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A crucial point in neuroscience is how to correctly decode cognitive information from

brain dynamics for motion control and neural rehabilitation. However, due to the instability

and high dimensions of electroencephalogram (EEG) recordings, it is difficult to directly

obtain information from original data. Thus, in this work, we design visual experiments

and propose a novel decoding method based on the neural manifold of cortical activity to

find critical visual information. First, we studied four major frequency bands divided from

EEG and found that the responses of the EEG alpha band (8–15Hz) in the frontal and

occipital lobes to visual stimuli occupy a prominent place. Besides, the essential features

of EEG data in the alpha band are further mined via two manifold learning methods.

We connect temporally consecutive brain states in the t distribution random adjacency

embedded (t-SNE) map on the trial-by-trial level and find the brain state dynamics to form

a cyclic manifold, with the different tasks forming distinct loops. Meanwhile, it is proved

that the latent factors of brain activities estimated by t-SNE can be used for more accurate

decoding and the stable neural manifold is found. Taking the latent factors of the manifold

as independent inputs, a fuzzy system-based Takagi-Sugeno-Kang model is established

and further trained to identify visual EEG signals. The combination of t-SNE and fuzzy

learning can highly improve the accuracy of visual cognitive decoding to 81.98%.

Moreover, by optimizing the features, it is found that the combination of the frontal lobe,

the parietal lobe, and the occipital lobe is the most effective factor for visual decoding

with 83.05% accuracy. This work provides a potential tool for decoding visual EEG

signals with the help of low-dimensional manifold dynamics, especially contributing to the

brain–computer interface (BCI) control, brain function research, and neural rehabilitation.

Keywords: neural manifold, visual stimulation, brain dynamics, decoding, machine learning

INTRODUCTION

The human brain readily makes sense of visual images with specific dynamics in a complex
environment, but how to quantify the visual response remains poorly understood (Kourtzi and
Kanwisher, 2000; Pasley et al., 2012). In the past decade, the anatomy of visual conduction in the
brain is well known: the visual information is transmitted through neural pathways from retina
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to cortex, which triggers specific dynamics to achieve cognitive
functions such as memory and envision (de Beeck et al.,
2008; Wen et al., 2018). Accordingly, decoding human brain
activity triggered by visual stimuli has a significant impact
on brain–computer interface (BCI), brain-inspired computing,
and machine vision research (Hogendoorn and Burkitt, 2018).
Although it has been demonstrated that human brain activity
can be decoded from neurological data in recent research
(Zheng et al., 2020), with the neurological data tending to
be high dimensional and unstable, it is difficult to decode
useful information directly from the complex neural data. How
to decode visual information from brain activity remains a
tantalizingly unsolved problem in neuroscience.

The research of specific links among brain activity, cognitive
behavior, and decoding information from the brain has gained
increasing attention. Early studies focus on the level of a
single neuron. Recently, Cunningham and Byron point out
that the majority of sensory, cognitive, and motor functions
depend on the interactions among many neurons, and data
cannot be fundamentally understood based on a single neuron
(Cunningham and Byron, 2014). Consequently, this study of the
neural system is undergoing a transition from a single neuron
level to a population level (Pandarinath et al., 2018). With the
development of electrophysiology and neuroimaging techniques,
it has been acknowledged that neural population activities
collected through neurophysiology [electroencephalogram
(EEG)/magnetoencephalography (MEG)] and neuroimaging
techniques [e.g., functional magnetic resonance imaging (fMRI)]
are influenced by external stimulus about the categories of the
visual object (Spampinato et al., 2017). Neural recordings with
high temporal resolution are now readily obtained via EEG
technique (Nunez and Srinivasan, 2006; Müller et al., 2008;
Schirrmeister et al., 2017). However, the brain activity recordings
pose severe decoding problems because of their time-varying
spectral components, highly non-stationary properties and the
multiple unknown noise. Alternatively, the activity recordings of
the brain have been mostly analyzed by time-frequency analysis,
complex network, and so on, which extract activity features
from one side and make it hard to decode directly (Yu et al.,
2019a). Thus, a new analytical method is needed to decode brain
activity directly from a population perspective and investigate
the visual mechanisms.

Recent advances in neuroscience have demonstrated that a
neural manifold is present across the brain, which provides an
idea for decoding brain activity. Manifold is the subregion that
can capture behavior in a given task. Due to the high degree
of correlation and redundancy across individual neural activity,
the dimension of the neural system is less than the number of
neurons (Levina and Bickel, 2005). Complex population activity
can be explained by fewer unobservable latent factors and the
latent factors change over time to form a manifold. Seung and
Lee (2000) have proved that there is a stable balance state in
brain cognitive activities through experiments and proposed
that manifold learning might be a natural behavior mode in
human cognition. Degenhart et al. (2020) demonstrated that it
was possible to solve several neural recording instabilities such
as baseline shifts, unit dropout, and tuning changes leveraging

the low-dimensional structure present in neural activity. The
existence of manifolds in the brain provides a novel idea and
effective tool to decode the neural population activity using the
dimensionality reduction technique.

