represent the tandem duplicated genes in the whole wheat genome.

2.4. Subcellular Localisation of TaMATE Proteins

The subcellular localisation of the identified TaMATE proteins was predicted by using
WoLF PSORT, Plant-mPLoc, CELLO v.2.5, UniprotKB and TargetP databases (Table S1).
Most of the TaMATEs were localised in the plasmalemma (97.16%), followed by the vacuolar
membrane (2.84%). We further performed subcellular localisation assay via transient
expression in wheat protoplast to verify the reliability of the prediction results. The specific
primers were designed (Table S2) and used to amplify the full-length coding sequences
of TaMATE85, TaMATE100 and TaMATE114 genes. Then these genes were cloned onto a
163GFP vector and transiently expressed in wheat protoplast. As shown in Figure 4, the
strong green fluorescent signals of three TaMATE genes GFP fusion proteins were observed
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in the plasmalemma, indicating that these genes were located in the plasmalemma. These
results were consistent with the website-based predictions (Table S1).
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2.5. 3D Structure, Functional Disproportionation and Coevolution Analysis of TaMATE Proteins

TaMATE1 was selected to predict the 3D structure by using AlphaFold (Figure 5).
This method produces structure predictions with accuracies approaching and enables the
rapid solution of challenging X-ray crystallography and cryo-electron microscopy structure
modelling problems, which provides insights into the functions of proteins of currently
unknown structures, such as wheat [32–34]. The predicted TaMATE 3D model contained 12
α-helices and multiple coils (Figure 5A,B), in which 1–6 and 7–12 α-helices were distributed
in N-terminal and C-terminal, respectively. Moreover, the 3D model of TaMATE contained
a central cavity located between the N and C domains. The 12 α-helices were also predicted
by the Protter website, which belonged to the transmembrane helices (Figure 5C). These
transmembrane helices’ structure and central cavity could guarantee the stable function of
TaMATE transporters.
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Figure 5. Analysis of 3D structure, functional divergence and coevolution sites in wheat TaMATE1
protein. (A) The 3D structure predicted by AlphaFold and 17 key functional divergence sites labelled
with purple. (B) The 12 sites responsible for coevolution are coloured red. Red circle represents
the central cavity of TaMATE. (C) The transmembrane helices of TaMATE predicted with Protter
webserver; 1–12 represents the 12 transmembrane helices of TaMATE.

Functional disproportionation is a way to increase the rate of protein evolution. We
used posterior probability to analyze the functional disproportionation of four TaMATE
protein subfamilies. The results showed that there was strong functional disproportiona-
tion among type I and type II among TaMATE protein subfamilies. Moreover, 72 type II
functional disproportionation sites were significantly more than 18 in type I (Figure S1),
indicating that the changes in the physicochemical properties of amino acids played a
leading role in the differentiation of TaMATE proteins. Among them, 17 functional dispro-
portionation sites shown in Figure 5A were simultaneously involved in type I and type II
functional disproportionation, and 16 functional divergence sites were located on the helix.
Our results suggest that these sites might play key roles in TaMATE domain differentiation
and contribute to forming membrane protein complexes.

Coevolution plays an important role in the evolution of plant species. The identi-
fication of coevolutionary sites in a protein family at the molecular level was of great
significance for the functional annotation, including the possible interaction between
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amino acid sites, the interaction between proteins, and the mechanism of adaptation to
time changes. In this study, 12 coevolutionary amino acid sites were identified by CAPS,
distance-sensitive coevolutionary analysis software for amino acids (Figure 5B). Six sites
were located in α-helices and others in coil, but most of them were distributed on the
surface of structures, which could benefit to improve the interactions between proteins.

2.6. Analysis of Promoter Compositions in TaMATE Genes

The structure of the promoter is very important to the expression of MATE genes.
PlantCARE was used to analyze the promoter compositions of TaMATE genes and eight
categories of cis-element were identified, including Al resistance elements, light responsive
elements, development related elements, hormone responsive elements, environmental
stress-related elements, promoter related elements, site-binding related elements and other
elements (Figure S2 and Table S3). In these elements, LTR, WUN-motif, GC-motif, ARE, TC-
rich repeats and MBS are involved in the low temperature treatment, mechanical damage,
hypoxia-inducible, anaerobic induction, stress defense and drought-induced [35–37]. In
addition, 14 categories of hormone responsive elements were identified, including P-box,
TCA-element, GARE-motif, TGA-element, TATC-box, AuxRR-core, ERE, TGACG-motif,
CGTCA-motif, and ABRE, etc. [38,39].

