
fcell-09-668131 May 31, 2021 Time: 18:25 # 1

MINI REVIEW
published: 04 June 2021

doi: 10.3389/fcell.2021.668131

Edited by:
Cornelia Brunner,

Ulm University Medical Center,
Germany

Reviewed by:
Kamalakannan Rajasekaran,

Genentech, Inc., United States
Sonika Patial,

Louisiana State University,
United States

*Correspondence:
Rudi W. Hendriks

r.hendriks@erasmusmc.nl
Odilia B. J. Corneth

o.corneth@erasmusmc.nl

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Signaling,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 15 February 2021
Accepted: 07 April 2021

Published: 04 June 2021

Citation:
Neys SFH, Hendriks RW and

Corneth OBJ (2021) Targeting
Bruton’s Tyrosine Kinase

in Inflammatory and Autoimmune
Pathologies.

Front. Cell Dev. Biol. 9:668131.
doi: 10.3389/fcell.2021.668131

Targeting Bruton’s Tyrosine Kinase in
Inflammatory and Autoimmune
Pathologies
Stefan F. H. Neys, Rudi W. Hendriks*† and Odilia B. J. Corneth*†

Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands

Bruton’s tyrosine kinase (BTK) was discovered due to its importance in B cell
development, and it has a critical role in signal transduction downstream of the
B cell receptor (BCR). Targeting of BTK with small molecule inhibitors has proven
to be efficacious in several B cell malignancies. Interestingly, recent studies reveal
increased BTK protein expression in circulating resting B cells of patients with
systemic autoimmune disease (AID) compared with healthy controls. Moreover, BTK
phosphorylation following BCR stimulation in vitro was enhanced. In addition to its
role in BCR signaling, BTK is involved in many other pathways, including pattern
recognition, Fc, and chemokine receptor signaling in B cells and myeloid cells. This
broad involvement in several immunological pathways provides a rationale for the
targeting of BTK in the context of inflammatory and systemic AID. Accordingly,
numerous in vitro and in vivo preclinical studies support the potential of BTK targeting
in these conditions. Efficacy of BTK inhibitors in various inflammatory and AID has been
demonstrated or is currently evaluated in clinical trials. In addition, very recent reports
suggest that BTK inhibition may be effective as immunosuppressive therapy to diminish
pulmonary hyperinflammation in coronavirus disease 2019 (COVID-19). Here, we review
BTK’s function in key signaling pathways in B cells and myeloid cells. Further, we discuss
recent advances in targeting BTK in inflammatory and autoimmune pathologies.

Keywords: Bruton’s tyrosine kinase (BTK), B cells, myeloid cells, inflammation, autoimmunity, small-molecule
inhibitor

INTRODUCTION

Loss of immunological tolerance associated with the activation of autoreactive B cells and their
differentiation into autoantibody-producing cells are important pathogenic features in human
systemic autoimmune disease (AID). B cell receptor (BCR) signaling is crucial for B cell activation,
survival and differentiation and, therefore, reflects a potential therapeutic target for AID. Bruton’s
tyrosine kinase (BTK) is a cytoplasmic protein belonging to the family of TEC (tyrosine kinase
expressed in hepatocellular carcinoma) kinases. BTK is renowned for its critical role in BCR
signaling and was originally identified as the gene defective in X-linked agammaglobulinemia
(XLA) patients (Tsukada et al., 1993; Vetrie et al., 1993). Based on the therapeutic benefit of the anti-
CD20 antibody rituximab to deplete mature B cells in AID, strategies were developed to discover
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selective BTK inhibitors (BTKi) for the treatment of rheumatoid
arthritis (RA; Pan et al., 2007). These BTKi were designed to
covalently and irreversibly bind BTK at the cysteine 481 residue
in the catalytic domain. Interestingly, the high potential of these
inhibitors, such as ibrutinib and acalabrutinib, to modulate BCR
signaling led to their rapid implementation in the treatment of
several B cell malignancies (Hendriks et al., 2014).

Soon after the discovery of its crucial function in BCR
signaling, the involvement of BTK in several other signaling
routes in B cells and myeloid cells was demonstrated (Table 1).
This fueled research into the effects of BTKi in the context of
inflammatory and AID by solely targeting BCR signaling or by
targeting multiple pathways in several cell types simultaneously.
The potential use of BTKi for the treatment of AID is currently
being explored in vitro, and in vivo in animal models and
clinical trials. In this review, we summarize BTK’s function in
key signaling pathways in B cells and myeloid cells, and we
discuss recent advances in targeting BTK in inflammatory and
autoimmune pathologies.

