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ABSTRACT

The discovery of genomic structural variants (SVs),
such as copy number variants (CNVs), is essential to
understand genetic variation of human populations
and complex diseases. Over recent years, the
advent of new high-throughput sequencing (HTS)
platforms has opened many opportunities for SVs
discovery, and a very promising approach consists
in measuring the depth of coverage (DOC) of reads
aligned to the human reference genome. At present,
few computational methods have been developed
for the analysis of DOC data and all of these
methods allow to analyse only one sample at time.
For these reasons, we developed a novel algorithm
(JointSLM) that allows to detect common CNVs
among individuals by analysing DOC data from
multiple samples simultaneously. We test
JointSLM performance on synthetic and real data
and we show its unprecedented resolution that
enables the detection of recurrent CNV regions as
small as 500 bp in size. When we apply JointSLM
to analyse chromosome one of eight genomes
with different ancestry, we identify 3000 regions
with recurrent CNVs of different frequency and
size: hierarchical clustering on these regions segre-
gates the eight individuals in two groups that reflect
their ancestry, demonstrating the potential utility of
JointSLM for population genetics studies.

INTRODUCTION

The discovery of structural variants (SVs), including copy
number variants (CNVs) and balanced rearrangements
such as inversions and translocations, is deeply changing
our understanding of the human genotype (2,1). Recently,
multiple studies have discovered an abundance of struc-
tural variations of DNA segments that range from kilo-
bases (kb) to megabases (Mb) in size (3). SVs have been
found among normal individuals (4–6) while others par-
ticipate in causing various disease states (7). For instance,
genetic variants associated with cancer often result from
rearrangements and alterations in proto-oncogenes or
tumour suppressor genes (8–10), and Alzheimer and
Parkinson’s diseases have been associated with changes
in gene dosage resulting from alterations in copy
number (11,12).
In the last decade SVs detection has been performed

with microarray technologies. The high-density CGH
arrays (aCGH) and SNP genotyping arrays afford a
level of resolution that allows CNV boundaries to be
called with relatively high precision at a genome-wide
level. However, although microarray platforms have
been successfully used to identify CNVs, their resolution
is limited by either the density of the array itself (for
aCGH) or by the density of known SNP loci (for SNP
arrays). For instance, currently available array platforms
that consist of more than 1 million probes have a lower
limit of detection of �5 to 10 kb (6,13).
Over recent years, the advent of new high-throughput

sequencing (HTS) platforms, such as Illumina’s Genome
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Analyzer and ABI’s SOLiD, have opened many oppor-
tunities for SV discovery and has enabled initiatives such
as the 1000 Genomes project (http://www.1000genomes
.org) that aims to sequence the genomes of more than
1000 individuals to extend our knowledge on human
genetic variation. HTS technologies are able to sequence
a full human genome per week generating milions of short
nucleotide sequences in a single instrument run.
The first HTS-based approach to detect SVs were based

on paired-end read mapping (PEM), which identifies
insertions and deletions by comparing the distance
between mapped read pairs to the average insert size of
the genomic library. Although this method is able to
identify deletions smaller than 1 kb with high sensitivity,
it does not allow the discovery of insertions larger than
average insert size of the library and the exact borders
of SVs in complex genomic regions rich in segmental du-
plication (14,15).
In this scenario, a very promising approach for the iden-

tification of SVs using HTS technologies consists in
measuring the depth of coverage (DOC) of reads aligned
to the human reference genome (15). At present, few com-
putational methods have been developed for the analysis
of DOC data: Campbell et al. (16) use the Circular Binary
Segmentation algorithm (17) originally developed for
genomic hybridization microarray data, Chiang et al.
(18) use a local change-point analysis technique, while
Yoon et al. (19) developed a new method based on the
significance testing that works on intervals of data points.
Although these algorithms are very sensitive and specific
in discovering SVs from DOC data, they allow to analyse
only one sample at time. The simultaneous analysis of
multiple samples can improve statistical strength in the
identification of signals shared by the data, increasing
the resolution of SVs detection. Moreover, the identifica-
tion of signals shared by multiple samples can lead to the
detection of regions of interest since disease-critical genes
are more likely to be found in regions that are common or
recurrent among samples.
For these reasons, we have developed a novel algorithm,

