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3D deep learning versus the
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high-resolution computed
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Background: Different pathological subtypes of lung adenocarcinoma lead to

different treatment decisions and prognoses, and it is clinically important to

distinguish invasive lung adenocarcinoma from preinvasive adenocarcinoma

(adenocarcinoma in situ and minimally invasive adenocarcinoma). This study

aims to investigate the performance of the deep learning approach based on

high-resolution computed tomography (HRCT) images in the classification of

tumor invasiveness and compare it with the performances of currently available

approaches.

Methods: In this study, we used a deep learning approach based on 3D

conventional networks to automatically predict the invasiveness of

pulmonary nodules. A total of 901 early-stage non-small cell lung cancer

patients who underwent surgical treatment at Shanghai Chest Hospital

between November 2015 and March 2017 were retrospectively included and

randomly assigned to a training set (n=814) or testing set 1 (n=87). We

subsequently included 116 patients who underwent surgical treatment and

intraoperative frozen section between April 2019 and January 2020 to form

testing set 2. We compared the performance of our deep learning approach in
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predicting tumor invasiveness with that of intraoperative frozen section analysis

and human experts (radiologists and surgeons).

Results: The deep learning approach yielded an area under the receiver

operating characteristic curve (AUC) of 0.946 for distinguishing preinvasive

adenocarcinoma from invasive lung adenocarcinoma in the testing set 1, which

is significantly higher than the AUCs of human experts (P<0.05). In testing set 2,

the deep learning approach distinguished invasive adenocarcinoma from

preinvasive adenocarcinoma with an AUC of 0.862, which is higher than that

of frozen section analysis (0.755, P=0.043), senior thoracic surgeons (0.720,

P=0.006), radiologists (0.766, P>0.05) and junior thoracic surgeons (0.768,

P>0.05).

Conclusions: We developed a deep learning model that achieved comparable

performance to intraoperative frozen section analysis in determining tumor

invasiveness. The proposed method may contribute to clinical decisions

related to the extent of surgical resection.
KEYWORDS

computer-aided diagnosis, lung adenocarcinoma, intraoperative frozen section,
tumor invasiveness, artificial intelligence, non-small cell lung (NSCLC)
1 Introduction

Lung cancer ranks second in the most commonly diagnosed

cancer and remains the leading cause of cancer death worldwide

(1, 2). With the widespread implementation of low-dose

computed tomography (CT) screening and regular physical

examinations, a substantial number of early-stage lung cancers

have been detected (3). Surgical resection remains the gold

standard for early-stage lung cancer treatment, and the mode of

surgery is lobectomy (4). However, an increasing number of

studies and single-institution trials have demonstrated that

sublobar resection may yield comparable outcomes in selected

patients with early-stage non-small cell lung cancer (NSCLC) (5,

6). Sublobar resection can preserve the lung parenchyma, which is

particularly valuable for patients with poor pulmonary reserve or

those who are likely to require subsequent additional resection (5).

Therefore, sublobar resection is extremely important in the

treatment of patients with early-stage NSCLC.
, non-small cell lung

of Lung Cancer; ATS,

iratory Society; AIS,

denocarcinoma; IAC,

lung adenocarcinoma;

network; LPA, lepidic
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A consistent method has not been established to identify the

optimal candidates for sublobar resection of NSCLC with a low

likelihood of recurrence. Patients with ground-glass opacity-

dominant clinical stage IA adenocarcinomas are suitable for

sublobar resection, as confirmed by the latest clinical trial (7). In

the new multidisciplinary classification of pulmonary

adenocarcinoma by the International Association for the Study

of Lung Cancer (IASLC)/American Thoracic Society (ATS)/

European Respiratory Society (ERS), the disease-specific

survival for adenocarcinoma in situ (AIS) and minimally

invasive adenocarcinoma (MIA) are 100% or nearly 100%,

respectively, after complete resection. Invasive lung

adenocarcinoma (IAC) is more aggressive and has a worse

prognosis than AIS and MIA, suggesting that sublobar

resection is only appropriate for patients with MIA or AIS (8, 9).