BTK SIGNALING PATHWAYS

Prosurvival Signaling in B Cells
B cell development takes place in the bone marrow. It is
characterized by the ordered rearrangement of immunoglobulin
heavy and light chain gene segments, leading to expression of a
unique BCR. The random nature of this V(D)J recombination
process inevitably generates BCRs that recognize self-antigen.
However, multiple checkpoints ensure counterselection of
these autoreactive B cells during development based on BCR
specificity (Wardemann et al., 2003). These checkpoints are
critical because autoreactive B cells, when activated, can have
multiple pathogenic functions. These include the production of
autoantibodies and pro-inflammatory cytokines, stimulation of
tertiary lymphoid organ formation and antigen presentation to
autoreactive T cells.

The survival of circulating B cells requires signals from
both BCR and B cell activating factor (BAFF) receptor
(BAFFR; Lam et al., 1997; Sasaki et al., 2004). This BCR
prosurvival signaling is antigen-independent and is referred to
as “tonic” signaling. It differs from stronger signals induced by
cognate antigen binding, leading to activation and proliferation
of B cells. BAFF-transgenic mice and mice with B cell-
specific BTK overexpression (CD19-hBtk) develop autoimmune
pathology resembling human systemic lupus erythematosus
(SLE) and primary Sjögren’s syndrome (pSS; Thien et al., 2004;
Kil et al., 2012).

B cell receptor engagement initiates intracellular signaling
that leads to the phosphorylation of spleen tyrosine kinase
(SYK; Figure 1). Subsequent recruitment of BTK to the cell
membrane enables SYK to activate BTK through phosphorylation
at Y551, followed by BTK autophosphorylation at Y223
(Rawlings et al., 1996). Active BTK can then phosphorylate
phospholipase Cγ2 (PLCγ2). The formation of this BCR
signalosome generates a Ca2+ influx and leads to activation
of multiple downstream signaling pathways and transcription

factors, including nuclear factor of activated T cells (NFAT),
extracellular signal-regulated kinase (ERK), and nuclear factor
(NF)-κB. These are crucial for B cell survival, proliferation, and
differentiation. BTK has a central role in the BCR signaling
pathway given the phenotype of XLA patients and the finding
that BTK inhibition leads to a block in downstream signaling
(Honigberg et al., 2010).

B cell activating factor is a ligand for three receptors:
transmembrane activator and CAML interactor (TACI), B cell
maturation antigen (BCMA), and BAFFR. The latter is most
important for survival of mature naïve B cells by activating the
noncanonical NF-κB pathway. Studies show that the BAFFR
also transduces its signals by crosstalk with the BCR, involving
SYK and BTK, leading to canonical NF-κB signaling (Figure 1;
Shinners et al., 2007; Schweighoffer et al., 2013).

An important co-stimulatory receptor for T cell dependent B
cell responses is CD40. Its ligand CD154 (CD40L) is expressed
by activated T cells and, next to homeostatic proliferation of the
naïve B cell pool, supports B cell differentiation and maturation
(Schwartz et al., 2014). Signaling downstream of CD40 activates
the noncanonical NF-κB pathway (Figure 1). However, BTK
is also activated (Brunner et al., 2002), and the expression
of BCR signaling proteins—including BTK—is enhanced (Kil
et al., 2012). Interestingly, BAFF stimulates CD40 expression and
CD40L co-stimulation from T cells in a BAFFR-dependent way
(Zhang et al., 2016).

Therefore, BCR/BAFFR/CD40 signaling acts in a self-
amplifying loop, both directly as prosurvival signals and
indirectly by enhancing transcription of these prosurvival
receptors and their downstream signaling molecules (Smith
and Cancro, 2003; Stadanlick et al., 2008; Yu et al., 2008;
Castro et al., 2009; Smulski and Eibel, 2018). It is hypothesized
that, in AID, a disbalance in survival signals causes escape
of autoreactive B cells from negative checkpoints. Therefore,
modulating these B cell signaling pathways simultaneously
via BTKi offers potential in targeting pathogenic B cells and
constraining overt B cell activation.

