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Introduction

The majority of children clinically diagnosed with ADHD 
continue to meet ADHD diagnostic criteria in full or in partial 
remission in adolescence and adulthood (Biederman et  al., 
2009; Cheung et  al., 2015; Faraone, Biederman, & Mick, 
2006; Karam et al., 2015; van Lieshout et al., 2016). In addi-
tion to symptoms of inattention and hyperactivity-impulsiv-
ity, adolescents and adults with ADHD typically show the 
same wide range of impairments in multiple cognitive func-
tions that also characterize children with this disorder 
(Cheung et al., 2016; Hervey, Epstein, & Curry, 2004; Kuntsi 
et al., 2010; Uebel et al., 2010). For example, deficits in exec-
utive processes, such as inhibition and working memory, and 
in non-executive processes, such as preparation-vigilance 
impairments, have been found in individuals with ADHD in 
adolescence and adulthood (Cheung et  al., 2016; Hervey 
et al., 2004; Mostert et al., 2015). The investigation of brain 
activity during cognitive tasks has further revealed wide-
spread neurophysiological impairments, such as atypical 
brain activity during error processing, attentional allocation, 
and response inhibition, in adolescents and adults with 

ADHD (Cheung et al., 2016; Groom et al., 2010; McLoughlin 
et  al., 2009; Michelini, Kitsune, Hosang, et  al., 2016; 
Woltering, Liu, Rokeach, & Tannock, 2013). The evidence of 
multiple cognitive and brain abnormalities in ADHD has 
contributed to a shift in the theoretical understanding of the 
disorder: from models that propose the existence of a single 
deficit, for example in inhibition (Barkley, 1997), as respon-
sible for the multiple cognitive impairments, to models that 
argue for multiple underlying factors and pathways to ADHD 
(Castellanos & Proal, 2012; Halperin & Schulz, 2006; 
Johnson, 2012).

Twin and family studies have consistently reported high 
genetic/familial influences and limited-to-no role of the 
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shared environment on ADHD (Burt, Larsson, Lichtenstein, 
& Klump, 2012; Faraone et  al., 2005). In childhood, the 
genetic/familial influences on ADHD also show strong 
overlap with those on cognitive impairments (Andreou 
et al., 2007; Frazier-Wood et al., 2012; Kuntsi et al., 2010; 
Wood, Asherson, van der Meere, & Kuntsi, 2010; Wood 
et  al., 2011). Sibling studies have revealed two partially 
separable familial factors underlying the structure of cogni-
tive impairments in ADHD in children, one capturing reac-
tion-time variability (RTV) and another capturing executive 
function, such as response accuracy (Kuntsi et  al., 2010) 
and working memory (Frazier-Wood et al., 2012). IQ may 
also represent a separate process, as the genetic/familial 
effects that ADHD shares with IQ are largely separate from 
those that ADHD shares with other cognitive impairments 
(Rommelse et  al., 2008; Wood et  al., 2010; Wood et  al., 
2011). Although ADHD persists in a significant number of 
individuals diagnosed in childhood, the extent to which 
these cognitive impairments show a similar etiological 
structure and share familial influences with ADHD in ado-
lescents and adults is still unknown.

In our recent follow-up study of adolescents and young 
adults with a childhood combined-type ADHD diagnosis, 
we found a separation between impairments in cognitive and 
brain function processes in relation to ADHD outcomes 
(persistence/remission) at follow up. Cognitive and neuro-
physiological measures of preparation-vigilance processes 
(e.g., RTV, omission errors [OE], event-related potentials 
[ERPs] of response preparation), error detection, and IQ 
were uniquely linked to ADHD persistence/remission at fol-
low up (Cheung et al., 2016; James et al., 2017; Michelini, 
Kitsune, Cheung, et al., 2016), as individuals with persistent 
ADHD, but not with remitted ADHD, showed impairments 
in these measures. IQ in childhood further predicted ADHD 
persistence/remission, suggesting that IQ may represent a 
moderator of outcome (Cheung et  al., 2015). In contrast, 
executive function measures (e.g., working memory and 
inhibition), despite being sensitive to impairments in ADHD 
persisters, were unrelated to ADHD outcome, as individuals 
with persistent and remitted ADHD were indistinguishable 
on these measures (Cheung et al., 2016; Michelini, Kitsune, 
Cheung, et al., 2016). Overall, we proposed that, in adoles-
cents and young adults with ADHD, cognitive-neurophysio-
logical impairments may reflect three processes: (a) markers 
of persistence/remission (e.g., preparation-vigilance mea-
sures), (b) processes that are not associated with ADHD out-
come (executive function), and (c) potential moderators of 
ADHD outcome (IQ) (Cheung et al., 2016). All three pro-
cesses were impaired in adolescents and adults with persis-
tent ADHD, suggesting a possible phenotypic separation of 
impairments in these three cognitive-neurophysiological 
processes in persistent ADHD. Yet, it remains unclear 
whether one or multiple etiological factors underlie the asso-
ciation between such impairments and the disorder, as no 

study to date has examined the etiology of multiple cogni-
tive and brain impairments in adolescent and adult ADHD.