In the four subfamilies of TaMATE proteins, each Group II member contained more
than one copy of these cis-elements that respond to a variety of environmental stresses.
Group I and Group IV also had more than one copy of these cis-elements that were mainly
involved in response to drought and anaerobic conditions. Group III family members
contained four kinds of environmental stress response elements, mainly participating in
drought stress. This suggests that wheat MATE family genes have undergone functional
differentiation in response to different environmental stresses.

The important cis-acting element, GGN(T/g/a/C)V(C/A/g)S(C/G), was identified as
the DNA-binding sequence of ART1 (Al resistance transcription factor 1), which belongs
to a C2H2-type zinc-finger transcription factor and regulates the expression of 31 genes
(including MATE) to confer Al tolerance in rice. Receptors, such as F-box proteins, would
participate in the ART1 modification for balancing Al resistance [40]. In this study, we found
that the Al resistance element GGNVS was present in all TaMATE genes with different
numbers in four subfamilies (Figure S2 and Table S3). In particular, TaMATE74, TaMATE85
and TaMATE93 genes from Group IV contained 28, 24 and 48 GGNVS elements, respectively.
These TaMATE genes could play an important role in resistance to Al toxicity.

2.7. Transcriptional Expression Profiling of TaMATE Genes in Different Organs and in Response to
Abiotic Stresses

The transcriptional expression profiling of TaMATE genes was analysed in the root,
stem, flag leaf, spike and grain in different developmental stages by using the publicly
available transcriptome data. Of the 211 TaMATE genes, 138 genes had the expression
data and their expression patterns in different organs were shown in Figure S3. Most of
the TaMATE genes had clear differential expression in different organs, and some of them
exhibited highly tissue-specific expression, including roots, stems, leaves and spikes. For
example, TaMATE49, TaMATE100, and TaMATE114 in Group I had a higher expression
level in the root (Figure S3A), while most of the Group II members showed a higher
expression in both root and flag (Figure S3B). Five TaMATE genes (TaMATE24, TaMATE32,
TaMATE39, TaMATE123 and TaMATE137) in Group III are highly expressed in the root while
three genes (TaMATE73, TaMATE84 and TaMATE92) displayed a higher expression level
in leaf (Figure S3C). Six TaMATE genes from Group IV (TaMATE4, TaMATE9, TaMATE15,
TaMATE74, TaMATE85 and TaMATE93) had a higher expression level in both root and leaf
(Figure S3D).

To further verify the reliability of TaMATE genes in different organs, we selected nine
representative TaMATE genes from four subfamilies to perform qRT-PCR analysis (Figure 6),
including TaMATE9, TaMATE49, TaMATE85, TaMATE93, TaMATE100, TaMATE114, Ta-
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MATE137, TaMATE161 and TaMATE195. Their specific primer sequences were listed in
Table S4. The results showed that these TaMATE genes could express in five organs with
different expression levels, indicating their constitutive expression characteristics. All
nine TaMATE genes displayed an observably high expression level in the root, of which
TaMATE9, TaMATE93 and TaMATE100 were highly expressed in leaf and TaMATE85, Ta-
MATE93, TaMATE100, TaMATE114 and TaMATE161 had a higher expression level in spike.
These results had a high consistency with transcriptome data (Figures 6 and S3).
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Figure 6. qRT-PCR expression analysis of 9 TaMATE genes in root, stem, leaf, spike and grain
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The transcription expression profiling of 79 TaMATE genes with RNA-seq data in
response to abiotic stresses was investigated, including heat stress (1 and 6 h), drought
stress (1 and 6 h) and PEG treatment (2 and 12 h). The results showed that TaMATE genes
from different subfamilies displayed markedly different expression patterns in response to
various stresses (Figure S4A–D). For example, TaMATE100 and TaMATE114 from Group I
and TaMATE161 from Group II had a higher expression level under heat stress.