BTK Function Beyond B Cell Signaling
Pattern Recognition Receptors
Bruton’s tyrosine kinase is also implicated in signaling of
various pattern recognition receptors (PRRs), a group of
germline-encoded sensors expressed by innate and adaptive
immune cells. PRRs have a pivotal role in sensing pathogen-
and damage-associated molecular patterns and are expressed
on the cell surface, intracellularly within endosomes or in
the cytoplasm. BTK is involved in toll-like receptor (TLR)
signaling, in which it interacts with their intracellular signaling
domain and with the downstream adaptor molecules MyD88
(myeloid differentiation primary response 88) and MAL
(MyD88-adaptor-like) (Hendriks et al., 2014). Similar to the
BAFFR, TLR4 is thought to transduce signals through the
BCR (Schweighoffer et al., 2017). BTK interacts directly with
the cytoplasmic sensor NLR family pyrin domain containing
3 (NLRP3) and its adaptor ASC (apoptosis-associated speck
like protein containing a caspase recruitment domain) and
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TABLE 1 | The role of BTK in signaling pathways in various cell types.

Cell type Via Process in which BTK plays a role References

B cell BCR; TLR Cytokine production (IL-6, TNFα, IFNγ, IL-10, IL-12) Halcomb et al., 2008; Lee et al., 2008a; Corneth
et al., 2016; von Borstel et al., 2019; Torke et al.,
2020

BCR; BAFFR; TLR Proliferation, differentiation & immunoglobulin
production

Wicker and Scher, 1986; Khan et al., 1995; Di
Paolo et al., 2011; Haselmayer et al., 2019; von
Borstel et al., 2019

BCR Antigen presentation (via MHC-II) and co-stimulation
(via CD86 and CD69)

Kenny et al., 2013; Haselmayer et al., 2019

BCR Integrin-mediated adhesion of B cells to VCAM-1 and
fibronectin

Spaargaren et al., 2003; de Rooij et al., 2012

BAFFR Homeostatic B cell survival Shinners et al., 2007; Schweighoffer et al., 2013

CXCR4; CXCR5; CCR7 Chemotaxis and homing to and within lymphoid organs de Gorter et al., 2007; de Rooij et al., 2012

IL-5R Proliferation and differentiation Hitoshi et al., 1993; Sato et al., 1994; Koike et al.,
1995

Conventional DC TLR7; TLR9 IFN-β production Li et al., 2014

TLR4 DC maturation and cytokine production Kawakami et al., 2006; Natarajan et al., 2016

Plasmacytoid DC TLR9 Cytokine production (IFNα, TNFα and IL-6) and
expression of CD40, CD86, and CD69

Wang J. et al., 2014

Mast cell FcεRI Degranulation and cytokine production (IL-2, IL-3, IL-4,
TNFα, IL-6)

Hata et al., 1998; Chang et al., 2011; Iyer et al.,
2011; Soucek et al., 2011

FcγR Degranulation and cytokine production (TNFα, IL-8,
MCP-1)

Chang et al., 2011

Neutrophil GM-CSFR/TLR Maturation and function Fiedler et al., 2011

FcγR/TLR4 Degranulation, oxidative burst, pathogen engulfment &
cytokine production

Prezzo et al., 2019; Blez et al., 2020

Fpr-1 fMLP-driven Mac-1-activation and infiltration into
inflamed tissue

Gilbert et al., 2003; Volmering et al., 2016; Herter
et al., 2018

PSGL-1 E-selectin triggered activation of β2-integrin Mueller et al., 2010; Yago et al., 2010

NLRP3 Inflammasome activation and thereby IL-1β secretion Ito et al., 2015; Liu et al., 2017

TREM-1 Degranulation, oxidative burst and L-selectin shedding Stadler et al., 2017

Basophil FcεRI Degranulation and cytokine production Kneidinger et al., 2008; MacGlashan et al., 2011;
Smiljkovic et al., 2017; Haselmayer et al., 2019

Monocyte FcγR Cytokine production (TNFα, IL-6, MCP-1, IL-1β) Chang et al., 2011; Di Paolo et al., 2011; Ren et al.,
2016

Macrophage TLR2/4 Microbicidal activity (via nitric oxide (NO) production),
cytokine production (TNFα, IL-1β) and M1 polarization

Mukhopadhyay et al., 1999, 2002; Mangla et al.,
2004; Ni Gabhann et al., 2014; de Porto et al.,
2019

FcγR Cytokine production (TNFα, IL-6, IL-1β, MCP-1) Chang et al., 2011; Di Paolo et al., 2011; Hartkamp
et al., 2015

CD40 Cytokine (IL-6, IL-8, TNFα, IL-10) and NO production Mukhopadhyay et al., 1999; Hartkamp et al., 2015

DDX41 IFN-type I response Lee et al., 2015

NLRP3 Inflammasome activation and thereby IL-1β secretion Ito et al., 2015; Liu et al., 2017