The present study aims to investigate, for the first time, 
the etiological structure underlying cognitive-neurophysio-
logical processes in ADHD in adolescence and early adult-
hood, in our follow up of individuals from ADHD and 
control sibling pairs initially assessed in childhood 
(Andreou et al., 2007; Kuntsi et al., 2010; Wood, Asherson, 
Rijsdijk, & Kuntsi, 2009; Wood et al., 2011). In previous 
analyses at follow up, we found a broad range of impair-
ments in cognitive and brain functions in individuals with 
persistent ADHD compared to controls (Cheung et  al., 
2017; Cheung et  al., 2016; Michelini, Kitsune, Cheung, 
et al., 2016). Here, we aim to take the most comprehensive 
approach to date in examining whether one or multiple 
etiological processes underlie such impairments with per-
sistent ADHD in this age group. We predict that, in line 
with studies on cognitive impairments in children (Frazier-
Wood et al., 2012; Kuntsi et al., 2010; Wood et al., 2011), 
multiple and partially separable etiological processes 
would account for the presence of impairments in cogni-
tive and brain function in the disorder.

Method and Materials

Sample

The sample consisted of 404 participants, including 226 
participants from ADHD sibling pairs (each including one 
Diagnostic and Statistical Manual of Mental Disorders [4th 
ed.; DSM IV; American Psychiatric Association, 1994] 
ADHD proband and one affected or unaffected sibling) and 
178 participants from control sibling pairs (both without 
ADHD) who had taken part in our previous research (Chen 
et al., 2008; Kuntsi et al., 2010) (see Supplementary mate-
rial). At initial assessment (age range = 6-17 years, M = 
11.80, standard deviation [SD] = 2.96), ADHD participants 
recruited from specialist clinics and their closest-age sib-
lings were invited to participate. Control participants were 
recruited from schools. At follow up, which took place on 
average 5.8 years (SD = 1.24) after the childhood assess-
ment, 30 childhood ADHD probands were excluded for no 
longer meeting DSM-IV ADHD criteria (n = 25), not having 
combined-type ADHD in childhood (n = 3), or due to EEG 
equipment failure (n = 2). Nine siblings of ADHD probands 
were excluded as they were unaffected in childhood but met 
DSM-IV ADHD criteria at follow up (n = 3) or their diag-
nostic status could not be determined due to missing parent-
reported data on impairment (n = 6). Nine controls were 
excluded due to meeting ADHD criteria at follow up based 
on parent-reported ADHD ratings (Barkley Informant 
Rating Scale; Barkley & Murphy, 2006). The final sample 
for analyses consisted of 87 individuals with persistent 
ADHD and 100 unaffected siblings (69 full pairs, 
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49 singletons), and 169 control siblings (76 full pairs, 17 
singletons; Table 1). Among participants with persistent 
ADHD, 60% (n = 52) met criteria for the combined sub-
type, 32% (n = 28) met criteria for predominantly inatten-
tive subtype, and 8% (n = 7) met criteria for predominantly 
hyperactivity-impulsivity subtype at follow up. Written 
informed consent was obtained from all participants and the 
study was approved by the London-Surrey Borders 
Research Ethics Committee (NRES 09/H0806/58).

ADHD Diagnosis

ADHD diagnostic status in ADHD sibling pairs was 
assessed with the Diagnostic Interview for ADHD in 
Adults (DIVA; Ramos-Quiroga et al., 2019), a semistruc-
tured interview designed to evaluate the DSM-IV criteria 
for childhood and adult ADHD. Evidence of impairment 
commonly associated with ADHD was assessed with the 
Barkley’s Functional Impairment Scale (BFIS; Barkley & 
Murphy, 2006), by trained researchers, along with the 
DIVA during face-to-face interviews with parents. A sepa-
rate interview was conducted with the ADHD probands 
and their siblings. Parent-report DIVA and impairments 
were used to determine ADHD status based on DSM-IV, as 
these were validated against objective markers (cognitive-
performance and EEG measures) in this sample, whereas 
the same objective markers showed limited agreement 
with self-reported ADHD (Du Rietz et al., 2016). ADHD 
symptoms were assessed in control participants using the 
parent-rated Barkley Informant Rating Scale (Barkley & 
Murphy, 2006).

Procedure

Participants attended a single 4-hr research session (includ-
ing breaks) for IQ, digit span, and cognitive-EEG assess-
ments (Table 2). For each sibling pair in both ADHD and 
control groups, one of the siblings was administered the IQ 
and digit span assessment, followed by a battery of three 
cognitive-EEG tasks, and vice versa for the other sibling. 
This was counterbalanced by proband-sibling group. The 
three tasks in the cognitive-EEG battery were administered 
in the same order. For those prescribed stimulants (n = 52), 

a 48-hr ADHD medication-free period was required prior to 
cognitive-EEG assessments.