Dimensionality reduction techniques allow us to investigate
neural population dynamics by drawing the neural manifold
and identifying relevant population features. Several explanatory
variables can be discovered and extracted from the high-
dimensional data according to a specific objective of different
dimensionality reduction methods. Due to these explanatory
variables being not directly observed, they are often referred to
as latent factors (Gallego et al., 2017). Juan et al. have confirmed
that brain function is based on the latent factors rather than
on the activity of a single neuron (Gallego et al., 2017). They
thought that latent factors are the elemental units of volitional
control and neural computation in the brain (Gallego et al.,
2018). In addition, the time processes of neural responses may
vary substantially in experiments on the same task, especially in
cognitive tasks such as attention and decision-making. In this
case, averaging responses across trials tend to obscure the neural
time course of interest, and the single-trial analyses are essential.
Therefore, it is necessary to extract the latent factors of the neural
population activity from a single-trial level.

A proven idea of data dimensionality reduction is manifold
learning, which can obtain the eigenstructure information from
the data that is consistent with human cognition. The common
dimensionality reduction techniques can be divided into two
categories (Wu and Yan, 2009). One is the linear method used
for extracting linear manifolds, whose mapping function is linear
and usually has explicit expression forms, such as principal
component analysis (PCA) and multidimensional scaling (MDS)
(Seung and Lee, 2000; Flint et al., 2020). The other is the
non-linear method used for extracting the manifolds with non-
linear structural characteristics, whose mapping function is a
non-linear function, always without an explicit expression. The
non-linear methods present the low-dimensional embedding
representation of original high-dimensional data utilizing the
implicit mapping, such as local linear mapping (LLE) and t-
distribution random adjacency embedded (t-SNE) (Lin et al.,
2020). Although these methods have deep similarities, the choice
of method can have a significant bearing on the scientific
interpretations of brain research.

Based on these analyses, this study aims to investigate visual
decoding with the neural manifold in cortical activity found
by PCA or t-SNE from a single-trial level. EEG signals are
directly recorded from the human cortical surface in both
resting and several tasks. Moreover, we aim to research the
performance of decoding visual information by comparing the
two types of manifold learning methods using one of the four
types of decoders, that is, Takagi-Sugeno-Kang (TSK), linear
Kalman filter (LKF), long–short-term memory-recurrent neural
network (LSTM-RNN), and naïve Bayes (NB). Additionally,
the different performances among brain regions are examined.
In this work, the decoding methods are applied to the
multichannel EEG signals in the cortical of healthy people
that perform a visual cognitive task. The combination of t-
SNE and fuzzy learning and the feature is extracted from
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the frontal lobe, the parietal lobe, and the occipital lobe
which can achieve the highest performance with an accuracy
of 83.05%.

EXPERIMENTS AND METHODS

Datasets
Experiment Design
We designed an experiment to study decoding the visual
information from brain activities (Figure 1). Ten volunteers
(five women and five men) between the ages of 22 and 25
participate in the experiment. All of the volunteers signed
informed consent forms, and all the protocols were conformed
to the guidelines contained within the Declaration of Helsinki.
All participants have no neurological, psychological disorders,
or any other ingredients that might influence EEG activity and
agree to coordinate the experiment verbally. In each experiment,
the participant’s brain activity is recorded by an EEG amplifier
(NIHON KOHDEN) from the 64 Ag/AgCl scalp electrodes. The
sampling rate of the EEG device is 1,000Hz, and the rate of the
hardware filter is 0.5–70Hz. Each participant has been informed
of the steps of the experiment before the experiment begins. The
participants sit in a comfortable chair about 0.5m in front of
a 22-inch visual display. Trials begin with a blank display for
120 s, during which the participants rest. Then, the numbers
from 1 to 5 are presented on the screen for viewing for 30 s,
followed by a 60-s rest (blank display). The five numbers from
1 to 5 are presented randomly to prevent people’s conventional
wisdom from influencing the results. Participants are asked to
focus on what they see during the viewing and try to recognize
the number. During the experiment, the participants sit calmly
in a darkened room and are asked to stare at the screen as still
as possible.

Data Preprocessing
Raw EEG data are contaminated by artifacts from many
non-physiological (power line, bad electrode contact, broken
electrodes, etc.) and physiological (cardiac pulse, muscle activity,
sweating, movement, etc.) sources. These artifacts have to be
carefully identified and either removed or excluded from further
analysis (Michel and Brunet, 2019). We used a Butterworth filter
to realize temporal filtering, of which the bandwidth was 0.1–
50Hz. Then, the subsequent independent component analysis
method has been applied to detect and correct artifacts. Finally,
the data were visually inspected, and those bad epochs influenced
by transient artifacts were rejected.