M-CSFR Survival Melcher et al., 2008

Osteoclast RANK Maturation and differentiation Lee et al., 2008b; Shinohara et al., 2008

is, thus, involved in inflammasome and caspase-1 activation
and subsequent interleukin (IL)-1β and IL-18 production (Ito
et al., 2015). Engagement of triggering receptor expressed on
myeloid cells-1 (TREM-1) induces BTK activation and leads
to inflammatory responses (Ormsby et al., 2011). Last, BTK
phosphorylates DEAD-box helicase 41 (DDX41) and stimulates
its binding to dsDNA and activation of the STING (stimulator of
interferon genes) pathway (Lee et al., 2015). All these pathways
lead to downstream signaling and activation of transcription
factors, such as activator protein 1 (AP-1), NF-κB, and/or
interferon regulatory factors (IRFs), promoting differentiation,

survival, and pro-inflammatory cytokine production (Figure 1;
Weber et al., 2017).

Because BTK functions in both TLR and BCR signaling, B
cell activation with TLR ligands can lead to synergistic effects
when combined with BCR stimulation (Kenny et al., 2013). TLR
signaling via NF-κB enhances expression of BTK and BAFFR (Kil
et al., 2012; Abu-Rish et al., 2013). Hence, TLR triggering adds to
this self-amplifying loop of multiple stimuli (BCR/CD40/BAFF)
that support B cell survival. A disbalance in these signals can
result in a disturbed survival of pathogenic B cells. Therefore,
BTKi may show potential in the treatment of inflammatory
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FIGURE 1 | Role of Bruton’s tyrosine kinase (BTK) in various signaling pathways in B cells and myeloid cells. BTK is critical downstream of the B cell receptor (BCR).
The BAFF receptor (BAFFR) transduces signals by coopting the BCR. The co-stimulatory receptor CD40 also signals via both the noncanonical NF-κB pathway and
BTK. Eventually, these signaling pathways lead to the activation of downstream transcription factors—important for survival, differentiation, proliferation, and cytokine
production of B cells. BTK also functions in inflammasome activation and in signaling downstream pattern recognition receptors, including triggering receptor
expressed on myeloid cells 1 (TREM-1) and the Toll-like receptor (TLR) family. Activating FcγRs via BTK signaling, can stimulate cells to initiate cytokine production,
phagocytosis, and microbicidal activity of engulfed pathogens. FcεRs can bind IgE and are mostly expressed on mast cells and basophils. When cross-linked, these
receptors also signal via BTK, resulting in the quick release of histamines and antimicrobial peptides via degranulation. BTK is also involved in downstream signaling
of G-protein coupled receptors (GPCR), such as chemokine and cytokine receptors. E-selectin–driven engagement of PSGL-1 induces downstream signaling via
BTK to activate integrins. SYK, spleen tyrosine kinase; PLCγ2, phospholipase Cγ2; PI3K, phosphoinositide 3-kinase; ERK, extracellular signal-regulated kinase;
NF-κB, nuclear factor-κB; TRAF, tumor necrosis factor receptor-associated factor; BAFF, B cell activating factor of the tumor necrosis factor superfamily; NLRP3,
NLR family pyrin domain containing 3; ASC, apoptosis-associated speck like protein containing a caspase recruitment domain; DAP12, DNAX activation protein of
12 kDa; MyD88, myeloid differentiation primary response 88; MAL, MyD88 adaptor-like; IRF, interferon regulatory factor; DDX41, DEAD-box helicase 41; STING,
stimulator of interferon genes; IL, interleukin; IFN, interferon; MCP-1, monocyte chemoattractant protein-1; TNFα, tumor necrosis factor α; FcγR, Fcγ receptor; FcεR,
Fcε receptor; fMLP, N-Formylmethionyl-leucyl-phenylalanine; CXCL12, C-X-C-motif chemokine ligand 12; JAK, Janus kinase; PSGL-1, P-selectin glycoprotein
ligand-1; ICAM, intercellular adhesion molecule.

and AID by inhibitory effects on PRR signaling in both B
and myeloid cells.