named JointSLM, that allows to analyse DOC signals
from multiple samples simultaneously for the identifica-
tion of common DNA events (recurrent CNVs) across
individuals. By means of simulated data, we show that
our algorithm is able to sensitively and accurately detect
common structural variants as small as 500 bp in size.
The comparison with other three state of the art
methods show that our joint model allows one to obtain
an unprecedented resolution in the detection of recurrent
CNVs. We applied JointSLM to the DOC data of eight
genomes and we demonstrate its unique advantage in
population-based studies.

MATERIALS AND METHODS

DOC

HTS technologies, such as Illumina’s Genome Analyzer
and ABI’s SOLiD, are able to generate milions of short
nucleotide sequences in a single instrument run. Assuming
the sequencing process is uniform, the number of reads

mapping to a region follows a Poisson distribution and
is expected to be proportional to the number of times the
region appears in the DNA sample: a genomic region that
has been deleted (duplicated) will have less (more) reads
mapping to it than a region not deleted (duplicated).

Following this assumption, the copy number of any
genomic region can be estimated by counting the number
of aligned reads to the reference genome. Campbell et al.
(16) and Chiang et al. (18) were the firsts to use this
approach to detect copy-number alterations between
tumour and healthy samples of the same individuals,
while more recently Yoon et al. (19) proposed to use the
read count in sequence data to look for genomic regions
that differ in copy number between normal individuals
of the 1000 genomes project.

The strategy to obtain DOC data consists in counting
the number of mapped reads in non-overlapping windows
of fixed length and then correcting each window by GC
content: Campbell et al. (16) and Chiang et al. (18) used
the logarithm of the ratio between the number of aligned
reads from a tumour sample and the match normal
sample, while Yoon et al. (19) used the number of
aligned reads every 100-bp, corrected for GC content
and median normalized to copy number 2 [median nor-
malization is defined as 2 � (read count)/(mean read count
over the genome) for each sample]. The DOC data
obtained with this approach is mathematically very
similar to the signal obtained from aCGH log2 ratios.
Deletions or duplications are identified as a decrease or
increase in coverage across multiple consecutive windows.
Moreover, like aCGH log2-ratios, DOC sequences have
noise caused by mapping errors and random fluctuations
in genome coverage. For these reasons, the events in DOC
can be detected using the same types of segmentation al-
gorithms that are used for aCGH data.

In a recent paper (20), we developed a fast and powerful
algorithm to segment aCGH data in which the log2 ratios
were modelled as a sum of two independent stochastic
processes by means of Shifting Level Model (SLM). Due
to their similarity with aCGH genomic profiles, also DOC
genomic profiles can be considered to be generated by the
sum of two processes: a biological process due to a real
variation of the number of DNA copies and a white noise
process that mimics experimental error.

Here, we introduce a novel method that extend the
SLM algorithm from the classical univariate form to a
multivariate form to segment multiple DOC signals sim-
ultaneously for the identification of common alterations.
For each sample studied in this work, we take into
consideration the logarithm in base 2 of the median-
normalized DOC data obtained as in Yoon et al. (19):
DOC was measured by counting the number of mapped
reads in 100-bp windows, correcting for GC content and
then median-normalizing to copy number 2. The 100-bp
windows were chosen because at 30x coverage, the distri-
bution of read counts is well approximated by a normal
distribution, thus permitting us to assume normality in
our mathematical modelling. DOC data from multiple
samples were modelled as a sequential processes made of
N observation each.
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The multivariate form of the SLM