Electrophysiological Recording and Analysis

The EEG was recorded from a 62 channel DC-coupled 
recording system (extended 10-20 montage), using a 500 
Hz sampling rate, impedances under 10 kΩ, and FCz as the 
recording reference. The electro-oculograms (EOGs) were 
recorded from electrodes above and below the left eye and 
at the outer canthi. EEG data were analyzed using Brain 
Vision Analyzer 2.0 (Brain Products, Germany). Raw EEG 
recordings were down-sampled to 256 Hz, re-referenced to 
the average of all electrodes, and filtered using Butterworth 
band-pass filters (0.1-30 Hz, 24 dB/oct). Electrical or move-
ment artifacts were removed following visual inspection. 
Ocular artifacts were corrected using the infomax 
Independent Component Analysis (ICA) algorithm (Jung 
et al., 2000). Sections of data containing artifacts exceeding 
±100 µV or with a voltage step >50 µV were automatically 
rejected. ERPs were extracted from the CPT-OX (Cue-P3, 
CNV, NoGo-P3), arrow flanker task (N2, ERN, Pe in the 
incongruent condition), and Fast task (P3 in the baseline 
condition) following procedures used in previous analyses 
on this sample (Cheung et al., 2017; Cheung et al., 2016; 
Michelini, Kitsune, Cheung, et  al., 2016) (Supplementary 
material).

Statistical Analyses

Multivariate sibling-data model fitting.  Sibling-data model fit-
ting was accomplished by structural equation model fitting 
analyses (SEM) using the OpenMx package in R (Boker 
et al., 2011). As siblings share on average 50% of their segre-
gating genes and 100% of the common environment, we can 
decompose the variance/covariance of traits into contribu-
tions of familial influences (the combined effects of shared 
genetic and shared environmental effects) and nonfamilial 
influences (individual-specific effects and possible measure-
ment error; Cheung et al., 2012; Kuntsi et al., 2010). Sibling-
pair data allow us to derive: phenotypic correlations in each 
sibling, for example, correlation between IQ and ADHD, 
constrained across birth order; cross-sibling/within-trait 

Table 1.  Sample Demographic Information Divided by Group, With Test for Statistical Difference.

ADHD 
probands  
(n = 87)

Unaffected 
siblings  

(n = 100)
Controls  
(n = 169) p

ADHD 
probands vs. 
controls (p)

ADHD probands 
vs. unaffected 

siblings (p)

Unaffected 
siblings vs. 

controls (p)

Sex (M: F) 72:15 43:57 129:40 <.001 .21 <.001 <.001
Age 18.31 (3.03) 18.56 (3.33) 17.75 (2.17) .08 .14 .53 .03

Note. Significant differences are indicated in bold. Group differences on sex were tested via chi-square test; group differences on other measures were 
tested with regression models. Group differences between ADHD and control participants were reported in previous analyses on this sample (Cheung 
et al., 2016; Michelini, Kitsune, Cheung, et al., 2016). F = female; M = male.
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correlations, for example, correlation between Sibling 1 and 
Sibling 2 for IQ; and cross-sibling/cross-trait correlations, 
constrained such that, for example, correlations between IQ 
in Sibling 1 and ADHD in Sibling 2 equals the correlation of 
IQ in Sibling 2 and ADHD in Sibling 1. The cross-sibling/
within-trait and the cross-sibling/cross-trait correlations 
allow to estimate, respectively, the familial variance of a trait 
and the familial overlap between traits. Given the selected 
nature of this sample (selection of ADHD probands), ADHD 
status was included in all models with its parameters fixed to 
population-known values, based on previous evidence and 
consistent with our previous work (Cheung et al., 2012; Fra-
zier-Wood et al., 2012; James, Cheung, Rijsdijk, Asherson, 
& Kuntsi, 2016; Kuntsi et al., 2010): the cross-sibling/within-
trait correlation (correlation between siblings in each pair) 
was fixed to 0.40 (Chang, Lichtenstein, Asherson, & Lars-
son, 2013; Larsson, Chang, D’Onofrio, & Lichtenstein, 
2014); the familiality to 0.40 (representing 80% genetic vari-
ance in case of null shared environmental effects; Larsson 
et al., 2013); and prevalence of 5% (Willcutt, 2012; z score 
set at 1.64). For further explanation of this approach, see 
Supplementary material and Rijsdijk et al. (2005). A liability 
threshold model framework, which assumes that the liability 
of ADHD is underpinned by a normally distributed contin-
uum of risk (Rijsdijk & Sham, 2002; Rijsdijk et al., 2005), 
was used to account for the fact that ADHD was measured as 
present/absent. Model-fitting analyses were performed with 
raw data maximum likelihood estimation incorporating all 
available data points (thus allowing no listwise/pairwise 
deletion when data in sibling pairs were missing).

Preliminary analyses and variable selection.  Preliminary con-
strained correlation bivariate models between ADHD and 
22 cognitive-ERP variables extracted from our large cogni-
tive-neurophysiological battery (sensitive to ADHD-control 
differences in this sample; Cheung et  al., 2017; Cheung 
et al., 2016; Michelini, Kitsune, Cheung, et al., 2016) were 
carried out to reduce the number of variables included in 
multivariate models. This variable selection step was neces-
sary due to the limit in the number of variables that can be 
included in multivariate SEM (Kuntsi et al., 2010; Loken, 
Hettema, Aggen, & Kendler, 2014). A phenotypical associ-
ation with ADHD and an evidence of familial effects are 
prerequisites to any familial overlap between two variables. 
As such, cognitive-ERP variables were only included if 
they had (a) a phenotypic correlation with ADHD above the 
threshold of 0.20, corresponding to modest-to-large effect 
sizes (Cohen, 1988), and (b) significant cross-sibling/
within-trait correlations, indicating similarity between sib-
lings (Table S1). Following preliminary analyses, nine vari-
ables were included with ADHD status in multivariate 
models (Table S2): IQ, digit span forward (DSF), digit span 
backward (DSB); ERN (Figure S2), and congruent errors 
(CongE) from the arrow flanker task; NoGo-P3 (Figure S3) 
and OE from the CPT-OX; and mean reaction time (MRT) 