Fc, Cytokine, and Chemokine Receptors and Integrin
Activation
Antibodies exert their function—pathogen neutralization and
opsonization—by complement activation and via Fc receptor
(FcR) signaling involving BTK (Chang et al., 2011; Fiorcari
et al., 2016; Figure 1). Activation of FcRs on myeloid cells
induces release of antimicrobial factors via degranulation, and

it stimulates de novo cytokine production, phagocytosis, and
antigen presentation. Although these tools are crucial in the
clearing of pathogens, these can be pathogenic in AID. Last, BTK
also functions in downstream signaling of chemokine receptors
(de Gorter et al., 2007), cytokine receptors (Sato et al., 1994;
Matsuda et al., 1995) and in integrin activation (Spaargaren et al.,
2003; Yago et al., 2010; Volmering et al., 2016; Herter et al., 2018).
Thus, for both B and myeloid cells, BTK is important in processes
controlling cell localization, survival, and adhesion and migration
into site of inflammation.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 June 2021 | Volume 9 | Article 668131

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-668131 May 31, 2021 Time: 18:25 # 5

Neys et al. Targeting BTK in Autoimmune Pathologies

BTK AND BTKi IN B CELL–MEDIATED
AUTOIMMUNE DISEASE

Following the production of first-line BTKi, such as ibrutinib,
second-generation (mostly covalent) inhibitors with higher
specificity, lower side effects, and their own unique properties
were developed (Estupiñán et al., 2021; von Hundelshausen and
Siess, 2021). Next to these small-molecule inhibitors, other types
of inhibitors are being investigated, such as small-interfering
RNAs targeting BTK production (Zhao et al., 2019). In this next
section, we discuss the most important and most recent advances
in the targeting of BTK in the context of inflammatory and AID.

Rheumatoid Arthritis
Bruton’s tyrosine kinase-deficiency in mice is protective in
several experimental autoimmune arthritis models (Jansson and
Holmdahl, 1993; Nyhoff et al., 2016). Protection appeared to
be largely attributable to its role in B cells although BTK may
also contribute to disease through macrophages (Horwood et al.,
2006; Ni Gabhann et al., 2014) and osteoclasts/osteoblasts (Hayer
et al., 2008; Shinohara et al., 2008). This is also evident from
animal studies in which BTKi ameliorated B cell–dependent but
also B cell–independent myeloid-mediated arthritis (Chang et al.,
2011; Di Paolo et al., 2011; Caldwell et al., 2019; Haselmayer et al.,
2019; Angst et al., 2020; Liu et al., 2021).

In human RA, dysregulated BCR signaling may lead to
aberrant B cell activation and loss of tolerance. BTK protein
and phosphorylation (pBTK) were increased in peripheral
blood B cells of anti-citrullinated protein antibody positive
RA patients (Corneth et al., 2017). These protein levels
correlated with pathogenic T cell subsets and pBTK expression
correlated with rheumatoid factor levels in circulation (Wang
et al., 2015). Furthermore, RA synovial tissue cultured with
BTKi showed decreased pro-inflammatory cytokine production
(Hartkamp et al., 2015). Together, these data suggest BTKi
may be a beneficial therapeutic option in RA. Indeed,
fenebrutinib showed efficacy at higher doses, comparable
to tumor necrosis factor (TNF)α-inhibitor adalimumab, and
reduced pro-inflammatory cytokine and autoantibody levels
(Cohen et al., 2020). However, several other studies with
BTKi showed only mild effects on disease severity, including
spebrutinib (Schafer et al., 2020), evobrutinib (NCT02784106,
NCT03233230), and tirabrutinib (NCT02626026).

Primary Sjögren’s Syndrome
In an IL-14α-driven mouse model of pSS, BTK-deficiency did
not protect against disease development (Shen et al., 2016).
However, CD19-hBtk mice develop a spontaneous pSS/SLE-like
autoimmune phenotype, including lymphocytic infiltrates in the
salivary glands (Kil et al., 2012). This phenotype is dependent
on B–T cell interaction (Corneth et al., 2016). Similarly, a
subset of patients with active pSS had increased BTK protein
and pBTK levels in circulating B cell subsets, which correlated
with numbers of infiltrating T cells in the parotid gland and
normalized following abatacept treatment (Corneth et al., 2017).
Interestingly, enhanced BTK expression was already present

in transitional and naïve B cells, which had a more activated
phenotype and showed loss of tolerance in pSS (Corneth et al.,
2017; Glauzy et al., 2017). Integrated BCR, TLR, and TACI
signaling can induce autoantibody production by transitional
B cells (Du et al., 2018). B cell–depleting studies in pSS have
yielded contradicting results, possibly due to persistence of
pathogenic B cells in the salivary glands, linked to high BAFF
levels (Hamza et al., 2012; Cornec et al., 2016; Dorner et al.,
2019). Importantly, BTK overexpression may be associated with
increased risk of lymphoma development in pSS (Duret et al.,
2019). BTKi may, therefore, be an interesting therapeutic strategy
in pSS. Currently, a phase II clinical trial with remibrutinib in pSS
is recruiting (NCT04035668).