2.8. Transcription Expression Analysis of TaMATE Genes under Aluminum Stress

TaMATE family members have been found to participate in Al tolerance by facilitating
citrate efflux in plants. qRT-PCR was used to further reveal the transcription expression
patterns of nine TaMATE genes in Figure 7 under Al stress. The results indicated that
all genes displayed a significantly regulated expression in response to one day treatment
with AlCl3 (Figure 7A). The dynamic expression profiling of TaMATE85, TaMATE100
and TaMATE114 under Al stress showed that they had a similar expression pattern, and
generally reached the highest expression level at 12 or 6 h (Figure 7B).
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Figure 7. Transcription expression analysis of nine TaMATE genes in root and aluminum content
changes from Zhongmai 175 root tips under aluminum (Al3+) stress. (A) Transcription analysis of 9
TaMATE genes in root under aluminum stress. Nine TaMATE genes included TaMATE9, TaMATE49,
TaMATE85, TaMATE93, TaMATE100, TaMATE114, TaMATE161, TaMATE137 and TaMATE195. (B) Dy-
namic expression of three TaMATE genes under Al3+ stress, three TaMATE genes included TaMATE85,
TaMATE100 and TaMATE114. (C) Aluminum content changes of Zhongmai 175 root tips under
different times of aluminum stress measured by ICP-MS. *: 0.01 < p < 0.05, **: p < 0.01; the resulting
mean values were presented as relative units. Error bar represents Sd.
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To understand the dynamic changes of aluminum content under AlCl3 stress in
the root, ICP-MS was used to measure Al3+ content in Zhongmai 175 root tips under
different stress times. The results showed that the accumulation of Al3+ in the root tip was
significantly increased under Al stress. The highest Al3+ content after 24 h treatment of
AlCl3 reached to 8.31 × 105 ng/g, about 23 times of the control group (Figure 7C). These
results were well consistent with the dynamic changes of TaMATE85, TaMATE100 and
TaMATE114 genes under Al stress.

2.9. Molecular Docking of the Citrate Binding Sites in TaMATE Proteins

Transport studies provided concrete evidence in the plant that citrate was transported
by MATE transporter under Al stress [28]. To explore the binding poses of TaMATE to
citrate, AlphaFold modelling was used for 3D structure prediction of TaMATE proteins,
and the molecular docking of the citrate binding residues was performed by CB-dock
which is considered the best conformation [41]. Eight representative TaMATE proteins
were selected to identify the interactions between citrate and amino acid residues, includ-
ing TaMATE4, TaMATE9, TaMATE15, TaMATE74, TaMATE85 and TaMATE93 from the
Group IV subfamily, TaMATE114 from Group I subfamily, and TaMATE195 from Group II
subfamily (Table 1). These protein genes displayed a higher expression level in the roots of
wheat (Figures S3 and 7). Among the multiple binding sites predicted with Sitemap, the
best sites were selected based on the site score. The results showed that the selected sites
were located at the central cavity positioned between the N and C domains of TaMATE
transporters (Figure 8A,B).

Table 1. The amino acid sites binding citrate in different TaMATE transporters.

TaMATEs Site with Citrate *

TaMATE4 Asp (38), Pro (39), Ser (42), Asp (45), IIe (64), Asn (68), Tyr (193), Arg (197),
His (256), Gln (260), Gln(331)

TaMATE9 Asp(38), Pro(39), Ser (42), IIe (64), Asn (68), Tyr (193), Arg (197), Val (204),
Asp (231), His (256), Gln (260), Gln (331)

TaMATE15 Asp (38), Ser (42), Asp (45), IIe (64), Phe (67), Asn (68), Tyr (193), Arg (197),
Val (204), His (256), Gln (260), Gln (331)

TaMATE74 IIe (127), Tyr (128), Val (131), Ser (132), Thr (135), Arg (271), Asp (397), Ala
(400), Val (401), Gln (404), Phe (480), Asp (483), Gly (484), Phe (487)

TaMATE85 Lys (124), Tyr (128), Arg (356), Val (357), Val (360), Thr (361), Leu (390), Leu
(394), Phe (480), Tyr (529), Arg (533)

TaMATE93 IIe (127), Tyr (128), Val (131), Ser (132), Thr (135), Arg (271), Asp (397), Ala
(400), Val (401), Gln (404), Phe (480), Asp (483), Gly (484), Phe (487)

TaMATE114 Tyr (71), Asn (74), Tyr (75), Ser (78), Asn (100), Gln (104), Val (105), Tyr (108),
Gln (186), Tyr (190), Trp (246), Met (331)

TaMATE195 Leu (43), Gly(46), Ala(47), Gln(50), Leu(88), Asp(95), Tyr(166), Leu(169),
Gln(170), Val(173), Arg(174), Val(185), Tyr(225), Phe(310), Ser(314)

* Red marked amino acid site represent the amino acid in CEM (citrate exuding motif).