and RTV from the Fast task (baseline condition). ERN, 
NoGo-P3, and MRT were transformed to normality using 
the square root transformation, while RTV was log-trans-
formed. IQ, DSF, and DSB residuals were normally distrib-
uted. These measures were included as continuous variables. 
OE and CongE were highly skewed and could not be nor-
malized using any transformation methods. They were 
therefore modeled as ordinal using 3 and 4 equal-sized cat-
egories, respectively. Age and sex were controlled for in all 
analyses as is standard practice for family model-fitting 
studies (McGue & Bouchard, 1984), by regressing out age 
and sex effects from continuous variables (before trans-
forming to normality) and estimating age and sex effects on 
the mean for ordinal variables.

Cholesky and factor models.  A multivariate Cholesky decom-
position (Rijsdijk & Sham, 2002) was used to decompose the 
variance/covariance structure of the cognitive-ERP variables 
and ADHD into familial and nonfamilial influences. The cor-
related factors solution of this decomposition yielded familial 
and nonfamilial correlation matrices between all variables, 
which provide the degree of overlap between etiological 
influences between two variables at a time (e.g., IQ and 
ADHD). We examined the etiological factor structure under-
lying cognitive-ERP variables and ADHD in a more parsimo-
nious model, following a two-step approach employed in 
previous work (Frazier-Wood et  al., 2012; Kuntsi et  al., 
2010). First, the derived familial and nonfamilial correlations 
between the nine cognitive-ERP variables were used as input 
to two separate exploratory factor analyses (EFAs) in R to 
extract the factor structure (Supplementary material). Sepa-
rate EFAs were carried out on the familial and nonfamilial 
correlations between the nine cognitive-ERP variables. This 
allowed detection of possible differences between the famil-
ial and nonfamilial effects on the number of extracted factors 
or in how they load on variables. Three factors with an eigen-
value >1 were identified in both EFAs (Figure S1). Each fac-
tor explained >10% of the total variance in either EFA (Table 
S3). As cognitive-ERP variables mapped onto cognitive pro-
cesses which are likely to be interrelated (Jewsbury, Bowden, 
& Strauss, 2016; Kovas & Plomin, 2006), we allowed the 
extracted factors to correlate by applying an oblique (obli-
min) rotation (Gerbing & Hamilton, 1996; Widaman, 1993). 
Second, we specified the three factors, their correlations, and 
loadings (Table S3) separately for familial and nonfamilial 
influences in a confirmatory three-factor model, including 
also ADHD, using OpenMx. Familial and nonfamilial paths 
from the extracted common factors were specified for each 
variable from the factor with strongest loading in the EFAs, 
while ADHD and its fixed familial and nonfamilial influ-
ences were modeled separately (Figure 1). Familial common 
paths on DSF and DSB, as well as nonfamilial common paths 
on MRT and RTV, were constrained to be equal for model 
identification purposes. Correlation paths were specified 
among each factor loading on cognitive-ERP measures and 
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ADHD. The residual variance of cognitive-ERP variables not 
accounted for by common factors was measured by variable-
specific familial and nonfamilial paths. For comparisons with 
other models see Table S4.

Results

Phenotypic Correlations

Phenotypic correlations between cognitive-ERP variables 
and ADHD were all significant, with positive correlations 

ranging from .17 to .88 and negative correlations from −.19 
to −.39 (Table 3). The only nonsignificant correlation was 
between ERN and DSF (r

Ph
 = .12, CIs [−0.01, 0.27]). 

ADHD showed moderate negative correlations with IQ, 
DSF, DSB, ERN, NoGo-P3, and moderate positive correla-
tions with MRT, RTV, OE, and CongE.

Multivariate Cholesky Decomposition

Familial correlations of ADHD with IQ, DSB, RTV, OE, 
and CongE were significant and moderate-to-large, and 

Figure 1.  Confirmatory Factor model between cognitive-ERP variables and ADHD.
Note. Significant parameters are indicated with solid lines (p < .05) and nonsignificant parameters with dotted lines. ERP = event-related potential; cF

1-3
 = 

common familial factors; cNf
1-3

 = common nonfamilial factors; IQ = intelligence quotient; DSF = digit span forward; DSB = digit span backward; ERN = error-
related negativity amplitude from the flanker task; NoGo-P3 = P3 amplitude in the NoGo condition from the cued continuous performance test; MRT = mean 
reaction time from the fast task; RTV = reaction time variability from the fast task; OE = omission errors from the cued continuous performance test; CongE 
= errors in the congruent condition of the flanker task; sF

1-9
 = variable-specific familial influences; sNf

1-9
 = variable-specific nonfamilial influences.
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Table 3.  Phenotypic, Familial, and Nonfamilial Correlations Between Study Variables.