Systemic Lupus Erythematosus
Bruton’s tyrosine kinase-deficient mice and BTKi-treated mice
are protected in a wide range of experimental models of
systemic SLE (Rip et al., 2018). Efficacy is attributed not only
to inhibition of BCR signaling—thereby reducing autoantibody
levels—but also to TLR and FcR signaling in monocytes
and macrophages, important drivers of renal damage in SLE.
BAFF transgenic and CD19-hBTK mice develop a spontaneous
pSS/SLE-like phenotype, featuring antinuclear antibodies and
immunoglobulin deposition in the kidneys (Mackay et al.,
1999; Kil et al., 2012). In SLE patients, increased BTK
expression in peripheral B cells was linked to lupus nephritis
and correlated with disease severity (Kong et al., 2018). In
a mouse model of lupus nephritis, BTKi lead to remission
(Chalmers et al., 2017). BTKi in SLE are currently being
tested in several clinical trials (NCT02537028, NCT04305197,
NCT03878303, and NCT02829541). A phase II clinical trial with
the noncovalent BTKi fenebrutinib did not meet its primary end
point (Isenberg et al., 2019) although strong immunomodulatory
effects were shown. More studies are required to ascertain
efficacy of BTKi in SLE.

Systemic Sclerosis
Systemic sclerosis (SSc) is a very heterogeneous disease of
unknown etiology. However, as >90% of patients harbor
autoantibodies, B cells are thought to play a major role in
SSc (Sakkas and Bogdanos, 2016). Genetic susceptibility studies
implicate BCR signaling in disease pathogenesis (Dieude et al.,
2009; Gourh et al., 2010; Rueda et al., 2010). Circulating
BAFF levels were increased in SSc patients (Matsushita et al.,
2007) and BAFF blockade modulated scleroderma phenotype
in a bleomycin-mediated mouse model (Matsushita et al.,
2018). In vitro treatment of SSc B cells with ibrutinib
reduced IL-6, TNFα, and SSc-specific autoantibody production
following TLR stimulation (Einhaus et al., 2020). Though further
research is needed, these results indicate BTKi may be a
therapeutic option in SSc.

Multiple Sclerosis
Multiple sclerosis (MS) is a demyelinating AID of the central
nervous system (CNS). B cells are thought to play an important
role in MS pathogenesis as shown by the clinical success of
rituximab treatment (Kinzel and Weber, 2016). In experimental
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autoimmune encephalitis, a mouse model for MS, BTKi
ameliorated disease (Torke et al., 2020). Compared with other
AID and healthy controls, MS B cells did not show increased BTK
protein expression or pBTK levels upon BCR stimulation (Torke
et al., 2020). A phase II clinical trial with evobrutinib showed
promising clinical results at the highest dose (Montalban et al.,
2019). Trials with tolebrutinib in relapsing and progressive forms
of MS are currently running (NCT04410978, NCT04410991,
and NCT04458051). As BTKi are small-molecule inhibitors,
they may be better suited in entering the CNS and reaching
pathogenic B cells than therapeutic antibodies such as rituximab
(Dolgin, 2021).

Type I Diabetes
In non-obese diabetic (NOD) mice, BTK-deficiency ameliorated
disease by increasing BCR editing, thereby reducing the number
of autoreactive BCRs, and so a loss in pathogenic autoantibodies.
However, autoreactive B cells were still able to escape selection,
and the phenotype could be restored by provision of an insulin-
specific BCR (Kendall et al., 2009; Bonami et al., 2014). In another
study, treatment of NOD mice with a SYK inhibitor delayed the
onset and progression of the anti-insulin response (Colonna et al.,
2010). These data suggest that targeting BCR signaling, and BTK
in particular, could be beneficial in diabetes patients.

Granulomatosis With Polyangiitis
In granulomatosis with polyangiitis (GPA) patients, BTK levels
were increased in peripheral B cells of patients with active
disease but not patients in remission, indicating its association
with disease activity (von Borstel et al., 2019). Newly emerging
transitional and naïve B cells were more responsive to BCR
stimulation as pBTK and pPLCγ2 stimulation ratios were
increased compared with healthy controls. In vitro incubation of
patients’ B cells with acalabrutinib reduced cytokine production
and plasma cell differentiation, although this reduction was
smaller than in B cells from healthy controls (von Borstel et al.,
2019). Nevertheless, targeting BCR signaling through BTKi could
be a new treatment option in GPA.