Currently, there are three methods to evaluate pathological

aggressiveness and the suitability of sublobar resection in patients

with early-stage lung adenocarcinoma: preoperative biopsy, CT

imaging, and intraoperative frozen section analysis. Small lesions

are difficult to locate, while biopsy samples may not be

representative (10, 11). In addition, whether preoperative biopsy

increases the likelihood of early-stage lung cancer recurrence

remains controversial (12, 13). Intraoperative frozen section

analysis has traditionally been used to assess tumor invasiveness

and guide surgical management. However, the technique does

have certain limitations: Several studies have shown that the

accuracy and sensitivity of intraoperative frozen sections are
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relatively low for subcentimeter pulmonary nodules (14, 15).

There has been a strong focus on identifying pathological

invasiveness according to imaging findings. CT imaging can

reportedly distinguish preinvasive lung adenocarcinoma (pre-

IAC; AIS and MIA) from IAC, although the small sample sizes

and ambiguous appearances of these findings prevent its routine

adoption in clinical practice (16–20). It is therefore a great

challenge for radiologists or experts to diagnose a large number

of detected pulmonary nodules, as these methods are time-

consuming and error-prone when interpreting nodules.

Therefore, we need a more straightforward and precise method

to determine the pathological aggressiveness of all types of nodules

based on CT imaging, not just ground-glass nodules.

In recent years, artificial intelligence (AI) techniques coupled

with radiological imaging have played an essential role in

automatically predicting the tumor invasiveness of pulmonary

adenocarcinomas from CT scans (21–25). Deep learning, a

popular research area of AI, enables end-to-end models to

obtain self-learned features and achieves promising results

using input data without the need for manual feature

extraction (26). Deep learning algorithms have been widely

applied to many problems, such as lung nodule detection,

segmentation, and classification (27, 28).

The purpose of this study was to develop a computer-aided

approach to accurately and automatically discriminate the

invasiveness of lung adenocarcinomas in routine chest CT

images. We built a deep learning model and investigated the

utility of the model in predicting pathological invasiveness

among patients with early-stage lung adenocarcinoma. In

addition, we compared the performance of the deep learning

model with that of observers and intraoperative frozen section

diagnoses to determine the best method of distinguishing pre-

IAC from IAC in clinical practice.
2 Methods

2.1 Ethical considerations

This retrospective study adhered to the Declaration of

Helsinki and relevant ethical policies in China. The study

protocol was approved by the Institutional Review Board and

Ethics Committee of Shanghai Chest Hospital (No. IS2180). The

requirement for patient consent was waived because of the

retrospective study design.
2.2 Data collection

This study retrospectively reviewed the medical records of

2671 consecutive patients with NSCLC who underwent surgical

resection in Shanghai Chest Hospital between November 2015

and March 2017 to develop the training set and testing set 1. An
Frontiers in Oncology 03
additional dataset of 273 patients who underwent surgery

between April 2019 and January 2020 was separately identified

and formed an additional testing set (i.e., testing set 2). The

inclusion criteria were as follows: (1) stage 0 or IA lung

adenocarcinoma confirmed by final pathology according to the

8th Edition of the TMN Classification (29); (2) availability of

preoperative thin-section CT (0.625 mm–1.25 mm) images; and

(3) resected nodules were sent for paraffin sectioning, and the

final pathological results were available. The exclusion criteria

were as follows: (1) multiple pulmonary nodules; (2) previous

history of malignant tumor; (3) pathologically confirmed

positive surgical margin or lymph nodes; (4) incomplete

records of CT or pathology quality and (5) pulmonary nodule

with size greater than 30mm. Finally, 901 patients with early-

stage lung adenocarcinoma were enrolled and testing set 1 using

a stratified random sampling method, and 116 patients were

enrolled in the testing set 2. To compare the accuracy of

intraoperative frozen section analysis with that of artificial

intelligence-based CT image analysis, frozen section diagnoses

of the independent testing set 2 were collected (Figure 1).
2.3 CT image acquisition, classification,
and pathological evaluation

All preoperative CT scans were obtained at full inspiration to

avoid respiratory motion artifacts. Brilliance iCT and Ingenuity

(PhilipsMedical Systems, Netherlands) scanners were used to scan

CT images at an efficient dose of 120 kV tube energy and 200 mA.