IQ DSF DSB ERN NGP3 MRT RTV OE CongE ADHD

Phenotypic correlations
  IQ 1  
  DSF .40

[.30, .50]
1  

  DSB 0.41
[.32, .51]

.51
[.43, .58]

1  

  ERN .16
[.04, .28]

.12
[–.00, .27]

.17
[.05, .27]

1  

  NoGo-P3 .13
[.02, .25]

.20
[.08, .28]

.18
[.07, .31]

.23
[.13, .34]

1  

  MRT –.38
[–.47, –.27]

–.19
[–.30, –.07]

–.23
[–.33, –.11]

–.24
[–.35, –.13]

–.28
[–.38, –.17]

1  

  RTV –.36
[–.45, –.26]

–.16
[–.28, –.05]

–.24
[–.35, –.13]

–.30
[–.38, –.18]

–.23
[–.34, –.12]

.88
[.85, .89]

1  

  OE –.33
[–.44, –.20]

–.18
[–.29, –.05]

–.25
[–.37, –.12]

–.36
[–.45, –.22]

–.31
[–.42, –.20]

.35
[.23, .46]

.37
[.23, .53]

1  

  CongE –.21
[–.33, –.10]

–.26
[–.37, –.14]

–.20
[–.32, –.08]

–.39
[–.49, –.27]

–.30
[–.42, –.18]

.32
[.20, .43]

.33
[.23, .45]

.37
[.21, .48]

1  

  ADHD –.37
[–.46, –.25]

–.21
[–.32, –.08]

–.27
[–.39, –.15]

–.24
[–.37, –.10]

–.25
[–.36, –.13]

.33
[.20, .44]

.42
[.29, .52]

.34
[.20, .46]

.32
[.18, .44]

1

Familial correlations
  IQ 1  
  DSF .50

[.04, .82]
1  

  DSB .58
[.32, .81]

.83
[.61, .98]

1  

  ERN .31
[–.01, .28]

0.08
[–.36, .49]

.28
[–.18, .73]

1  

  NoGo-P3 .17
[–.99, .53]

.27
[–.15, .63]

.25
[–.19, .70]

.12
[–.49, .59]

1  

  MRT –.65
[–.88, –.37]

–0.29
[–.59, .05]

–.60
[–.90, –.24]

–.51
[–.94, –.07]

–.28
[–.65, .21]

1  

  RTV –.66
[–.94, –.41]

–.26
[–.60, .10]

–.56
[–.90, –.16]

–.52
[–.97, –.05]

–.18
[–.61, .35]

.95
[.87, .99]

1  

  OE –.67
[–.98, –.29]

–.41
[–.82, –.01]

–.48
[–.95, –.02]

–.72
[–.97, –.18]

–.36
[–.79, .25]

.50
[.02, .90]

.49
[–.01, .91]

1  

  CongE –.25
[–.63, –.19]

–.23
[–.60, .27]

–.30
[–.77, .23]

–.69
[–.97, –.14]

–.45
[–.84, .20]

.40
[–.18, .82]

.52
[.30, .91]

.48
[.05, .94]

1  

  ADHD –.38
[–.63, –.09]

–.30
[–.60, .05]

–.52
[–.66, –.16]

–.35
[–.83, .14]

–.37
[–.81, .09]

.33
[–.04, .69]

.45
[.07, .82]

.60
[.13, .93]

.56
[.06, .99]

1

Nonfamilial correlations
  IQ 1  
  DSF .31

[.16, .45]
1  

  DSB .32
[.16, .46]

.32
[.17, .46]

1  

  ERN .09
[–.06, .24]

.14
[–.02, .31]

.12
[–.04, .28]

1  

  NoGo-P3 .12
[–.05, .28]

.16
[–.01, .32]

.15
[–.03, .31]

.26
[.10, .42]

1  

  MRT –.21
[–.35, –.04]

–.13
[–.29, .04]

–.05
[–.21, .12]

–.15
[–.31, .02]

–.29
[–.43, –.12]

1  

  RTV –.20
[–.35, –.03]

–.12
[–.29, .05]

–.11
[–.25, .05]

–.22
[–.37, –.06]

–.26
[–.42, –.09]

.85
[.80, .89]

1  

  OE –.13
[–.33, .06]

–.06
[–.25, .14]

–.15
[–.33, .04]

–.25
[–.43, –.03]

–.28
[–.47, –.10]

.30
[.11, .47]

.36
[.15, .51]

1  

  CongE –.20
[–.38, –.04]

–.29
[–.46, –.11]

–.17
[–.33, .00]

–.30
[–.46, –.13]

–.24
[–.43, –.07]

.30
[.15, .47]

.30
[.14, .45]

.30
[.16, .52]

1  

  ADHD –.36
[–.52, –.18]

–.13
[–.31, .05]

–.14
[–.31, .05]

–.20
[–.38, –.01]

–.20
[–.36, –.01]

.32
[.14, .49]

.40
[.22, .57]

.22
[.03, .45]

.24
[.02, .44]

1

Note. Significant correlations are indicated in bold. IQ = intelligence quotient; DSF = digit span forward; DSB = digit span backward; ERN = error-related negativity 
amplitude from the flanker task; NoGo-P3 = P3 amplitude in the NoGo condition from the cued continuous performance test; MRT = mean reaction time from the fast 
task; RTV = reaction time variability from the fast task; OE = omission errors from the cued continuous performance test; CongE = errors in the congruent condition of 
the flanker task.
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moderate but nonsignificant with DSF, ERN, NoGo-P3 
(Table 3). Nonfamilial correlations of ADHD with IQ, 
ERN, NoGo-P3, MRT, RTV, OE, and CongE were modest 
and significant, while the correlations of ADHD with DSF 
and DSB were small and nonsignificant.