Divide Subbands
To investigate the changes in brain dynamics during different
tasks, 30-s length of EEG signals at the previsual stimuli, visual
stimuli, and postvisual stimuli states are selected. The previous
study shows that the changes in EEG during visual stimuli
might occur between 0 and 30Hz (Adebimpe et al., 2016). So,
we studied the four main subbands of EEG: delta (1–4Hz),
theta (4–8Hz), alpha (8–15Hz), and beta (15–30Hz), which are
thought to be associated with cognitive activity and typically
used in synchronization analysis (Müller et al., 2008; Adebimpe
et al., 2016; Kobak et al., 2016; Shin et al., 2020). Therefore, a
band-passed finite impulse digital filter based on fast Fourier
transform is adopted to decompose the EEG data of each channel
into four subbands. All analyses in this paper are performed in
MATLAB 2017b.

Power Spectrum Density
The autoregressive (AR) Burg approach is applied to estimate
the absolute power spectrum density (PSD) for each channel
(Faust et al., 2008). To reach the objective of power comparisons
in four frequency bands and different experimental states, the

FIGURE 1 | The framework of our research for decoding the visual information from brain activities. First multichannel EEG signals of five visual stimuli of volunteers

are acquired and data preprocessing analysis is performed. Second, the latent factors are extracted, and the neural manifold dynamics are obtained. Finally, we

combined various decoders to decode visual information.
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EEG data are segmented into 1-s epochs with 0.5-s overlap. A
power spectrum analysis is performed for each time window.
At a certain subband, the final power value at a certain time is
obtained by averaging all power values of the frequency band on
the current time window interval. The theoretical basis of the AR
method is that the given signal is the output of a linear system
whose input is white noise, which is

r (n) = −

k
∑

i=1

air (n− i)+u (n) (1)

where ai represents the AR coefficients, k is the order of the AR
model, and u(n) is the white noise with a variance of σ 2. The
order k can be described by AR parameters {a1, a2, ..., an, σ

2}. The
PSD is defined as

P̂AR
(

f
)

=
σ 2

∣

∣
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Principal Component Analysis
Principal component analysis is the common linear
dimensionality reduction technique (Duffy et al., 1992). In
this research, PCA is applied to the EEG of all subjects. To
avert the case where channels with excessive fluctuations impact
decoding, the EEG data are smoothed through a Gaussian kernel
before employing dimensionality reduction techniques. In this
research, PCA is performed to the EEG data of a single-trial
level rather than trial averaged from all subjects to avoid the
inaccuracy caused by averaging the responses across entire trials.
The purpose of PCA is to extract principal components (PCs)
from smoothed EEG data. Meanwhile, all PCs are arranged
in descending order according to the magnitude of explained
variances. The first 2 PCs are selected to decode visual stimuli.

t-Distributed Stochastic Neighbor
Embedding
Compared with PCA, t-SNE is a non-linear dimensionality
reduction technique. t-SNE calculates the probability similarity
for points using a normalized Gaussian kernel in a high-
dimensional space (Van der Maaten and Hinton, 2008).
Correspondingly, in low-dimensional space, the similarity is
calculated through t-distribution. The similarity between sample
points in high-dimensional space can be expressed by the
asymmetric point probability distribution pij. For the t-SNE
algorithm, the pij is defined as follows:

pij =
exp(

−||ri−rj||
2

2σi2
)

∑

k

∑

l 6=k exp(
−||rk−rl||

2

2σi2
)
,∀i, j and i 6= j (3)

pij =
pj|i + pi|j

2N
(4)

where σi is the variance of a Gaussian centered on ri. Due to the
different distribution density of sample points in the dataset, σi

corresponding to different sample points is also different. The
denser the distribution of data point is, the smaller σi is. The
sparser the distribution of data point is, the larger σi is. The value
of σi is calculated by binary search.

Takagi-Sugeno-Kang Fuzzy System
Takagi-Sugeno-Kang is a fuzzy model (Takagi and Sugeno,
1985). For an input dataset U = {u1, u2, ..., un} ∈ Rd

and the corresponding class label O = {o1, o2, ..., on} (oi =

[oi,1, oi,2, ...oi,j]
T). When the ith sample data belong to jth class,

oi,j = 1; Otherwise, oi,j = 0. The kth fuzzy inference rules are
usually described as

Rk : IF u1 is A
k
1 ∧ u2 is A

k
2 ∧ . . . ∧ ud is A

k
d,

THEN fk (u) = βk
0 + βk

1u1 + . . . + βk
dud, k = 1, . . . ,K (5)

where the input vector of each fuzzy rule is represented as u =

[u1, u2, ...ud]
T , Ak

i are Gaussian antecedent fuzzy sets subscribed
by the input variable ui of Rule k, the number of fuzzy rules is
K, ∧ is a fuzzy conjunction operator, the kth fuzzy inference rule
fk(u) can be expressed by a linear combination of the input vector
u = [u1, u2, ...ud]

T , and βk
i are linear coefficients.