All CT data were acquired in the supine position at full inspiration.

High-resolution images were acquired with a reconstruction slice

thickness of 1 mm and no overlap, and a lung window (window

width: 1500, window level: -500) was used for film reading.

For frozen section diagnosis, resected tumor tissues were

preserved in a sterile, sealed plastic bag; they were sent to the

pathology department within 5 min after resection. Essential

tumor information was recorded; one block of the largest tumor

tissue was separated from the sample and sectioned using a CM-

3050s freezing microtome (Leica, Nussloch, Germany). Before

sectioning, the tissue block was frozen at -24°C for 5 min in OCT

compound (SAKURA Tissue-Tek; Torrance, CA, USA). One or

two slices (5 µm each) were collected and placed on glass slides.

The slides were fixed in methanol/glacial acetic acid for 10–20 s

and then subjected to routine hematoxylin and eosin staining

(Figure 2). The predominant pattern was defined according to

the histologic component with the greatest percentage.

For paraffin-embedded sections, any remaining tissues that

had been collected during surgery were fixed in 10%

formaldehyde, embedded in paraffin, continuously sectioned at

5 mm, and subjected to hematoxylin and eosin staining for

postoperative pathological analysis. Final pathology was also

established via elastic fiber staining and immunohistochemical

assessment of cytokeratin 7, thyroid transcription factor-1, and
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napsin A (all antibodies from Cell Signaling Technology;

Danvers, MA, USA) in paraffin-embedded sections.

Frozen section and final pathology diagnoses came from blind

assessments by two pathologists (Y.H. and Z.S., chest pathologists

with more than 20 years of experience in pathological diagnosis)

according to the IASLC/ATS/ERS classification (8). Two

pathologists reevaluated the diagnoses to reach a consensus if a

discrepancy presented. AIS and MIA were combined to form a

low-risk group that was called pre-IAC.
2.4 Nodule labeling and segmentation

All lung nodules with nodule diameters greater than 3 mm on

each CT scan were automatically localized with 3D bounding boxes

and automatically segmented using a research tool (30) developed

by Shanghai United Imaging Intelligence Co., Ltd. A total of 1017

nodules were ultimately included as regions of interest (ROIs), and

each of them was reviewed and confirmed by at least two senior

radiologists. Supplementary Material Figure S1 illustrates the size

distribution of pre-IAC and IAC nodules on diameter.
2.5 Deep learning model construction

In the data preprocessing step, we first used the lung window

(window width: 1500, window level: -400) for CT images

normalization by Z-score standardization method. Then we

truncated the normalized intensity value into the range of

[-1,1], which means the values below -1 would be set to -1,

and the values above 1 would be set to 1. The whole equation is

defined as follows (31, 32).
Frontiers in Oncology 04
I = −1, if 
I −mean
STD

< −11, if 
I −mean
STD

> 1
I −mean
STD

, other

�

Where I refers to the CT intensity value,mean is the window

level of -400, and the STD is set as the half of window width

of 1500.

Before feeding the images into the deep learning network, we

resampled each of the CT image to a spacing of 0.2×0.2×1.0 mm

(3), extracted the nodule in a bounding box, and then resized the

nodule bounding box to a 3D path with size of 144×144×32 pixels.

Note that the bounding box was expanded by 20% to include

more surrounding lung parenchyma information. In this way, the

small nodules could be enlarged instead of occupying only a small

region in the patch. Similarly, large nodules could be shrinked so

that the box could include the whole nodule. To avoid overfitting

and increase the robustness of the deep learning network, image

augmentation, including rotation, scaling, and flipping, was

performed on each image with a probability of 0.5. Rotation

was randomly performed with an angle along an axis in a range of

−5° to 5°. The scaling factor was randomly sampled in a range

from 0.75 to 1.25. Flipping was adopted randomly along each axis.