It is known that the conserved domain of citrate exuding motif (CEM) was present in
MATE proteins such as AtFRD3, OsFRDL3, ZmMATE1 and TaMATE1b [28]. When CEM
is absent, SbMATE in Sorghum bicolor would lose organic cation transport ability [13]. In
this study, we found the conserved CEM was located in TaMATE4, TaMATE9, TaMATE15,
TaMATE74, TaMATE85 and TaMATE93 with 11, 13, 12, 14, 11 and 15 citrate-binding sites,
respectively (Figure 8C). Interestingly, 12 amino acid residues (Asp38, Ser42, Asp 45,
IIe64, Phe67, Asn68, Tyr193, Arg197, Val204, His256, Gln260 and Gln331) in CEM were
found to bind citrate in TaMATE4, TaMATE9, and TaMATE15. In addition, the conserved
Tyr128 residue occurred in TaMATE74, TaMATE85 and TaMATE93, while five residues
(IIe127, Tyr128, Val131, Ser132 and Thr135) were present in both TaMATE74 and TaMATE93
(Table 1). These amino acid residues could play important roles in the citrate binding and
transportation under Al stress.
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Figure 8. The docking modes of citrate in TaMATE4, TaMATE9, TaMATE15, TaMATE74, TaMATE85,
TaMATE93, TaMATE114 and TaMATE195 transporters. (A) The binding model of citrate with
TaMATEs. (B) The binding poses of citrate in different MATE transporters. (C) The binding site of
citrate in different TaMATE transporters. The model building of 3D structure in wheat MATE protein
by AlphaFold.

In addition, a previous study found that ZmMATE2 was a major Al-tolerant QTL
without a CEM domain but showed an upregulated expression under Al exposure [42].
It should be noticed that although the complete CEM in TaMATE114 and TaMATE195
was absent, the molecular docking showed that they could bind with citrate, and 12
and 15 citrate binding amino acid residues were detected, respectively (Figure 8C). It is
possible that these amino acid residues have potential functions for citrate binding and Al
detoxification.

It is known that MATEs act as a citrate transporter mediating citrate flux into the xylem,
which would facilitate citrate efflux into the rhizosphere to form Al-citrate complexes and
chelate Al3+, thereby reducing Al toxicity [43]. In Arabidopsis, the mutant of AtMATE led
to exuding less citrate under Al stress [44]. In rice, the known MATE protein OsFRDL4
could transfer the citrate from the root to the soil at high Al treatment [45,46]. Similarly,
GsMATE in soybean and HvMATE in barley could release the citrate from the root pericycle
cells to the soil, then chelate the Al3+ to detoxify aluminium and adapt the acid soils [47,48].
Meanwhile, along with the Al3+ into the root cell under Al stress, Al-citrate complexes
could be formed, which might be transported to leaf cells by MATEs such as FeMATE2 in
buckwheat and deposited in the vacuole through Golgi [49].

2.10. A Putative Transportation Pathway of TaMATE Transporters Resistant to Al Stress in Wheat

Here we proposed a putative transportation pathway of TaMATE transporters resistant
to Al stress in wheat according to this study and previous reports (Figure 9). When subjected
to Al stress, receptor proteins perceived the external signal and activate ART1, then the
ART1 combined with the GGNVS cis-element in the upstream of the TaMATE genes coding
region to enhance TaMATEs expression, particularly in the roots and leaves. Subsequently,
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TaMATEs bond citrate by CEM and other amino acid sites to secrete citrate from root tips
to the soil, and then nontoxic Al-citrate complexes in soil were formed to chelate Al and
detoxify Al in the wheat rhizosphere. Meanwhile, once Al3+ entered into the root cells,
Al-citrate complexes could be formed, which might be transported to leaf cells by TaMATEs
and then deposited in vacuoles by Golgi transfer system, thereby protecting wheat plants
from Al toxicity.
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3. Material and Methods
3.1. Genome-Wide Identification of Wheat MATE Family Genes