We consider M sequential processes (samples) with N
observations each (100-bp windows) and we denote with
t (t=1, . . . ,M) and i (i=1, . . . ,N) the respective indexes.
We model the sequential process x= x1, . . . , xi, . . . , xN,
where xi=(xi1, . . . ,xiM)0, as the sum of two independent
stochastic processes:

xi ¼ mi þ �i; ð1Þ

mi ¼ ð1� zi�1Þ �mi�1 þ ðzi�1Þ � ð�þ �iÞ; ð2Þ

where mi=(mi1, . . . ,miM) is the vector of the unobserved
mean level and ei is the vector of white noises. The white
noise vector ei follows a multivariate normal distribution
with mean me=[0] and covariance matrix �e; zi are
random variables taking the values in [0, 1] with
probabilities Z=Pr(zi=1), 1�Z=Pr(zi=0); di are
random vectors that follow a multivariate normal distri-
bution and mi is the vector of the means.

The process mi is controlled by the process zi : when
zi�1=0, mi is the same as mi�1 and when zi�1=1, mi

takes its new value according to a multivariate Gaussian
law with mean m and covariance matrix �e independently
of mi�1:

�i � Nð0;��Þ; ð3Þ

mi � Nð�;��Þ: ð4Þ

Combining the definitions given above, the joint distri-
bution of the observations and latent variables, given the
parameters, has the following form:

pðx;m; zj�Þ ¼ pðxjm;��Þ � pðmjz; �;��Þ � pðzj�Þ

¼
YN

i¼1

pðxijmi;��Þ � �pðm0Þ

�
YN

i¼0

pðmiþ1jmi; zi; �;��Þ � pðzij�Þ;

ð5Þ

where �=(m,�m,�e,Z).
Since the DOC data are modelled as the sum of two

independent stochastic processes, the expected value of
xi is equal to m and its covariance matrix is given by the
sum of the covariances of the two processes:

E ½xi� ¼ �; ð6Þ

� ¼ �� þ��: ð7Þ

Using (7) we can introduce a different parametrization of
the SLM by defining the parameter o such that �m=o � �
and �e=(1–o) � �.

When we deal with multiple DOC signals (profiles)
simultaneously, we have to take into account some
fundamental considerations: (i) each DOC profile is
characterized by its technical noise caused by mapping
errors and random fluctuations in genome coverage and
(ii) in each DOC profile, a CNV can be present at variable
copy number in comparison with a reference genome.
For these reasons, the white noise distributions and

mean level distributions can be considered independent
across samples and we can write:

Nð0;��Þ ¼
YM

t¼1

Nð0; ��;tÞ; ð8Þ

Nð�;��Þ ¼
YM

t¼1

Nð�j; ��;tÞ: ð9Þ

where se,t and sm,t are the standard deviations of the
normal distribution of the t-th sequential process for the
white noise and the mean level distributions, respectively.
With these assumptions, from a mathematical point

of view, the random process zi is the only variable that
correlates the samples. When zi changes its value, the
mean level of each sample have a shift. In this way, our
joint model is able to detect common shift in the mean of
multiple samples.

The JointSLM algorithm

The joint distribution of Equation (5) defines an
Hidden Markov Model (HMM) of order one with state
variable qi=(mi, zi) and multivariate emission probability
(see Supplementary Data). The fact that the multivariate
SLM is an HMM allows us to make use of the several
algorithms developed for these kinds of models.
To estimate the parameters of the Multivariate SLM,

we develop a two step algorithm that follows the idea of
(20), based on dynamic programming. The inputs to the
algorithm are the sequences x={x1, . . . ,xM} to be jointly
segmented, the initial estimate of the number of states K0

and the parameters o and Z. In the first step, we estimate
the parameters mi by means of the Baum and Welch
re-estimation strategy (21), while in the second step we
estimate the best state sequence s (the zi variables, i.e.
the points of mean shift) by means of the Viterbi algo-
rithm. Finally, we convert the data from log space to
copy number space and we calculate the median of the
data that belong to each segment. A detailed description
of the algorithm and the study of the effect of the param-
eters K0, o and Z on the performance of JointSLM are
reported in Supplementary Data.