The deep learning model was built by using a convolutional

neural network (CNN), consisting of one input block, four

downsample blocks, and one output block (Figure 1). A 3D

convolution layer with a 3×3×3 kernel filter is used as the input

block. The downsample block consists four 3D convolution

layers, each with 3×3×3 filters and a stride of 2, followed by a

batch normalization and a rectified linear unit (ReLU) layer,

respectively. After that, the output block consists two fully

connected layers followed by a ReLU layer and a softmax

function to make a decision by providing the predicted

probabilities for pre-IAC and IAC.
FIGURE 1

The flow chart of patient selection and deep learning architecture. “Conv” represents a convolution, “k” represents the kernel, and “s” denotes
the number of strides. “BN” represents the batch normalization layer. “FC” represents a fully connected layer.
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The proposed model was implemented using Python

(version = 3.7.0) based on the platform of PyTorch (version =

1.7.0), and experiments were performed on a workstation with

NVIDIA Quadro RTX 6000 24GB GPU and Intel(R) Xeon(R)

Gold 6230R CPU. Adam was used as optimizer for stochastic

gradient descent with an initial learning rate of 10-4, weight

decay of 0.01 and a batch size of 64 to update the network. The

learning rate is halved if the validation performances do not

improve during 100 epochs. To avoid potential overfitting, we

used an early stop when the learning rate drops below 10-6 or

1000 epochs were exceeded. Focal loss function was applied (33,

34). Note that the deep learning model used only the image

information where clinical features were not included.
2.6 Subcentimeter nodule classification
model construction

Considering that small nodules are more difficult to

discriminate than nodules with larger sizes, we collected

subcentimeter nodules with sizes no greater than 10 mm from

the training set, testing set 1, and testing set 2. We then trained a

specific model on the subcentimeter nodules of the training set,
Frontiers in Oncology 05
with the same training strategies used for deep learning model

construction. The performance was evaluated on the testing set 1

and testing set 2 (Figure 1).
2.7 Observer study

For human performance comparisons, two radiologists, two

junior surgeons, and two senior surgeons were recruited. They

were blinded to the clinical records and pathological results and

diagnosed all the nodules with only CT images. Each reader read

the CT images independently and classified the nodules into pre-

IAC or IAC, as with the deep learning model.
2.8 Statistical analysis

Age, sex, smoking history, surgical procedure, tumor size,

and location of each patient were analyzed. Pearson’s c2 test or

Fisher’s exact test was used to compare frequencies of categorical

variables (all continuous variables were converted to categorical

variables except for age, as shown in Table 1). The Mann-

Whitney U test was used to analyze the age between the two
FIGURE 2

Diagram of (A) current and (B) artificial intelligence procedures to determine histological invasiveness. In the current diagnostic process in
clinical use, sublobar resection is performed and intraoperative frozen sections decide the extent of surgery. In the other hand, in the workflow
of deep learning approach, extensive information could be extracted from CT images, and help with the determination of tumor invasiveness.
“GT” refers to ground truth. “DL” represents deep learing.
frontiersin.org

https://doi.org/10.3389/fonc.2022.995870
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lv et al. 10.3389/fonc.2022.995870
groups. The diagnostic performance of artificial intelligence

models, observers, and frozen section diagnoses was evaluated

by the area under the receiver operating characteristic (ROC)

curve (AUC) and other evaluation metrics, such as accuracy,

sensitivity, specificity, and Matthews correlation coefficient

(MCC). The DeLong test was performed to compare the AUC

curves of the deep learning models and observer studies and

intraoperative frozen section, and the 95% confidence interval

(95% CI) of the AUC was also assessed. In addition, the

statistical significance of the difference in accuracy between

deep learning models, observers, and frozen section diagnoses

was evaluated using Pearson’s c2. All statistical analyses

reported in this study were performed with Python (Version

3.7.0) and R (Version 4.0.2), and a P value less than 0.05 was

considered statistically significant.
Frontiers in Oncology 06
3 Results

3.1 Clinicopathological characteristics
of all nodules in pre-IAC group and
IAC group

A total of 1017 nodules (pre-IAC/IAC: 422/595) were included.