Multivariate Factor Model

Three familial and three nonfamilial factors emerged from 
EFAs, explaining the association between the nine cogni-
tive-ERP variables (Figure S1). This factor structure 
informed the confirmatory factor model, which provided 
the best fit to the data (Table S4). The first familial factor 
(cF

1
) loaded onto IQ, MRT, and RTV; the second factor 

(cF
2
) onto DSF and DSB; and the third factor (cF

3
) onto 

ERN, NoGo-P3, OE, and CongE (Figure 1). The three 
familial factors accounted for most of the familial variance 
on cognitive-ERP measures, as variable-specific familial 
influences were in general low and nonsignificant, apart 
from those on DSF (0.13; 30% of familial variance) and 
NoGo-P3 (0.21; 81% of familial variance) (Table 4). The 
familial factors showed high intercorrelations and moder-
ate-to-high correlations with familial influences on ADHD 
(Figure 1).

The factor structure of nonfamilial influences resembled 
that of familial influences, except for IQ which loaded on 
the same factor capturing DSF and DSB (Figure 1). The 
majority of the nonfamilial variance of most cognitive-ERP 
measures was not explained by these three factors (cNf

1-3
), 

but by specific influences, apart from MRT and RTV which 
were more strongly influenced by a common nonfamilial 
factor (cNf

1
) (Table 4). The nonfamilial factors showed 

moderate-to-high intercorrelations and moderate correla-
tions with nonfamilial influences on ADHD. The pheno-
typic correlation between each cognitive-ERP variable and 
ADHD was explained to a similar extent by shared familial 
and nonfamilial factors (Table S5).

Discussion

This study represents the first comprehensive investigation 
to date, using a broad range of cognitive-performance and 
brain activity (EEG) measures, into the etiology underlying 
cognitive-neurophysiological impairments in ADHD that 
has persisted from childhood to adolescence and early 
adulthood. We identified three familial and three nonfamil-
ial factors underlying the association between impairments 
in these measures and ADHD. The familial factors captured 

Table 4.  Factor Structure and Standardized Familial and Nonfamilial Variance of Cognitive-ERP Measures, Also Split Up by 
Contribution of Each Factor and of Specific (Residual) Effects, With 95% Confidence Intervals in Brackets.

Total Common F1 Common F2 Common F3 Specific

Familial influences
  IQ .49 [.38, .59] .41 [.24, .57] .08 [.00, .24]
  DSF .43 [.31, .54] .30 [.20, .40] .13 [.02, .24]
  DSB .33 [.22, .43] .33 [.22, .43] .00 [.00, .00]
  ERN .17 [.02, .32] .09 [.01, .22] .08 [.00, .21]
  NoGo-P3 .26 [.11, .40] .05 [.01, .14] .21 [.08, .34]
  MRT .24 [.12, .37] .22 [.18, .34] .02 [.00, .06]
  RTV .22 [.10, .35] .22 [.10, .35] .00 [.00, .00]
  OE .30 [.10, .45] .30 [.10, .47] .00 [.00, .00]
  CongE .20 [.05, .39] .09 [.01, .22] .11 [.00, .25]
Nonfamilial influences
  IQ .51 [.41, .62] .19 [.09, .33] .32 [.19, .30]
  DSF .57 [.46, .69] .17 [.08, .30] .40 [.27, .52]
  DSB .68 [.57, .78] .20 [.09, .33] .48 [.37, .58]
  ERN .83 [.68, .98] .19 [.08, .31] .64 [.49, .80]
  NoGo-P3 .74 [.61, .89] .18 [.08, .31] .56 [.42, .72]
  MRT .76 [.63, .88] .67 [.54, .79] .10 [.04, .15]
  RTV .78 [.65, .89] .64 [.53, .76] .14 [.08, .19]
  OE .70 [.55, .90] .16 [.06, .32] .54 [.38, .68]
  CongE .80 [.61, .95] .32 [.16, .52] .48 [.31, .67]

Note. Significant estimates are indicated in bold. ERP = event-related potential; IQ = intelligence quotient; DSF = digit span forward; DSB = digit span 
backward; ERN = error-related negativity amplitude from the flanker task; NoGo-P3 = P3 amplitude in the NoGo condition from the cued continuous 
performance test; MRT = mean reaction time from the fast task; RTV = reaction time variability from the fast task; OE = omission errors from the 
cued continuous performance test; CongE = errors in the congruent condition of the flanker task; Common F1-F3 = the standardized variance of each 
variable explained by familial and nonfamilial factors. Total = the total standardized variance of each variable due to familial and nonfamilial influences.
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(a) response speed (MRT) and variability (RTV), and IQ; 
(b) short-term (DSF) and working (DSB) memory; and (c) 
sustained attention (OE, CongE), error processing (ERN), 
and, to a smaller extent, response inhibition (NoGo-P3). 
Familial influences on ADHD overlapped strongly with 
both the first and third factors, but only moderately with the 
memory (second) factor. The same number of factors 
emerged for nonfamilial influences, with the only exception 
that IQ clustered with memory rather than RT measures. 
These findings identify multiple partially separable etio-
logical processes that underlie cognitive-neurophysiologi-
cal impairments in persistent ADHD, extending our 
understanding of the etiological pathways to widespread 
cognitive and brain dysfunction in ADHD in adolescence 
and adulthood.