RESULTS

Synthetic data analysis

To assess the performance of JointSLM algorithm in iden-
tifying common DNA events of different size, we made an
intensive simulation based on synthetic data generated
from the GC-adjusted DOC data of chromosomes 1 and
X of the male individual NA18507. To estimate specificity,
we generated synthetic chromosomes by sampling 10 000
100-bp windows from chromosome 1 to simulate normal
copy number. To estimate sensitivity, we added to the
normal copy number chromosomes nine deletions of size
200 bp, 300 bp, 400 bp, 500 bp, 700 bp, 1 kb, 2.5 kb, 5 kb
and 10 kb sampled from chromosome X. To minimize
the sampling of random false positives we removed all
gaps, segmental duplications, telomeres/centromeres and
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regions with known CNVs from the Database of Genomic
Variants (DGV, http://projects.tcag.ca/variation/) and the
Genome Structural Variation Consortium (GSV, http://
www.sanger.ac.uk/humgen/cnv/42mio/).
We applied JointSLM with different parameter settings

on data sets made of 10, 30 and 50 normal copy number
chromosomes, and we evaluated false positive rate (FPR)
by counting the number of detected alterations. The spe-
cificity of the algorithm can be controlled by the param-
eters Z and o (see Supplementary Data): the higher are the
values of Z and o and the larger is the number of detected
false positive (FP) events. For instance, in the 10 samples
analysis (Figure 1b), when we set Z=10�3 and o=0.3
we detect an average of 9.4 FP events that range between
100 and 500 bp in size (6.0 events of 100 bp, 2.6 of 200 bp,
0.62 of 300 bp, 0.12 of 400 bp and 0.08 of 500 bp), while
using a more conservative set of parameters (Z=10�6 and
o=0.1), we detect an average of 0.91 FP events (0.66 of
100 bp, 0.22 of 200 bp, 0.02 of 300 bp and 0.01 of 400 bp).
In the analysis of the 30 samples data set (Supplementary
Figure), we detected an average of 21.6 FP events (FPR=
0.2%) with o=0.3 and Z=10�3 and an average of 9.6
(0.1%) events with o=0.1 and Z=10�6, while for the 50
sample analysis the FPR grows to 0.3% with o=0.3 and
Z=10�3 and to 0.2% with o=0.1 and Z=10�6. These
results show that the use of the most conservative set of
parameters allows us to obtain a global FPR smaller than
0.01%.
Moreover, the great majority of the FP detected by

our method in the 30 and 50 samples data set is made of
100 bp events, and in all the cases JointSLM does not
identify FP events larger than 400 bp in size.
To quantify the detection power of our algorithm, we

applied JointSLM with different parameter settings
on simulated data sets made of 10, 30 and 50 synthetic
chromosomes with common deletions inserted in a
fraction of samples f (with f that ranges between 0.1
to 1) and we estimated TPR as the fraction of correctly
detected alterations. The results of these simulations
(Figure 1a and Supplementary Figures S1 and S2) show
that the resolution of the algorithm (i.e. the ability of
identifying regions of different size) does not depend on
the number of samples analysed simultaneously but is
strongly dependent on the fraction of altered samples f.
When f is small (i.e. only 10 or 20% of the samples are

altered), JointSLM is able to correctly locate only regions
larger than 1 kb in size, while for higher values of f (larger
than 50%) the resolution of the algorithm drastically in-
creases, allowing the identification of very small alter-
ations (smaller than 1 kb). By setting o=0.1 and
Z=10�6 we were able to correctly detect regions greater
than 1 kb and shared in more than 20% of the samples,
while when we set the parameters to less conservative
values (o to 0.2/0.3 and Z set to 10�4 / 10�3), we
observed a dramatic improvement in detecting small alter-
ations: in these cases, JointSLM is able to correctly detect
common alterations smaller than 500 bp and shared
among the 20% of the samples.
In order to evaluate the ability of our algorithm in

correctly detecting the boundaries of common DNA
events (breakpoints problem), we generated synthetic

chromosomes in which common deletions are not perfect-
ly aligned but randomly shifted of n 100 bp windows (with
n that ranges from 1 to 5). The resolution of the algorithm
is not affected by these perturbations: also in this case we
were able to detect genomic events larger than 1 kb in size
with o=0.1 and Z=10�6 and smaller than 1 kb with
o=0.3 and Z=10�3 (see Supplementary Figures S3–S5).