The clinicopathological characteristics are summarized in Table 1.

Significant differences were found in terms of age, sex, smoking

history, nodule diameter, and surgical type in the main set (P<

0.05). There were also significant differences between AIS/MIA and

IAC in terms of age, nodule diameter, and surgical type in the

testing set 2 (P< 0.05). Detailed information of the nodules for the

overall and subcentimeter nodule classification is provided in

Supplementary Material Table S1.
TABLE 1 Clinicopathologic characteristics of the patients in the main set (including the training set and testing set 1) and testing set 2.

Characteristic Main set Testing set 2

AIS/MIA IAC P-value AIS/MIA IAC P-value

Mean age 52 59 <0.001 53 61 <0.001

Sex <0.001 0.88

Female 276 302 32 46

Male 98 225 16 22

Smoking history <0.001 0.078

Yes 193 376 14 29

No 181 151 34 39

Diameter (cm) <0.001 <0.001

≤1.0 301 50 38 16

1.0–2.0 72 343 9 41

≥2.0 1 134 1 11

Nodule type
Solid nodule
Subsolid nodule

35
339

270
257

<0.001 0
48

28
40

<0.001

Location 0.856 0.544

RUL 128 182 17 17

RML 30 36 4 4

RLL 69 102 8 17

LUL 106 140 16 22

LLL 41 67 3 8

Surgical type <0.001 <0.001

Wedge resection 137 39 21 9

Segmentectomy 84 56 10 9

Lobectomy 153 432 17 50
front
AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; IA, invasive adenocarcinoma; RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe; LUL, left upper
lobe; LLL, left lower lobe. p-values were calculated using t-tests and Pearson’s chi-squared tests.
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3.2 Evaluation of classification
performance on all nodules

3.2.1 Deep learning model
The deep learning model was trained on 540 epochs, and

after convergence, the weights were used for testing. In Table 2,

the results show that the deep learning model achieved an AUC

of 97.9% (95% CI: 96.8-99.0) with a sensitivity of 91.8%,

specificity of 91.5% and accuracy of 91.6% on the training set,

and AUC of 0.946 (95% CI: 89.9–99.4) with a sensitivity of

86.5%, specificity of 91.4%, and accuracy of 88.5% on the testing

set 1. The AUC, sensitivity, specificity and accuracy on testing

set 2 are 0.862 (95% CI: 79.4–93.0), 73.5%, 91.7%, and 81.0%,

respectively. Note that the testing set 1 was acquired in the same

time period with training set (2015-2017), while the testing set 2

was collected 4 years later (2019-2020). This may contribute the

slightly reduced performance in testing set 2. The distribution

differences of the deep features between the main set and testing

set 2 were illustrated in Supplementary Material Figure S2.
3.2.2 Observer study with radiologists
and surgeons

For the results of testing set 1, the two radiologists achieved the

highest averaged accuracy of 83.3% and AUC of 0.809 (95% CI:

71.1–90.7), the two junior thoracic surgeons obtained a mean

accuracy of 79.9% and AUC of 0.823 (95% CI: 72.8–91.8), and

the two senior thoracic surgeons achieved amean accuracy of 74.1%

andAUC of 0.799 (95 CI: 67.5-85.8). All of the averaged AUC of the

observer studies were significantly lower than that of the deep

learning model by the DeLong test (P< 0.05). Significantly

decreased accuracy was found in the assessment of senior

thoracic surgeons than that of deep learning with Pearson’s c2 test.
For the testing set 2, the mean accuracy of radiologists,

junior thoracic surgeons, and senior thoracic surgeons is 78.4%,

75.4%, and 69.4%, separately, meanwhile, the averaged AUC of

the three observer studies is 0.776 (95 CI: 68.7-86.5), 0.768 (95

CI: 67.8-85.8) and 0.720 (95 CI: 66.3-84.7), respectively.