Our results show substantial shared familial influences 
between cognitive-neurophysiological impairments and 
ADHD in adolescents and young adults. The factor model 
further indicates that the association between these impair-
ments and ADHD (r

cF1-ADHD
 =.50; r

cF2-ADHD
 = −.36;  

r
cF3-ADHD

 = −.66) may underlie multiple familial processes. 
The factor structure for familial effects pointed to a separa-
tion between a factor capturing IQ and RT performance 
(cF

1
), a factor capturing memory performance (cF

2
), and a 

factor capturing accuracy (number of errors) and brain 
activity of inhibitory/error-detection processes (cF

3
). The 

separation between factors indicates that the co-occurring 
presence of impairments captured by the same factor could 
be largely explained by shared familial influences. For 
example, the finding that one familial factor captured both 
IQ and RT performance indicates a strong familial associa-
tion between these measures (more than with other mea-
sures) in adolescents and adults. Conversely, impairments 
that are captured by two separate factors may be driven by 
at least partially separate familial pathways. A dissociation 
of this kind is shown for memory and RT performance, indi-
cating that impairments in these processes may result from 
partly independent etiological pathways. In addition, to our 
knowledge, this is the first family model-fitting study that 
simultaneously investigated multiple cognitive and brain 
measures to obtain a deeper understanding of ADHD. Our 
results provide new insights into how cognitive-perfor-
mance impairments (omission and congruent errors) are 
etiologically associated with neural processes of error 
detection (ERN) and response inhibition (NoGo-P3), as 
these four measures clustered in one factor. As such, the 
etiological factors underlying atypical brain activity of 
inhibitory and error-detection processes may overlap with 
those linked to task accuracy indices of sustained attention 
deficits. The familial factor capturing these four measures 
(cF

3
) also overlapped with two thirds of the familial influ-

ences on ADHD (r
cF3-ADHD

 = −.66), indicating a strong etio-
logical association between this cognitive-EEG factor and 
the disorder.

More generally, our results point to a multifactorial 
structure of impairments in cognitive and brain function in 
ADHD, in line with models on ADHD proposing that cog-
nitive and brain dysfunction in the disorder may arise from 
multiple pathways (Castellanos & Proal, 2012; Halperin & 
Schulz, 2006; Johnson, 2012). This multifactorial structure 
may explain the observed individual differences in cogni-
tive profiles that exist among adolescents and adults with 
ADHD, who may display various degrees of impairments in 
different cognitive domains (Mostert et al., 2015). A possi-
ble clinical implication of these findings is that future 
efforts to implement new treatments for ADHD could con-
sider including various intervention components, each tar-
geting these different cognitive processes. Given the partial 
etiological dissociation between the identified cognitive 
clusters in ADHD, impairments in these factors may have 
different roles in relation to ADHD pathophysiology. For 
example, it may be that only some impairments represent 
mediators lying on the causal pathways to ADHD, while 
others may only represent associated characteristics 
(Kendler & Neale, 2010). This partial dissociation between 
these processes should be considered in future research 
efforts aiming to examine the role of these impairments in 
the pathways to ADHD.

Our study provides new evidence on the etiological pro-
cesses underlying impairments in cognitive and brain func-
tion in ADHD adolescence and adulthood. These findings 
are largely consistent with two earlier findings in childhood 
(Frazier-Wood et  al., 2012; Kuntsi et  al., 2010). First, the 
separation of the factor capturing RT performance from the 
factor capturing response-accuracy measures is consistent 
with the separation between MRT/RTV and omission/com-
mission errors found in a multisite study which included 
data from the sample of the current study in childhood 
(Kuntsi et al., 2010). Second, the separation between etio-
logical influences on RT and memory performance in ado-
lescents and young adults is further consistent with another 
study in children where RTV and working memory were 
captured by two different factors (Frazier-Wood et al., 2012). 
Differences between this analysis and previous childhood 
studies were observed in the extent of the etiological overlap 
among IQ, RT performance and ADHD. In the present study, 
IQ and RTV/MRT were captured by a single familial factor 
(cF

1
) highly correlated with ADHD, suggesting substantial 

overlap in familial variance between these measures. The 
previous analyses in childhood, however, found a separation 
of genetic/familial influences on IQ from influences on 
ADHD and other cognitive impairments (Rommelse et al., 
2008; Wood et al., 2010; Wood et al., 2011), suggesting that 
IQ may represent a separate process. For example, two stud-
ies in children reported that the majority (66%-81%) of the 
genetic/familial influences on IQ were independent of those 
shared between RT impairments and ADHD (Wood et al., 
2010; Wood et al., 2011). Previous analyses on this sample, 
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however, also indicate that lower IQ, both in childhood and 
at follow up, predicted ADHD persistence (Cheung et  al., 
2016; Cheung et al., 2015). As such, one possible explana-
tion for the substantial overlap in familial influences between 
IQ and ADHD in this older age group is that IQ is a potential 
moderator of ADHD outcome from childhood to adoles-
cence and adulthood. Future longitudinal analyses are 
needed to elucidate these developmental associations 
between ADHD and impairments in cognitive and neural 
processes throughout the development.