Pemphigus
Pemphigus and pemphigoid are AID characterized by blistering
and erosions of the skin or mucosal membranes and associated
with IgG autoantibodies targeting structural proteins in epithelia.
Therapy involves high-dose corticosteroids and rituximab, which
achieves remissions in ∼80% of patients (Bieber et al., 2021).
Because of the prominent role of autoantibodies, BTKi were
evaluated in canine pemphigus foliaceus and facilitated good
responses (Goodale et al., 2020a,b). Efficacy of BTKi is currently
evaluated in phase II (NCT02704429) and III (NCT03762265)
clinical trials.

Immune Thrombocytopenic Purpura
Immune thrombocytopenic purpura (ITP) is an AID
characterized by autoantibodies targeting thrombocytes. BTKi
showed effectivity in a mouse model (Langrish et al., 2017) and a
phase I/II clinical trial is currently ongoing (NCT03395210) with
first results indicating clinical activity (Kuter et al., 2020).

Idiopathic Pulmonary Fibrosis
Increased BTK expression was found in circulating B cells in
a fraction of patients with idiopathic pulmonary fibrosis (IPF;
Heukels et al., 2019). However, BTKi showed divergent effects
in bleomycin mouse models for pulmonary fibrosis, likely due to
off-target effects and multi-kinase inhibition (Gu et al., 2018; Sun
et al., 2020).

BTK AND BTKi BEYOND THE B CELL
COMPARTMENT

Psoriasis
Psoriasis is an autoinflammatory disease of the skin characterized
by epidermal hyperplasia and parakeratosis. Hereby, TLR-
activated myeloid cells produce cytokines critical for
differentiation of IL-17 and IL-22-producing T cells. The finding
that BTKi attenuated TLR7-driven psoriasis-like inflammation
in mice, most likely by acting on innate immune cells (Al-Harbi
et al., 2020; Nadeem et al., 2020), points to BTKi as a promising
therapeutic option.

Chronic Graft-Versus-Host Disease
Chronic graft-versus-host disease (GvHD) is a serious and life-
threatening complication of allogeneic hematopoietic stem cell
transplantation. Although primarily mediated by donor T cells,
an important role for B cells in the disease is supported by clinical
benefit of B cell depletion by rituximab. BTKi by ibrutinib could
could reverse established GvHD in various T cell-driven and
alloantibody-driven mouse models (Dubovsky et al., 2014; Schutt
et al., 2015). A phase Ib/II clinical trial with ibrutinib in active
chronic GvHD patients shows substantial clinical responses with
effects on both B and T cells (Miklos et al., 2017). Based
on the observed efficacy and acceptable safety, ibrutinib has
been FDA-approved for treatment of GvHD patients in which
prior therapy failed.

Asthma and Chronic Obstructive
Pulmonary Disease
In line with the critical role of BTK and IL-2-inducible T
cell kinase (ITK) in mast cell degranulation and of ITK in
T cell activation (Liao and Littman, 1995; Forssell et al.,
2005), ibrutinib suppressed allergic airway inflammation in mice
(Phillips et al., 2016; Nadeem et al., 2019) and blocked allergen-
induced contraction of human bronchi (Dispenza et al., 2020).
Furthermore, BTKi suppressed the alveolar changes related to
chronic obstructive pulmonary disease (COPD) progression in
mice following cigarette smoke exposure (Florence et al., 2018b),
possibly by affecting airway neutrophils. Therefore, BTK/ITK
inhibition in models of airway inflammation may affect both B,
T, and myeloid cell activation.

Atherosclerosis
Evidence was provided that BTKi targeting glycoprotein GPIb
and GPVI signal transduction in platelets blocked atherosclerotic
plaque-selective platelet aggregation but spared physiologic
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hemostasis (Busygina et al., 2018), implying that BTKi holds
therapeutic promise in atherosclerosis.

Coronavirus Disease 2019
Bruton’s tyrosine kinase has emerged as a potential therapeutic
target to dampen the hyperinflammatory response in coronavirus
disease 2019 (COVID-19). A dysregulated response by
macrophages recognizing the single-stranded RNA of SARS-
coronavirus-2 via TLRs is thought to be damaging to the host
in severe COVID-19 disease (Merad and Martin, 2020). This is
likely to involve BTK-dependent pathways including NF-κB and
NLRP3 inflammasome activation, resulting in pro-inflammatory
cytokine secretion.