Significantly decreased AUC was only found in the senior

thoracic surgeons’ assessment than that of the deep learning

model (DeLong test, P<0.05). Detailed mean AUC, accuracy,

sensitivity, specificity, MCC, and F1-score of the six observers

are shown in Table 2.
3.2.3 Intraoperative frozen section analysis
Due to the availability, in this study, intraoperative frozen

section diagnosis was analyzed in the testing set 2 for

distinguishing pre-IAC from IAC in clinical practice. The

accuracy of frozen sections for overall nodules was 74.1%,

which was lower than that of the deep learning approach

(81.0%) (Table 2). Intraoperative frozen section analysis

yielded AUC values of 0.755 (95% CI: 66.3–84.7). Compared
Frontiers in Oncology 07
to frozen section analysis, the deep learning approach achieved

significantly higher AUC values at 0.862 (P<0.05) (Figure 3).

3.2.4 Evaluation of classification performance
on nodules with subcentimeter size

Nodules with subcentimeter size refer to the nodules with

sizes no greater than 10 mm. In comparison to large nodules,

they are more difficult to be differentiated between pre-IAC and

IAC due to their small size. Considering that, we particularly

repeated the above experiments for these subcentimeter

size nodules.

As shown in Table 3, the deep learning model achieved a

sensitivity of 95.6%, specificity of 93.4%, accuracy of 93.7%, and

AUC of 98.5% (95% CI: 97.3–99.6) on the training set, and a

sensitivity of 60.0%, specificity of 90.0%, accuracy of 85.7%, and

AUC of 89.3% (95% CI: 77.2–100.0) on the testing set 1. In

testing set 2, the deep learning model achieved a sensitivity of

40.0%, specificity of 97.0%, accuracy of 85.7%, and AUC of 0.646

(95% CI: 42.9–86.4).

For subcentimeter nodules, deep learning models also

yielded higher accuracies than the six observers (Table 3).

Notably, the mean sensitivities of the two radiologists were

higher than those of the artificial intelligence models in both

testing set 1 and testing set 2, at 80.0% and 50.0%, respectively.

Likewise, the accuracy of frozen sections for subcentimeter

nodules was 70.8%, lower than the accuracy of the artificial

intelligence model (Table 3). Intraoperative frozen section

analysis yielded AUC values of 0.642 (95% CI: 39.7–88.7) for

subcentimeter nodules, which is lower than that of the deep

learning approach, at 0.646 (P>0.05) (Figure 3).
4 Discussion

Accurately discriminating pre-IAC from IAC is of great

value for preoperative clinical guidance since there are

significant differences in the 5-year disease-free survival rate

between pre-IAC and IAC (9, 35). AI techniques can capture

subtle information from CT images and learn a large number of

features or deep representations of a given pulmonary nodule

without any additional clinical information. AI techniques

integrated with medical images have shown advantages in the

invasive classification of lung adenocarcinoma (23, 36, 37). For

instance, Wang et al. (21) used 886 ground-glass nodules

(GGNs) from 794 patients to predict the invasiveness of lung

adenocarcinoma using a deep learning network with an AUC of

0.941. In the clinic, the type of lung adenocarcinoma is identified

by histological examination (e.g., biopsy and surgical resection),

and diagnosis through CT image review is error-prone and time-

consuming. In our study, the deep learning model achieved good

discrimination on both testing set 1 and testing set 2 in terms of

the overall nodule size (with AUCs of 0.946 and 0.862,
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respectively). Although histological examination may still be the

gold standard, the method presented in this study provides a

convincing, non-invasive method for initial diagnosis before

surgical resection.