The extensive simulation study we performed show that
the parameter o allows to control both sensitivity and
specificity, while Z is able to control only specificity and
has weak effect on sensitivity: these results suggest to
use very conservative values of Z (10�5 / 10�6) in order
to contain FP detection and tuning o to obtain the desired
level of sensitivity.

Comparison with other algorithms

To demonstrate the advantages of analysing multiple
samples at once by means of our joint model instead of
using single sample models, we compared the performance
of JointSLM with other three algorithms: the CBS (17)
and EWT (19) methods that have been already used
in the analyses of DOC data and the GLAD method
(22) previously used for the analysis of array CGH data.
To this end, we applied the three methods with default
parameter settings to the synthetic data sets of the
previous paragraph and we calculated the TPR as the
fraction of correctly detected alterations and the FPR as
the average number of FP detected in each chromosome.
To call gain and losses with CBS algorithm, we used the
same thresholds used for the JointSLM algorithm (see
Supplementary Data). The results of these analyses and
the comparison with JointSLM performance are detailed
in Figure 2.

All algorithms perform well in terms of specificity: they
detect a very small number of FB events and all the FP
identified are smaller than 500 bp in size. In terms of sen-
sitivity, our joint model outperforms the other single
sample algorithms: JointSLM is able to detect very small
alterations (200 bp) with a TPR larger than 0.8 showing
an unprecedented sensitivity in detecting CNVs, while the
other methods allow to detect only events larger than 500
bp. A more detailed study of Figure 2 shows that the
number of FP events detected by JointSLM decreases
when the number of samples analysed at once increases.
This is probably the most interesting feature of our algo-
rithm: analysing a large number of samples improves spe-
cificity without affecting sensitivity.

These results clearly suggests that the simultaneous
analysis of multiple samples with our joint model
improves the statistical strength in the identification of
small CNVs and the use of JointSLM algorithm allows
to extend the detection power of CNVs.

Real data analysis

In order to identify common CNVs among multiple
individuals, we applied JointSLM to the DOC data of
eight genomes. These included a CEU trio of European
ancestry (NA12878, NA12891 and NA12892), a YRI trio
of Yoruba Nigerian ethnicity (NA19238, NA19239 and
NA19240) that belong to 1000 Genomes project and two
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additional published genomes, including a Yoruban indi-
vidual NA18507 (23) and a Chinese individual YH (24).

To minimize type-I error and obtain a very robust set
of CNVs, we ran JointSLM using a conservative set of
parameters (K0=20, Z=10�6 o=0.1), and we identified

a total of 3000 CNV regions in chromosome 1 (for some
examples of the JointSLM segmentation see Supple-
mentary Figures S6–S9): 820 (27%) are smaller than
500 bp, 1131 (38%) ranges between 500 and 1000 bp, 760
(25%) ranges between 1 and 5 kb and 289 (10%) are larger

(a)

(b)

Figure 1. TPR and FPR estimate for different values of Z and o on synthetic data made of 10 chromosomes. Each point of the plot is obtained by
averaging the JointSLM results over 100 repeated simulations. (a) Each curve represents the TPR estimate against deletion events of different size.
In each plot are reported the curves for different values of fraction of altered samples f (with f that ranges between 0.1 and 1). (b) Each curve
represent the FPR estimate against the size of false detected events.
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than 5 kb (Table 1). All the CNVs detected in this analysis
are listed in Supplementary Table S1.
Of all these regions, 958 (32%) are shared by only one

sample, 457 (15%) by two samples, 330 (11%) by three
samples, 233 (8%) by four samples, 165 (5%) by five sam-
ples, 155 (5%) by six samples, 168 (6%) by seven samples
and 534 (18%) are present in all of the eight samples.
According to Nguyen et al. (25), we found that the CNV
regions identified by our algorithm are significantly
overrepresented close to telomeres and centromeres
(Supplementary Figure S10). Additionally, 799 of the
2180 RefSeq genes of chromosome 1 are contained or
overlap with our set of called regions.
In order to validate the genomic events detected by our