If the input vector of each rule is u, the output of TSK is
calculated as

õ =

K
∑

k=1

µk (u) fk (u)
∑K

k
′ µk

′ (u)
=

K
∑

k=1

µ̃k (u) fk (u) (6)

where µk(u) =
∏d

i=1 µAk
i
(ui) is the fuzzy membership function

and the normalized fuzzy membership function of the kth fuzzy

rule is denoted as µ̃k(u) =
µk(u)

∑K

k
′ µk′ (u)

. µAk
i
(ui) is Gaussian

membership function for fuzzy set Ak
i , which is defined as

µAk
i
(ui) = exp

[

−
(ui − cki )

2

δki

]

(7)

where the element cki is kth cluster center parameters that can
be obtained through the classical fuzzy c-means (FCM) (Bezdek
et al., 1984) clustering algorithm:

cki =

∑N
j=1 xjkuji

∑N
j=1 xjk

(8)

where the width parameter δki can be estimated by:

δki =
l ·

∑N
j=1 ujk(xjk − cki )

2

∑N
j=1 ujk

(9)

where xjk ∈ [0, 1] is the fuzzy membership between jth input
vector and kth cluster (k = 1, 2, ..., k), and the constant l is the
scale parameter.

Given un as the input sample, we can obtain

un,e = (1, un
T)T (10)
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ũkn = µ̃k (un) ue (11)

ρ(un) = [(ũ1n)
T , (ũ2n)

T , . . . , (ũKn )
T] ∈ RK(d+1) (12)

βk = (βk
0 ,β

k
1 , ...,β

k
d , )

T (13)

βg = [(β1)T , (β2)T , ..., (βK)T] (14)

Thereby, the output result õn of a TSK fuzzy decoder for the input
vector un can be described as

õn = βg
Tρ (un) (15)

Naïve Bayes
The NB decoder is a type of Bayesian decoder that determines the
probabilities of different outcomes, which can predict the most
probable outcome. For the input datasetU = {u1, u2, ..., un} ∈ Rd

withm classes and a sampleC = {c1,c2, ..., cn}, Bayes’ theorem can
be defined as

P (ui|C) =
P (C|ui)P (ci)

P (C)
(16)

Because P(C) is constant for all classes, the probability that C
belongs to each class can be estimated by

P (ui|C) ∝ P (ci)

n
∏

k=1

P (ck|ui) =

∏n
k=1 P (ck|ui)

[P(ui)]n−1
(17)

According to this formula, the class with the highest probability
is taken as the class of C.

Long Short-Term Memory in Recurrent
Neural Network
An LSTM-RNN based on an RNN architecture has been well
befitting in decoding brain activities (Tsiouris et al., 2018). The
LSTM-RNN is constituted by memory cell c, forget gate f , input
gate i, and output gate o. LSTM-RNN can accommodate the
information flow through a cell via these gates, and each gate can
be expressed by

ft = σsigmoid

(

Wf ,zut +Wf ,1ht−1 + bf
)

(18)

it = σsigmoid

(

Wi,zut +Wi,1ht−1 + bi
)

(19)

ot = σsigmoid

(

Wo,zut +Wo,1ht−1 + bo
)

(20)

where b is the vector of biases, h denotes the vector of the
hidden layer, and W represents the weight matrix of recurrent
connection from the input gate to the output gate. The input
vector ut is the latent factors at time t and σsigmoid(·) represents
the sigmoidal activation function. The subscripts of weight
matrixW indicate the corresponding gates that include forgetting
gate f , input gate i, and output gate o. The information flow of the
cell memory can be updated by

cu = σtanh
(

Wc,xut +Wc,1ht−1 + bc
)

(21)

ct = ft ⊗ ct−1 + it ⊗ cu (22)

ht = ot ⊗ σttanh (23)

where σtanh and⊗ represent the hyperbolic tangent function and
the element-wise product, respectively.

Linear Kalman Filter
Linear Kalman filter is a commonly generative decoding method
based on the linear dynamical. The hidden state yt is a linear
combination of the hidden state yt−1 (Wu et al., 2003). The
system model can be described as

yt = Ayt−1 + Qt−1 (24)

lt = Hyt + Vt (25)

where A denotes the system model parameter matrix, H is
the observation model parameter matrix, and Q and V are
the process noise and observation noise that obeys a Gaussian
distribution. The observation vector lt is the vector of latent
factors. After converging the Kalman gain to its stable state early,
we initialized y0 to the average of the observation vector at the
beginning of every trial to predict yt .