Based on the published database, we downloaded 56 and 45 MATE gene family
members in Arabidopsis thaliana and Oryza sativa, respectively. Then, their protein sequences
were used as seed sequences to perform BlastP and search in WheatOmics (http://202.19
4.139.32/, accessed on 1 January 2022) and the Ensembl Plants database (http://plants.
ensembl.org/Triticum_aestivum/Info/Index, IWGSC RefSeq v2.1, version 44, accessed on
1 January 2022) and obtain wheat MATE protein sequences and the threshold E-value was
set to ≤1 × 10−5. Then, the subjected sequences were fed into the SMART (Simple Modular
Architecture Research Tool) (http://smart.embl-heidelberg.de/, accessed on 2 January
2022) website and Pfam (http://pfam.xfam.org/, accessed on 2 January 2022) database
one by one to detect whether the candidate sequence contains a conserved MATE protein
domain. Finally, all MATE protein sequences, their corresponding CDS sequences and
genome sequences identified in wheat were used for subsequent analysis.

3.2. Phylogenetic and Structure Analysis

The MATE coding sequences were obtained from the downloaded data (ftp://ftp.
ensemblgenomes.org/pub/plants/release-42/fasta) in Arabidopsis thaliana and Oryza sativa.
MUSCLE software (http://www.drive5.com/muscle/manual/, accessed on 5 January
2022) was used for amino acid (aa) alignments. A phylogenetic tree was constructed by
MEGA 6.0 software (Koichiro Tamura, Tokyo, Japan) with the Bayesian method and 1000
bootstrap tests. Gene structure was analysed by using TBtools. The Multiple Em for Motif
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Elicitation v 4.11.4 (MEME) was used to identify conserved motifs, and the maximum
number of motifs set at 10.

3.3. Chromosomal Location and Collinearity Analysis

The chromosome location of each TaMATE gene was determined by IWGSC RefSeq
v2.1 (cv. Chinese_Spring) by using Blast programs (https://blast.ncbi.nlm.nih.gov/Blast.
cgi, accessed on 3 January 2022). Their locations were mapped by the MapInspect tool
(http://mapinspect.software.informer.com/, accessed on 5 January 2022). TBtools (v1.077)
was used to do the duplication analysis of TaMATEs in wheat.

3.4. Subcellular Localisation of TaMATE Proteins

The subcellular localisation of TaMATEs was predicated by the websites of WoLF
PSORT (https://wolfpsort.hgc.jp/, accessed on 5 January 2022), Plant-mPLoc (http://
www.csbio.sjtu.edu.cn/bioinf/plant-multi/, accessed on 5 January 2022), CELLO v.2.5
(http://cello.life.nctu.edu.tw/, accessed on 5 January 2022), UniProtKB (https://www.
uniprot.org/help/uniprotkb/, accessed on 5 January 2022) and TargetP-2.0 (http://www.
cbs.dtu.dk/services/TargetP/, accessed on 5 January 2022). Then, a further subcellular
localisation assay was performed via wheat mesophyll protoplast transformation based on
the reported method [50].

3.5. Three-Dimensional (3D) Structure and Molecular Evolution Analysis of TaMATE Proteins

The 3D structure of TaMATE proteins was constructed using the AlphaFold [32–
34]. Then, editing was performed by Pymol software (version 1.7.4 Schrödinger, Warren
Lyford DeLano, New York City, NY, USA). TaMATEs protein topology was predicted by
Protter (http://wlab.ethz.ch/protter, accessed on 2 February 2022). Coevolution sites were
identified by Coevolution Analysis Protein Sequences (CAPS) software. DIVERGE v2.0
software package combined with posterior probability analysis was used to analyze the
function disproportionation between different subfamilies of the TaMATE gene family.

3.6. Identification of the Cis-Acting Elements in the TaMATE Genes

The members of TaMATE genes were unified into IWGSC gene ID, and cis-acting
elements in the 1500 bp upstream promoter regions of the identified TaMATE genes were
identified via PlantCARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/,
accessed on 15 February 2022). All of these sequences were used to identify the cis-acting
elements by the recently released Triticum aestivum genome database (IWGSC RefSeqv2.1)
with a coverage rate of 94% from GRAMENE (http://ensembl.gramene.org/, accessed on
10 February 2022).

3.7. TaMATE Gene Expression Analysis by RNA-Seq Data

The RNA-seq data of the TaMATE genes were downloaded from the expVIP web-
site (http://www.wheat-expression.com/, accessed on 2 February 2022) [51] and cluster
analysis was performed by TBtools.