algorithm, we compared our calls with the known CNVs
in DGV version 10 and each call was considered validated
if there is any overlap of 1 bp or greater. The global val-
idation rate is about 58%, and around 43% (3255/7666)
of known CNVs were found in our call set. When we
consider called regions that ranges between 1 and 5 kb
the validation rate is around 70–80%, and goes up to
95–100% for genomic events greater than 5 kb. On the
other hands, when we take into consideration CNVs
smaller than 1 kb, the validation rate ranges between
40% and 60% (see Supplementary Data for more details).
As a further test, we compared our set of calls with a set

of common CNVs recently assessed by GSV Consortium
using high resolution array-CGH platforms. The common
CNVs were detected in 40 individuals (20 CEU Caucasian
and 20 Yoruban samples) by means of a NimbleGen tiling
array set of 42 million probes and include 748 CNV
regions for chromosome 1. We found that 25% of the
CNVs identified by JointSLM overlap with the GSV

calls (Table 1) and around 50% of the GSV calls were
present in our callset: for regions larger than 5 kb
we found that the overlap with GSV regions is around
70% (70% for both regions that ranges between 5 and
10 kb and regions larger than 10 kb), while for CNVs
smaller than 5 kb it reduces to 10–30% (35% for regions
that ranges between 1 and 5 kb and 10% for regions
smaller than 1 kb).

Lastly, we compared our set of calls with SVs detected
by PEM-based approach. The SVs of two of the indi-
viduals considered in this study (YH and NA18507)
were previously analysed by means of PEM-based
approach (23,24). To understand the differences between
JointSLM and PEM-based methods in detecting known
CNVs, we took the set of copy number variants of GSV as
a set of true positive (TP), and we determined the propor-
tion of TP identified by the two approaches. In the
samples NA18507 and YH, JointSLM was able to
identify 290 (39%) and 256 (34%) of the 748 CNV
regions of the validation set, while PEM-based methods
detected 125 (17%) and 79 (7%) (see Figure 3).

These results show that our algorithm has good sensi-
tivity with respect to PEM methods in identifying
CNVs previously detected by array-CGH. However,
there is a little overlap between our call set and the call
sets obtained with PEM approaches: for NA18507 we
found an overlap of 18% (184/996) and for individual
YH an overlap of 23% (46/194).

To understand if the discrepancy between PEM and
our calls is due to detection limits of our algorithm,
we calculated the median value of the DOC data for
each non-overlapping region identified by PEM-based
methods for both YH and NA18507. We found that

size (Kbp)

T
P

R

0.2 0.3 0.4 0.5 0.7 1 2.5 5 10
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Figure 2. TPR and FPR for JointSLM, EWT, CBS and GLAD on the synthetic chromosomes data sets. TPR is calculated as the average fraction
of correctly detected alterations in each chromosome and the FPR as the average number of FP detected in each chromosome. For JointSLM, we
report the results obtained in simulated datasets made of 10, 30 and 50 synthetic chromosomes.
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94% (811/856) and 82% (122/148) of the non-overlapping
regions identified by PEM methods in NA18507 and YH,
respectively, have a median value that ranges between 1.2
and 2.8 copies. These results suggest that the differences
between PEM and our calls are not due to detection
limits of the JointSLM algorithm but to the fact that the
PEM- and DOC-based approaches allow to detect differ-
ent classes of SVs: the discrepancy between PEM- and
DOC-specific events has been previously reported (19)
and it is explained by the fact that DOC-specific events
show a large overlap with annotated segmental
duplications (SDs), while PEM-specific events show an
enrichment with simple repeat (SR) events.