RESULTS

Some Specific Frequencies Are Dominant
in the Digital Cognitive Process
We first investigate whether there exist specific frequencies that
are dominant in the digital cognitive process. EEG recordings
of the awake volunteers are performed to explore the changes
in EEG evoked by digital cognition (Figure 2A). The EEG
signals are divided into four major frequency bands involved in
sensory consciousness, information coding, cognitive memory,
selective attention: delta (0.5–4Hz), theta (4–8Hz), alpha (8–
15Hz), beta (15–30Hz) (Figure 2B). In a dark behavioral
chamber, presentations of visual stimuli (30 s) induce alpha
frequency oscillations, but the oscillations persist only ∼10 s
during the digital stimuli period (Figures 2C,G). The frequency
spectra show that the power of the alpha band increases during
the stimuli period compared with that during the prestimuli
and poststimuli periods (Figure 2D). Furthermore, the spectral
power across four frequency bands is compared in Figures 2G,H.
It is found that alpha band power increases during the stimuli
period with p < 0.01 whereas delta band power decreases with p
< 0.05 (one-way ANOVA followed by Bonferroni’s post-hoc test).

Specific Brain Areas Participate in the
Visual Cognitive Task
The previous study has shown that specific brain areas may
participate in specific cognitive functions (Gatti et al., 2020).
The spectral power of the three periods across four brain lobes
is calculated (Figures 2E,F). Alpha band power increases with
the varying level in different brain lobes during the stimuli
period, especially in the frontal and the occipital lobes. The
variation of power of each EEG channel data in alpha is
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FIGURE 2 | Take the number 1 as an example of visual stimuli, the frontal lobe alpha power saliently correlates with visual cognition. (A) Schematic drawing showing

the location of EEG electrodes in the cerebral cortex. The schematic diagram of channel position with the frontal lobe is marked within blue lines and the temporal

lobe, the parietal lobe, and the occipital lobe are marked with red, green, and purple lines, respectively. (B) Example EEG is divided into four subfrequency bands:

delta (0.5–4Hz), theta (4–8Hz), alpha (8–15Hz), beta (15–30Hz). The red dotted line indicates the beginning of the visual stimulus. (C) EEG time-frequency

spectrograms. 80-s time series raw EEG signals whereas the visual stimuli onset (30 s) and end (60 s) are marked with the white line. (D) Power spectrum density

estimates for three states. (E) EEG time-frequency spectrograms of four lobes. (F) Power spectrum density of four lobes. (G) Change of averaged power across

subjects in four frequency bands compared to the initial average power. (H) EEG power across four frequency bands. * p < 0.05, ** p < 0.01, one-way ANOVA

followed by Bonferroni’s post hoc test. Error bars describe standard error across subjects. (I) The variation of power of each EEG channel data in alpha.

further analyzed and it is obtained that channels with relatively
higher power spectrum values are mainly concentrated in the
frontal and the occipital lobes (Figure 2I). In the following
dimensionality reduction and decoding analysis, we are mainly
focusing on the alpha frequency band and the first 10-s EEG
signals during visual tasks. These results demonstrate that the
alpha frequency band is the dominant frequency. Meanwhile, the
frontal and the occipital lobes might be closely related to digital
cognitive function.

PCA Is Ineffective
To identify the dynamics of brain states of different cognitive
processes, dimensionally reduction techniques that include PCA
and t-SNE are further leveraged to estimate latent factors that
reflect the subject’s brain. Linear dimensionality reduction based
on PCA is first performed. It is the ineffective separation of brain
dynamics at different cognitive task epochs by PCA (Figure 3A).
Three states are not possible to be distinguished by chosen
viewing angle. It describes the cumulative explained variance of
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FIGURE 3 | The result of dimensionality reduction using PCA. (A) Ineffective separation of brain dynamics at different task epochs by PCA. (B) Cumulative explained

variance of brain states as a function of the number of PCs included. Explaining 80% of the total variance requires 9 dimensions.

brain states as a function of the number of PCs in Figure 2B.
It is obtained that the brain states are high-dimensional since
explaining 80% of the total variance requires 9 dimensions at
least. It is difficult to capture key differences during different
task epochs using PCA, and thus, dimensionality reduction
fails to achieve effectively in a fashion. To overcome this issue,
a non-linear dimensionality reduction technique, t-distributed
stochastic neighbor embedding (t-SNE), is applied to the time
series of brain activities.

Use t-SNE for Dimension Reduction
The non-linear dimensionality reduction technique t-SNE is
used on the single trial, and the distributions of latent
factors are shown in Figure 4A. Since the t-SNE is based
on manifold learning, the latent factors after dimensionality
reduction are divided into different manifolds. Except for a
very small number of latent factors, the latent factors of
the same task can be gathered in a region and the t-SNE
clusters coincide well with distinct tasks. There are obvious
classification boundaries among different tasks, which provides
good conditions for the following decoding. More importantly,
clusters in the rest states including prestimuli and poststimuli
states are located in the same area. Latent factors from 10
experiments are further analyzed in the same way. The similarity
of differences is measured via the pairwise Euclidean distances
between brain states in the t-SNE space. The similarity between
the clusters of two different tasks (Pre-Num1, Num1-Post,
Num1–Num5) is lower than the similarity between the same
tasks (pre–post) in Figure 4B. Different visual stimuli drive
different transitions among brain states resulting in a lower
similarity of the brain states between two different visual
stimuli (Num1–Num5).