In this study, the deep learning approach achieved better

AUC and accuracy than observers in overall and subcentimeter

nodules. The deep learning approach achieved a significantly

higher AUC than that of human experts for overall nodules in

the testing set 2 (P<0.05). The diagnostic accuracy of well-

trained radiologists was slightly lower than that of the deep

learning model and higher than the accuracies of thoracic

surgeons. Radiologists and surgeons typically focus on visible

features such as size, solid components, lesion margin, and other

qualitative features, which might be less sensitive to the local

evidence that may be exploited by deep learning models. The low

accuracy of thoracic surgeons in distinguishing pre-IAC from

IAC may relate to the insufficient training and experience of

surgeons. Previous studies have reported that deep learning-

derived models can achieve equivalent and even higher

performance than radiologists; the results of our study support

this assertion.

Intraoperative frozen sections are a reliable and routinely used

procedure for deciding the extent of surgery (Figure 2A). This study

shows that the deep learning approach achieved comparable

performance to frozen sections in determining tumor

invasiveness, which could largely improve the current nodule

screening process using CT images. For instance, our deep

learning model might provide additional information on

suspicious nodules, and doctors could integrate this information

with patient history and clinical symptoms to guide the treatment

plan. Patients with pre-IAC nodules predicted by a deep learning

model might be more suitable for follow-up monitoring, avoiding

invasive surgery. In addition, it only takes a few minutes to detect a
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patient’s lung nodules in CT images based on AI, while

intraoperative frozen sections take hours to complete, which can

greatly reduce the patient’s waiting time. Furthermore, to our

knowledge, comparisons of the diagnostic accuracy of frozen

sections and CT-derived deep learning approaches have not yet

been reported. Qiu et al. (38) and Wang et al. (39) compared the

diagnostic accuracy of CT-based radiomics methods with that of

frozen section analysis for the pathological classification of early-

stage lung adenocarcinoma. Qiu et al. (38) reported that the AUC of

the nomogram was 0.815, and that of the frozen section analysis

was 0.670 (P=0.00095). In this study, the AUC of the deep learning

approach was 0.862 in the testing set 2 for overall nodules and 0.755

for intraoperative frozen section, which is higher than the study of

Qiu et al. (38). The study of Qiu et al. (38) classified AAH, AIS,MIA

and lepidic predominant adenocarcinoma (LPA) into pre-IAC

because of the high 5-year survival of LPA, which made it more

difficult for pathologists to distinguish LPA from other invasive

adenocarcinomas in frozen sections. This may have contributed to

the lower AUC of frozen sections in their study. The study of Wang

et al. (39) reported no significant difference in the overall diagnostic

accuracy between the radiomics method and FS (68.8% vs. 70.0%, P

= 0.836), which is consistent with the results of our study.

Clinically, many factors affect intraoperative frozen section

diagnoses, such as tumor size, sampling issues, and even nodule

density. Liu et al. (40) reported that the diagnostic accuracy of FS

for tumors smaller than 1 cm and larger than 1 cm in diameter

was 79.6% and 90.8%, respectively. Yeh et al. (41) reported an

average frozen section diagnostic accuracy of 64% (54% to 74%)

for discriminating among AIS, MIA, and invasive

adenocarcinomas by five pathologists. In this study, the

accuracies of frozen sections for overall and subcentimeter

nodules were 74.1% and 70.8%, respectively. Discrepancies

were mostly due to the underestimation of AIS and MIA. A
TABLE 2 The performance of overall nodules with various methods for predicting pathological invasiveness.

F1-score Sensitivity Specificity MCC ACC AUC

Training set

0.928 0.918 0.915 0.829 0.916 0.979 [0.968,0.990]

Testing set 1

Deep Learning Model 0.900 0.865 0.914 0.769 0.885 0.946 [0.899,0.994]

Radiologists* 0.869 0.913 0.714 0.666 0.833 0.809 [0.711,0.907]

Thoracic Surgeons (Junior)* 0.813 0.724 0.913 0.624 0.799 0.823 [0.728,0.918]

Thoracic Surgeons (Senior)*# 0.740 0.615 0.929 0.546 0.741 0.779 [0.675,0.883]

Testing set 2

Deep Learning Model 0.820 0.735 0.917 0.644 0.810 0.862 [0.794,0.930]