It is of interest to note that the separation of familial fac-
tors was similar to the distinct processes underlying ADHD 
persistence and remission previously reported in phenotypic 
analyses on this sample (Cheung et  al., 2016; Michelini, 
Kitsune, Cheung, et  al., 2016). Specifically, IQ/RT and 
attention/error-processing measures, here captured by two 
factors with substantial familial sharing with ADHD, were 
associated with severity and persistence of ADHD in pheno-
typic analysis (Cheung et  al., 2016; Michelini, Kitsune, 
Cheung, et  al., 2016). One possible prediction from these 
findings is that, in individuals with persistent ADHD, these 
two factors may jointly contribute to the severity of ADHD 
and the presence of cognitive-neurophysiological impair-
ments. Conversely, short-term and working memory (here 
captured by a familial factor that was only moderately over-
lapping with ADHD) and the response-inhibition NoGo-P3 
(here mostly influenced by specific factors not shared with 
other variables or ADHD) were not sensitive to ADHD per-
sistence/remission in our previous work, in that impairments 
in these measures did not distinguish between individuals 
with persistent and remitted ADHD (Cheung et al., 2016). 
As such, we can hypothesize that impairments in short-term/
working memory and in brain activity of inhibition control 
may reflect separate enduring processes in ADHD associ-
ated with persistence of impairments in cognitive and brain 
function—regardless of severity of ADHD symptoms and 
impairment.

Nonfamilial influences on ADHD showed moderate 
overlap with all three nonfamilial factors. Of note, the com-
mon factor cNf

1
 captured almost all of the nonfamilial vari-

ance shared between ADHD and RT measures, as limited 
residual variance was not shared with the disorder. 
Conversely, the nonfamilial variance of IQ and short-term/
working memory (cNf

2
), and of sustained attention and 

inhibitory/error-detection processes (cNf
3
) was largely mea-

sure-specific and not shared with ADHD. Nonfamilial influ-
ences include individual-specific environmental factors, 
representing any differences in the environment between 
siblings, and may include the effects of any treatment for 
ADHD. A possible prediction is that nonpharmacological 
interventions, for example cognitive training, aimed at alle-
viating ADHD symptoms may be more effective if they tar-
get RT rather than memory or response-accuracy processes. 
This prediction is in line with evidence suggesting that RTV 

may be more malleable than higher-level processes (Kuntsi, 
Wood, Van Der Meere, & Asherson, 2009) and may explain 
the low efficacy of treatments targeting working-memory 
impairments on ADHD (Cortese et al., 2015).

The comprehensive investigation of impairments in cog-
nitive and brain function, with both cognitive-performance 
and brain-activity measures, and application of sibling 
model-fitting analyses in a clinical sample are strengths of 
the current study. One limitation is that sibling data only 
allow the investigation of familial and nonfamilial effects, 
but cannot directly estimate the contribution of genetic fac-
tors. However, as previous research suggests a limited role 
of shared-environmental influences on either ADHD (Burt 
et al., 2012; Nikolas & Burt, 2010) or cognitive-neurophys-
iological markers (Anokhin, Golosheykin, & Heath, 2008; 
Kuntsi et  al., 2013), the familial overlap between ADHD 
and such markers is expected to largely reflect genetic 
influences. Future twin studies are required to confirm this 
matter. In addition, the age range was wide in our sample. 
To allow the inclusion children with combined-type ADHD 
and their siblings at initial assessment, a wide age range was 
needed for adequate sample size and power for sibling anal-
yses. This prevented us from examining whether the etio-
logical structure of impairments in ADHD may vary with 
age, as stratifying the analyses by age would have resulted 
in small samples for sibling analyses. Yet, as we controlled 
for age in all analyses, we can rule out that our results are 
confounded by age effects. Future studies using more 
restricted age ranges should examine these issues.

In conclusion, by using a multivariate approach on a broad 
range of cognitive and neurophysiological measures, we have 
identified, for the first time in adolescents and young adults 
with ADHD, three partially separable factors that captured sub-
stantial familial influences (36%-66%) on ADHD and impair-
ments in cognitive and brain function, extending current 
knowledge from childhood to later development. The familial 
processes underlying both slower and more variable RTs and 
lower IQ in adolescents and young adults with ADHD may be 
partially distinct from familial influences on memory dysfunc-
tion and on impairments in sustained attention and brain activ-
ity of inhibitory/error-detection processes. These partially 
distinct etiological pathways may underlie dysfunctional brain 
networks which are, in turn, associated with impaired cognition 
and behavior in the disorder. Future efforts should examine the 
developmental trajectories of these etiological pathways, and 
test treatment effects on these partially separate cognitive-neu-
rophysiological factors, which would refine causal models of 
the disorder and point to sensitive targets for interventions.
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