Brain States Dynamically Evolve Into
Cyclic Manifolds
To investigate the transition process of brain states, the
consecutive brain states are temporally connected in the t-SNE
map on the trial-by-trial level, which is shown in Figure 4C.
It illustrates that the brain states dynamically evolve into
cyclic manifolds which are distinct with different tasks over
time, whereas the evolutive paths of brain states are highly
similar during the same task. Afterward, to further analyze the
difference among temporal evolutions of brain states during
different cognitive tasks, the partial correlation coefficient is
calculated between each brain state in a trial and a reference
brain state determined by averaging all brain states of five
tasks. The brain states are projected into 2D space spanned by
reference brain states for the number of 1 and the number of 5.
Strikingly, the bifurcation toward different cognitive tasks could
be observed well at the beginning of visual stimuli at the single-
trial level (Figure 4D), which further suggests that different visual
cognitive tasks drive different transitions among brain states.

Test Four Decoders Under PCA and t-SNE
Given our analyses at the level of brain states and the
latent factors under visual stimuli, it can be concluded that
decoding brain activities by the non-linear dimensionality
reduction technique is reliable. After dimension reduction,
multiple machine learning decoders including linear decoder
Kalman filter (KF), non-linear decoder long–short-termmemory
in recurrent neural networks (LSTM), fuzzy learning decoder
Takagi-Sugeno-Kang fuzzy system (TSK), and naïve Bayes
decoder (NB) are employed to decode brain activities. The
decoding performance is evaluated for each combination of two-
dimensionality reduction methods and four decoders (Figure 5).
For the PCA method, the frequency band energy of the first
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FIGURE 4 | The result of dimensionality reduction using t-SNE. (A) The application of t-SNE on EEG data reveals seven distinct clusters corresponding to different

tasks on a single trial. (B) The similarity of latent factor clusters within and across different tasks. The level of similarity is calculated by the pairwise Euclidean distances

between brain states in the t-SNE space. The gray lines represent single trial. (C) Temporal evolution of brain states during different tasks lie on the separate cyclic

manifold. The thin line represents a single trial and the thick line represents the trial average. (D) The bifurcation of brain states of different visual stimuli.

FIGURE 5 | Overview of decoding based on two-dimensionality reduction techniques including PCA and t-SNE. EEG signals are down to two dimensions by PCA

and t-SNE, respectively. For the two latent variables captured by PCA, we use their band power features in a short time as code to save their poor performance of

original data. Meanwhile, latent variables from t-SNE are regarded as code directly. Decoders are TSK, NB, LSTM, and LKFS.
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FIGURE 6 | Q-Q plot of accuracy using different decoders after t-SNE and PCA vs. standard normal. Data about accuracy using different decoders after t-SNE and

PCA in ten times trial are tested normality by q-q plot vs. standard normal. These decoders are TSK, NB, LSTM, and Kalman.

two principal components is extracted, and the values x1, x2 are
used as input vector x of the decoders. For the t-SNE method,
the first two principal components x1, x2 are retained directly to
obtain the neural manifold, which is used as the input vector
x to the decoders. The decoding is implemented through 10-
fold crossvalidation, which means that 9 out of 10 samples are
selected as a training set, and the remaining 1 out of 10 samples
are selected as the test set in each classification process. The
classification process is repeated ten times, and the average value
of the 10 times is taken as the final result. TSK decoder displays
the encouraging consequence with 0.8198 accuracies with t-
SNE and 0.6971 accuracies with PCA. The features extracted by
the non-linear manifold learning method have better decoding
performance than that of PCA. The performance of TSK is
compared with three common methods (NB, LSTM, LKF) for
EEG decoding. The accuracy data are normally distributed as
the results of the Q-Q plot are approximately on a straight
line (Figure 6). The classification results are shown in Table 1,

Figure 7. Table 1 shows the classification accuracy of different
decoders with two whole-brain features extracted by PCA and t-
SNE. Meanwhile, TSK can achieve high performance in decoding
EEG. The comparison of the decoding accuracy for visual
stimuli across different latent factors and decoders is depicted
in Figure 7. Friedman’s test with Bonferroni correction is used
to analyze the difference between the decoding accuracy of four
decoders. The Friedman’s test reveals the main effect of decoders
on the decoder accuracy when using t-SNE (χ2 = 20.97, p <

0.01) or when using PCA (χ2 = 25.51, p < 0.01). When using
t-SNE, the linear decoder KF shows lower accuracy than other
decoders (p< 0.01) and TSK shows higher accuracy thanNB (p<

0.05), whereas there is no difference between TSK andNB, LSTM.

When using PCA, the TSK shows higher accuracy than other
decoders (p < 0.01), and NB and KF also show higher accuracy
than LSTM (p < 0.01). These indicate that TSK has a good
decoding effect in both linear and non-linear dimensionality
reduction techniques. Meanwhile, for all decoders, the t-SNE
dimensionality reduction technique has a better decoding effect
than PCA.