Radiologists 0.818 0.829 0.720 0.558 0.784 0.776 [0.687,0.865]

Thoracic Surgeons (Junior) 0.759 0.662 0.885 0.544 0.754 0.768 [0.678,0.858]

Thoracic Surgeons (Senior)* 0.675 0.551 0.896 0.463 0.694 0.720 [0.623,0.817]

Frozen Section* 0.820 0.676 0.833 0.624 0.741 0.755 [0.663,0.847]
*Significant difference found between this diagnostic method of AUC and deep learning model by the DeLong test (P<0.05).
#Significant difference found between this diagnostic method of accuracy and the deep learning model by Pearson’s c2 test (P<0.05).
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high percentage of AIS/MIA and concurrent subcentimeter

nodules may be one of the reasons for the high accuracy of

the study of Liu et al. (40). Moreover, Zhu et al. (42) analyzed

803 cases and reported that misdiagnosis by frozen sections

because of sampling error might lead to incomplete resection.

Our study results suggest that a deep learning approach could

serve as a reliable and complementary method when

pathological evaluation cannot be performed intraoperatively.
Frontiers in Oncology 09
However, this study still has several limitations. First, this is

a retrospective study conducted at a single institution and is

therefore subject to potential biases concerning patient selection,

measurements, and observers. Prospective and multicenter trials

are required in future studies. Second, intraoperative frozen

sections also aid in determining the resection margin, which is

not supported yet in the proposed deep learning approach.

Therefore, another interesting research direction for the deep
FIGURE 3

ROC curves showing the performance of the deep learning model and current methods in distinguishing pre-IAC from IAC in testing set 1 and
testing set 2. Note that the results of frozen sections as well as radiologists and surgeons do not have probabilities and they were shown as line
or dots in the figure.
TABLE 3 The performance of subcentimeter nodules (<10 mm) with various methods for predicting pathological invasiveness.

F1-score Sensitivity Specificity MCC ACC AUC

Training set

0.811 0.956 0.934 0.787 0.937 0.985 [0.973,0.996]

Testing set 1

Deep Learning Model 0.545 0.600 0.900 0.464 0.857 0.893 [0.772,1.00]

Radiologists 0.554 0.800 0.767 0.481 0.771 0.783 [0.597,0.969]

Thoracic Surgeons (Junior) 0.422 0.367 0.932 0.340 0.843 0.667 [0.430,0.904]

Thoracic Surgeons (Senior) 0.367 0.300 0.950 0.360 0.857 0.683 [0.452,0.914]

Testing set 2

Deep Learning Model 0.545 0.400 0.970 0.486 0.857 0.646 [0.429,0.864]

Radiologists 0.515 0.500 0.803 0.324 0.708 0.661 [0.422,0.900]

Thoracic Surgeons (Junior) 0.349 0.233 0.970 0.311 0.740 0.585 [0.324,0.846]

Thoracic Surgeons (Senior) 0.345 0.239 0.970 0.334 0.740 0.585 [0.324,0.846]

Frozen Section 0.500 0.467 0.818 0.297 0.708 0.642 [0.397,0.887]
Note that no significant difference was found between the AUC curves by the DeLong test (P>0.05), and no significant difference was found between the accuracies by Pearson’s c2 test
(P>0.05).
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learning approach is to estimate appropriate surgery margin in

clinical application. Third, efficient integration of the deep

learning approach into clinical workflows still needs to be

explored. Fourth, the sample size of subcentimeter nodules in

the testing set was relatively low, which may decrease the model

generalizability. Future work should include a large number of

subcentimeter nodules to improve the performance of a deep

learning approach in predicting tumor invasiveness.
5 Conclusion

We used a deep learning approach that demonstrated

plausible performance, and its ability to distinguish tumor

invasiveness was comparable to that of intraoperative frozen

section analysis. This deep learning approach has potential value

in clinically guiding surgical strategies, but it still needs to be

verified in prospective and multicenter trials.
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