JointSLM and clustering

To demonstrate the utility of our algorithm for population
genetic analysis, we applied clustering analysis to the
matrix of the CNV regions identified by JointSLM in
chromosome 1. We performed Ward’s hierarchical clus-
tering with the aim to group both CNV regions and indi-
viduals. We used Pearson correlation coefficient for
clustering individuals and the euclidean distance for clus-
tering genomic events.

Table 2 and Figure 4 report the results of the hierarch-
ical clustering. Although no information on the identity of

the individuals was used in the analysis, the algorithm was
able to segregate the ancestry of the eight individuals in
two main clusters: the first cluster include the european
ancestry family and the chinese individual, while the
second cluster include the nigerian ancestry family and
the Yoruban individual NA18507. The clustering on the
genomic events identified seven groups of regions with
complex patterns of CNVs. In particular, we were able
to detect three clusters (A, C and E) that contain regions
with common amplifications, three clusters (B, D and F)
that contain regions with common deletions and a cluster
(G) that is made of deletions present only in the individual
NA18507.
The genomic regions grouped in cluster A, E and F

contain CNVs with high population frequency (shared
among almost all of the eight individuals), while clusters
B, C and D contain subgroups of CNVs that are primarily
shared among Yoruban ancestry or european ancestry.
As expected, the three clusters with common amplifica-
tions showed a greater enrichment of annotated SDs
compared with the clusters that contain deletions. SDs ac-
counted for 73, 63 and 54% of the total base pairs of
clusters A, C and E, while for clusters B, D and F we
found an overlap of 29, 31 and 23%, respectively.
Conversely, we observed that the clusters that contain

common deletions (B, D and F) showed a greater

Table 1. Summary statistics for the CNVs detected by JointSLM on chromosome 1

Number of samples that
share the alterations

100–500 bp 500–1000 bp 1–5 kb 5–10 kb >10 kb

1 142 (53% / 19%) 458 (33% / 9%) 318 (55% / 23%) 26 (100% / 77%) 14 (100% / 86%)
2 95 (59% / 23%) 221 (43% / 11%) 107 (73% / 48%) 14 (100% / 71%) 20 (100% / 95%)
3 109 (49% / 20%) 117 (45% / 15%) 91 (80% / 41%) 10 (100% / 80%) 3 (100% / 100%)
4 77 (58% / 19%) 98 (48% / 16%) 48 (79% / 42%) 8 (100% / 88%) 2 (100% / 50%)
5 39 (51% / 28%) 66 (48% / 6%) 45 (87% / 40%) 7 (100% / 86%) 8 (100% / 100%)
6 56 (59% / 29%) 53 (57% / 8%) 33 (79% / 48%) 5 (100% / 60%) 8 (100% / 75%)
7 75 (55% / 20%) 45 (51% / 7%) 29 (86% / 38%) 9 (100% / 67%) 10 (80% / 40%)
8 227 (51% / 14%) 73 (55% / 18%) 89 (87% / 45%) 47 (96% / 64%) 98 (95% / 62%)

Total 820 (53% / 20%) 1131 (42% / 11%) 760 (70% / 35%) 126 (98% / 71%) 163 (96% / 70%)

The number of CNVs detected by JointSLM are listed separately for different sizes and number of samples that share the alteration. In brackets are
reported the proportion of JointSLM calls that overlap (by at least 1 bp) with CNV regions in the Database of Genomic Variants (before the /) and
in the GSV validation call set (after the /).

PEM DOC
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748

1058

256

194

49

46

35

YH

PEM DOC

GSV

748

1849

290

996

125

185

68

NA18507

Figure 3. Venn diagram of the comparison between the regions called
by JointSLM, PEM-based methods and by the GSV Consortium.