TSK Rules
The brain activities are first decoded using the TSK decoder.
The example of TSK with five rules is illustrated in Figure 8.
It illustrates the corresponding membership functions of
each fuzzy set obtained from five fuzzy rules in Figure 8A.
Each membership function corresponds to a fuzzy linguistic
description which is very high, high, medium, low, and very low.
To provide further explanation, the antecedent parameters that
include centers and standard variance are calculated, which are
presented in Figure 8A. By the permutation of five linguistic
descriptions, there can be twenty-five rules. Take five of them
as an example. Based on the linguistic expressions and the
corresponding linear function, the fuzzy rules can be shown
as follows:

Rule 1: IF x1 is very high AND x2 is very high,

THEN

f1 =













1.8268− 0.0113x1 − 0.0042x2,
0.2707− 0.0144x1 − 0.0119x2,
−0.2911− 0.0038x1 − 0.0052x2,

0.0370+ 7.2537e− 4x1 + 9.4636e− 4x2,
−0.0289− 8.1321e− 4x1 − 0.0010x2













(26)
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TABLE 1 | Decoding accuracy of different decoders with two whole-brain features extracted by PCA and t-SNE.

Method TSK NB LSTM Kalman

t-SNE 0.8198 ± 0.0088 0.8081 ± 0.00820 0.8124 ± 0.0052 0.7692 ± 0.0143

PCA 0.6971 ± 0.0287 0.6412 ± 0.0112 0.5241 ± 0.0460 0.6293 ± 0.0186

FIGURE 7 | Comparison of the decoding accuracy for visual stimuli between two latent factors for each decoder. The green lines indicate the mean accuracy and the

asterisks denote the significant degree of difference (*p < 0.05, **p < 0.01). The left column corresponds to the method of t-SNE and the right column corresponds to

the method of PCA.

Rule 2: IF x1 is very low AND x2 ismedium,

THEN

f2 =













−0.0954− 4.2010e− 4x1 − 0.0013x2,
−0.0146− 6.0436e− 4x1 − 8.2373e− 5x2,

0.1950+ 0.0020x1 − 0.0026x2,
1.5912− 0.0135x1 + 5.2341e− 4x2,
−0.8781− 0.0111x1 − 0.0034x2













(27)

Rule 3: IF x1 is high AND x2 is very low,

THEN

f3 =













−0.5874− 0.0093x1 − 0.0024x2,
1.7819− 0.0032x1 − 0.0021x2,

−1.0105− 0.0120x1 + 8.3280e− 4x2,
0.0375− 8.7808e− 4x1 − 2.2777e− 5x2,

0.0814− 0.0023x1 + 0.0027x2













(28)

Rule 4: IF x1 is low AND x2 is low,

THEN

f4 =













−0.1187+ 0.0017x1 + 5.0977e− 4x2,
−1.1958+ 0.0088x1 + 0.0153x2,
3.1966+ 0.0236x1 − 0.0070x2,
0.0791+ 0.0020x1 + 0.0027x2,
−0.6716+ 0.0071x1 − 0.0145x2













(29)

Rule 5: IF x1 ismedium AND x2 is high,

THEN

f5 =













0.1576+ 0.0030x1 − 0.0014x2,
−1.0899− 0.0099x1 + 0.0139x2,
−0.7449+ 0.0117x1 − 0.0041x2,

0.0255+ 6.8180e− 4x1 − 1.8482e− 5x2,
2.4971+ 0.0055x1 + 0.0163x2













(30)

Based on these five fuzzy rules above, the mechanism of the
decoding process is depicted in Figure 8B. The low-dimensional
characteristics of different tasks are taken as the inputs of the
decoder, and the label vector is predicted by the TSK system’s
decision output. The sum of the decision outputs f 0i(i =

1, 2, ..., 5) based on the five rules is indicated by f 0 and the
decision outputs are handled by setting the maximal element in
f 0 to 1 and others to 0. In this example, the decision output is
number 1.

Brain Activities Are Decoded With the
Combination of Data of Different Brain
Regions
The brain activities are decoded with the low-dimensional
features extracted from a single brain lobe, two brain lobes, and
three brain lobes (Figure 9). The result shows that the frontal and
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FIGURE 8 | The decoding principle of the TSK method. (A) The descriptions of the antecedent linguistic and membership functions of five rules in the TSK decoder. In

each subgraph, the horizontal coordinate and the vertical coordinate denote the independent inputs and the membership functions, respectively. The antecedent

parameters (centers, standard variance) are presented above the corresponding membership function curve. Fuzzy linguistic descriptions are shown below the

membership functions. (B) The identification process of visual information via five fuzzy rules and the fuzzy decoder.

the occipital lobes are the top two highest accuracies when the
features are extracted from a single brain lobe. The combination
of the frontal and the occipital lobes is the highest accuracy
in the two lobes combination. Additionally, in the three lobes
combination, the frontal and occipital and parietal lobes are the
highest effective. We hence infer that the frontal and the occipital
lobes with high accuracy may be the key areas of the brain’s
visual cognition process. It can be concluded that finding the
dominant brain regions can improve decoding efficiency and
accuracy, which is essential for BCI.