Several lines of evidence suggest that BTKi may reduce
COVID-19 symptoms. First, BTKi protected against fatal lung
injury in bacterial or influenza-induced acute respiratory distress
syndrome mouse models (Krupa et al., 2014; Florence et al.,
2018). Second, an unexpectedly mild course of COVID-19 was
seen in XLA patients (Miloševiæ et al., 2020; Quinti et al., 2020;
Soresina et al., 2020) and in BTKi-treated COVID-19 patients
with a B cell malignancy (Thibaud et al., 2020; Treon et al., 2020).
Third, in a prospective study of hospitalized COVID-19 patients,
acalabrutinib was administered off-label, and oxygenation
improved, lymphopenia recovered, and inflammatory parameters
normalized (Roschewski et al., 2020).

Nevertheless, very recent studies involving larger cohorts
of COVID-19 patients with chronic lymphocytic leukemia
indicated BTKi exerted only a modest protective effect and
did not impact survival (Mato et al., 2020; Scarfò et al.,
2020). A randomized phase II clinical trial of acalabrutinib
in hospitalized patients was initiated (NCT04346199) but
failed to meet the primary end point of increasing the
proportion of patients remaining alive and free of respiratory
failure. Other BTKi, including abivertinib and ibrutinib, are
currently investigated in various clinical trials (NCT04528667,
NCT04440007, and NCT04439006). These studies are expected
to reveal whether—and at what stage of the disease—BTKi may
show efficacy. Evidently, these should include the analysis of the
effects of BTKi on the virus-specific antibody response and B cell
memory formation.

CONCLUSION AND FUTURE
PERSPECTIVES

Bruton’s tyrosine kinase was discovered for its crucial role
in B cell development. Ever since then, its function in
very different signaling pathways and cell types has been
studied in health and disease. Concordantly, multiple BTKi
were developed in the context of B cell–mediated disease,
especially for B cell malignancies. This spotlight is now
extended toward AID, in which BTK plays an important
role in pro-inflammatory activation pathways in both B and
myeloid cells. This fuels further research into BTK’s exact
pathogenic role in AID. These studies remain challenging
because of developmental problems in BTK-deficient mice or off-
target effects of BTK-inhibiting compounds, such as ibrutinib,

may obscure an accurate picture of the effects of specific
BTKi. Nonetheless, preliminary studies in human AID and
animal models show potential clinical effectiveness of BTKi.
Additionally, they not only show potential in the field of AID,
but also in other diseases showing hyperinflammation, such
as COVID-19, or in which autoimmunity may not be that
prominent, including IPF.

Future research should aim at gaining more knowledge
on the pathogenic role of BTK signaling and the effects of
its inhibition in inflammatory and AID. Importantly, these
disorders often involve aberrant activation of other cell types
of the immune system, T cells in particular. BTK is normally
not expressed in T cells,1 but some of the currently available
BTKi have considerable off-target effects on signaling molecules
expressed in T cells, including TEC, ITK, Janus kinase 3
(JAK3), or lymphocyte-specific protein tyrosine kinase (LCK;
Estupiñán et al., 2021). It is attractive to explore the benefits
of BTKi that show additional specificity to these related
kinases as was observed in the treatment of human chronic
lymphocytic leukemia or GvHD in mice (Schutt et al., 2015;
Long et al., 2017). Likewise, BTK inhibition was shown to
dampen inflammatory arthritis by blocking B cell activation and
proliferation as well as by abolishing FcγR-induced production
of pro-inflammatory cytokines in macrophages (Di Paolo et al.,
2011). However, inhibitors with lower specificity also have greater
off-target effects. Ibrutinib-related adverse events, including
atrial fibrillation and hemorrhage, were not observed during
treatment with acalabrutinib, which has improved specificity
(Byrd et al., 2016). To prevent adverse events, BTKi with
higher specificity are currently being developed and tested in
the clinic (Estupiñán et al., 2021; von Hundelshausen and Siess,
2021). Effectiveness of strategies using combinational therapies
should also be explored. In treatment of B cell malignancies,
such combinational or sequential therapeutic strategies are
often focused on combinations with other inhibitors acting
on B cells [e.g., idelalisib targeting phosphoinositide 3-kinase
(PI3K; de Rooij et al., 2015; Pal Singh et al., 2018)]. In the
field of AID, however, a combination with inhibitors of T
cell activation or general immunomodulatory therapies may
yield high efficacy (Gillooly et al., 2017). Further studies are
warranted to learn which AID patient benefits most from which
therapeutic strategy.
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