Table 2. Summary statistics for the seven CNV clusters identified by

Ward’s hierarchical clustering

Cluster N Size (bp) SD (%) SR (%) RefSeq (%) Class

A 434 2 228566 73 16 34 Amp
B 653 956 547 29 5.5 44 Del
C 545 1 112 655 63 6.1 40 Amp
D 683 1 192 517 31 8.1 61 Del
E 183 718 817 54 6.5 34 Amp
F 242 1 132 458 23 6.8 46 Del
G 260 300 840 19 7.5 53 NA18507

For each cluster we listed the total number of regions Amp,
Amplification; Del, Deletion. (N) and the total size in bp. We also
reported the overlap between called regions and segmental duplications
(SD), simple repeats (SR) and with RefSeq genes (RefSeq).
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enrichment of annotated genes compared with the ampli-
fication clusters. The number of RefSeq genes that overlap
with clusters A, B and C are 128, 151 and 43, while for the
deletion clusters D, E and F we found an overlap with 236,
360 and 117 RefSeq genes, respectively.

We also studied the overlap between the CNV regions
that belong to each of the seven clusters and annotated
regions with SRs: we found that all the clusters have an
average overlap of the order of 6–8% with SR events, with
the exception of cluster A that have more than 15%.
Clusters A contain 434 amplification regions with very
complex pattern of CNVs: around 65% of the amplifica-
tions that belong to cluster A have an estimated number of
copies greater than 4.

DISCUSSION

We developed a novel algorithm that extend the univariate
SLM to the multivariate case in order to detect recurrent
shifts in the mean of multiple sequential processes. We
applied JointSLM to DOC signals obtained from high
coverage sequencing data in order to infer common
CNVs among multiple individuals.

The results obtained in simulated chromosomes show
that JointSLM correctly detects recurrent CNV regions
as small as 500 bp in size with sensitivity larger than
90%. The comparison with other state of the art
methods demonstrated the our joint model is able to
obtain an unprecedented resolution in the analysis of
DOC data (see Supplementary Data). We applied our al-
gorithm on chromosome 1 of eight genomes and we
identified 3000 regions with recurrent CNVs of different
frequency and size. We validated in silico the 3000 CNVs
regions by studying the overlap with the annotated CNVs
of the Database of Genomic Variants. We found that
more than 50% of the inferred regions overlap with
annotated CNVs and the validation rate grows up to
70–100% for regions larger than 1 kb. These results
clearly show that the use of DOC data combined with
our algorithm allows to obtain an unprecedented reso-
lution in the identification of genomic structural variants.

We also demonstrate the utility of JointSLM algorithm
for population genetics analysis by applying cluster
analysis to the inferred regions. Hierarchical clustering
applied to the samples is able to separate the eight indi-
viduals in two main clusters that reflects their ancestry,
while cluster analysis on the regions allows to identify
groups of CNVs that share structural features such as en-
richment in segmental duplications, enrichment in simple
repeats and gene content.

JointSLM is also able to analyse DOC data from one
sample at time obtaining very good results in terms of
sensitivity and specificity (see Supplementary Data).

The resolution of JointSLM strictly depends on the
signal to noise ratio (SNR) of the data (see ‘Materials
and Methods’ section): increasing the SNR of DOC data
by reducing the sequencing error rate or augmenting the
coverage of the sequencing experiments, will improve the
performance of JointSLM in detecting small shifts in
the signals.
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Figure 4. Hierarchical clustering on the estimated copy number of the
3000 CNV regions detected by JointSLM on chromosome 1 with par-
ameters Z=10�6, o=0.1 and K0=20. Each row represents a separate
CNVs region and each column a separate individual. The coloured bars
on the right of the figure represent clusters of genomic events that share
similar CNV patterns over multiple individuals.
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The JointSLM algorithm can be also used to analyse
multiple tumour samples data for the discovery of recur-
rent copy number alterations. In this case, to estimate
DNA copy numbers it is necessary to take into account
cellularity and tumoural heterogeneity and for this reason
we would need a more sophisticated approach similar to
CGHCall (26) or FastCall (27) instead of using the simple
rounding to the closest integer. Although all the analyses
performed in this article were made on sequence data from
the Illumina Genome Analyzer, the algorithm we de-
veloped is generic and can be used to analyse DOC data
produced by different HTS platforms.

AVAILABILITY

The JointSLM algorithm is implemented as an R package.
The source code includes both R and Fortran codes.
The JointSLM package and a brief manual is freely avail-
able as Supplementary Data.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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