DISCUSSIONS

Use Neural Manifold to Decode Cortical
Activity Under Visual Stimuli
In this work, we propose a method to decode cortical activity
under visual stimuli from a single-trial level using the neural
manifold. Through power spectrum analysis, it is found that

visual cognition induces significant changes in the alpha band
(Hogendoorn and Burkitt, 2018). Different visual stimuli lead
to different spiking of neurons, which represent different
information encoded by the human brain. The information is
recorded in EEG and is exposed as the bifurcated manifold
by dimension reduction methods. By further analyzing the
latent factors extracted from the alpha band and using it to
decode the brain activities, it is found that five major clusters
that are associated with the visual stimuli distinctively occupy
separate subregions.

t-SNE Has a Better Performance
The dimensionality reduction techniques are compared in terms
of decoding performance. As excepted, it is confirmed that the
latent factors obtained by t-SNE well-decoded brain activities.
Decoding visual information using latent factors estimated by
the t-SNE results in a superior performance to another case
using PCA-estimated latent factors regardless of the decoder
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FIGURE 9 | The corresponding decoding results under different brain lobe

associations. The accuracy of the TSK decoder is based on two latent factors

with a single brain lobe (A), two brain lobes (B), and three brain lobes (C).

types, that is, TSK, NB, LSTM, and LKF. The research on the
neurodynamic of the cerebral cortex has consistently uncovered
low-dimensional manifolds that capture a crucial portion of
neural variability (Arieli et al., 1996). PCA is widely used inmotor
cortex dynamics research. Gallego et al. (2018) confirmed the

existence of a neural manifold in the motor cortex of monkeys
by PCA. However, for behaviors whose dynamics explore non-
motor brain areas, estimating neural manifolds using linear
techniques requires latent factors of higher dimensions than the
true dimensions in the data. EEG is commonly considered to have
significant chaotic characteristics, linear methods provided poor
estimates of the neural manifold (Figure 3). When brain activity
is reduced to the same dimensions with xx, we can obtain a better
recognition performance on the latent factors decoded by t-SNE
during different cognitive tasks (Figure 4). The improvement
in decoding brain activities using t-SNE suggests that the brain
activities lie on a low-dimensional, non-linear manifold in the
high-dimensional space and t-SNE can truly model the hidden
state space of the brain in the cognitive process.

TSK Has the Best Performance Among the
Four Decoders
This may be due to TSK’s good non-linear approximation ability
as the performance of decoders is significantly more improved
using latent factors estimated by t-SNE than PCA. Additionally,
TSK could transform the decision output into a value between
0 and 1 through fuzzy rules, which is closer to human thoughts
than other dichotomies of either 0 or 1 (Yu et al., 2019a). These
findings suggest that we can design a simple fuzzy learning
decoder (TSK) with t-SNE while achieving well performance.
Multiple supervised machine learning methods that include TSK,
NB, LSTM, KF are employed to classify different cognitive tasks
based on two-dimensionality reduction techniques. Using latent
factors estimated by t-SNE to decode visual information has
higher accuracy than those estimated by PCA. Among these
decoders, TSK with a promising classification result has been
proved to be useful in the decoding analysis of neuroimaging data
in many applications (Yu et al., 2019b).

The Frontal and the Occipital Lobes Are
Found to Be the Most Effective Areas
According to the classification results, it is obtained that the
number of brain lobes is not proportional to the classification
performance (Figure 7). The frontal and the occipital lobes
are found to be the most effective areas to classify different
cognitive tasks. Compared with traditional methods, the visual
decoding approach proposed has lower implementation difficulty
and higher performance. Future work will consider finding key
channels and frequencies to further reduce the amount of data
analysis and improve decoding accuracy. The dominant brain
lobes are found based on the decoding accuracy, but how to select
features more efficiently and accurately is necessary to be further
considered. In future works, it will be combined common spatial
patterns (CSPs) with deep learning theory, further ensuring
optimal channels and latent factors that are closely related to
cognitive processes to achieve higher decoding accuracy.

CONCLUSION

In this work, a novel decoding model combining manifold
dimensionality reduction approaches with machine learning
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is designed. By only capturing EEG signals from key brain
regions, researchers can obtain the same or better decoding
performance. Meanwhile, the overall computational efficiency
of the visual information decoding can be improved easily
with the reduction of the originally collected datasets. In
particular, the TSK method integrates the advantages of fuzzy
rules and membership function, so the TSK method has higher
interpretability and robustness (Takagi and Sugeno, 1985; Azeem
et al., 2000; Kuncheva, 2000). The work provides effective
algorithms for the accurate control of BCI and is of great
significance to the rehabilitation training and treatment of brain-
related neurological diseases.
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