3.8. Plant Materials and Al Stress Treatments

The seedlings of Elite Chinese wheat cultivar Zhongmai 175 were cultivated into two
and a half leaf stages according to the culture conditions [52]. Then seedlings were treated
with the conditions of normal and Al stress with 50 µM AlCl3. The samples from AlCl3
were collected at 0, 1, 2, 6, 12, 24, 48 (recover) h, and other treated seedlings were harvested
at 2 h. Samples were collected from three biological replicates and then frozen in liquid
nitrogen immediately.

3.9. Measurement of Total Al Content in Root

Al-treated and untreated wheat roots were dried for 3 d at 55 ◦C and then put into
a digestion tank. Pre-digesting was conducted by adding 5 mL 65% HNO3 (Suprapur,
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Merck, Darmstadt, Germany) and 2 mL H2O2 (Suprapur, Merck, Darmstadt, Germany)
to the digestion tank for 40 min at room temperature. The samples were digested by a
microwave digestion instrument (MARS, CEM Corporation, Matthews, NC, USA) for 0, 1,
2, 6, 12, 24, and 48 h. Al content (µg/g DW) was detected by using inductively coupled
mass spectrometry (ICP-MS, ELAN DRC-e, PerkinElmer, Waltham, MA, USA) based on
the method in the previous report [53].

3.10. Total RNA Extraction and qRT-PCR

Total RNA was isolated from wheat samples by using TRIzol reagent (Invitrogen,
Waltham, MA, USA) based on the manufacturers’ instructions. Qrt-RCR was carried
out using an Eco Real-time PCR system (Illumina, Los Angeles, CA, USA) with SYBR®

Premix Ex TaqTM (TaKaRa, Shiga, Japan). The primers were designed by Primer premier
5.0. Wheat Ubiquitin was used as the reference control. The relative expression levels of
TaMATE genes were analysed with the comparative threshold cycle method 2−∆∆CT [54].

3.11. Molecular Docking and Binding Site Analysis

AlphaFold was used to predict the 3D models of TaMATE, and the ligand structure was
identified in the NCBI (https://pubchem.ncbi.nlm.nih.gov/, accessed on 1 February 2022).
To understand the interactions of the selected citrate with different TaMATE transporters,
molecular docking was performed with CB-Dock (http://cao.labshare.cn/cb-dock/, ac-
cessed on 1 February 2022) [41]. A more negative docking score indicates the better binding
strength of a ligand. Then, MSA (Multiple Sequence Alignment) was used to check the
conserved binding site in CEM.

4. Conclusions

Genome-wide analysis identified 211 TaMATE genes in wheat, which were classified
into four subfamilies, respectively named Group I, II, III and IV. The TaMATE genes in the
same subfamily had similar motif and intron/exon compositions, but those in different
subfamilies showed clear differences. The segmental and tandem duplication played main
roles in the amplification of wheat MATE genes, and Type II functional disproportionation
among subfamilies was largely responsible for the differentiation of wheat MATE genes.
The promoter region of TaMATE genes contained abundant Al resistance and environmen-
tal stress-related cis-acting elements that enhance the high expression of TaMATE genes in
roots and in response to Al stress. The 3D structure modelling by AlphaFold and molecular
docking by CB-dock indicated that plasmalemma-localised TaMATE proteins could com-
bine with citrate via amino acid residues in CEM and other sites, and then release citrate out
of the root cells to chelate aluminium, thereby alleviating Al toxicity. On the other hand, the
citrate aluminium complex formed in plants might be transported to leaves by TaMATEs
and then deposited in vacuoles to reduce Al toxicity. A putative transportation pathway
of TaMATE transporters resistant to Al stress in wheat was put forward, which provides
new insights into the molecular mechanisms of the plant MATE gene family involved in Al
tolerance. Our results demonstrate that TaMATE genes have potential application values
for the genetic improvement of crop Al tolerance.
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Abbreviations

ALMT Aluminium activated malate transporter
ART1 Al resistance transporter factor1
CEM Citrate exuding motif
ICP-MS Inductively couple mass spectrometry
MATE Multidrug and toxin efflux
qRT-PCR Quantitative real-time polymerase chain reaction
SMART Simple Modular Architecture Research Tool
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