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The theory of critical transitions in complex systems (ecosystems, climate, etc.),

and especially its ability to predict abrupt changes by early-warning signals

based on analysis of fluctuations close to tipping points, is seen as a promising

avenue to study disease dynamics. However, the biomedical field still lacks a

clear demonstration of this concept. Here, we used a well-established animal

model in which initial alcohol exposure followed by deprivation and sub-

sequent reintroduction of alcohol induces excessive alcohol drinking as an

example of disease onset. Intensive longitudinal data (ILD) of rat drinking

behaviour and locomotor activity were acquired by a fully automated drink-

ometer device over 14 weeks. Dynamical characteristics of ILD were

extracted using a multi-scale computational approach. Our analysis shows a

transition into addictive behaviour preceded by early-warning signals such

as instability of drinking patterns and locomotor circadian rhythms, and a

resultant increase in low frequency, ultradian rhythms during the first week

of deprivation. We find evidence that during prolonged deprivation, a critical

transition takes place pushing the system to excessive alcohol consumption.

This study provides an adaptable framework for processing ILD from clinical

studies and for examining disease dynamics and early-warning signals in the

biomedical field.
1. Background
The recent surge in the development of wearable and mobile biomedical sensing

technology has made it possible to acquire long-term continuous biomedical

signals, also known as biomedical intensive longitudinal data (ILD) [1]. These

data will be increasingly used in healthcare applications with information and

communications technologies (ICT) and will contribute in particular to the under-

standing of disease dynamics [2,3]. Analysis of this type of data has the potential

to predict disease onset and thus may pave the way for the development of

adaptive prevention and treatment strategies [4].

Biomedical ILD reflect the underlying nonlinear, multi-scale dynamics of

complex biological systems operating on multiple time scales ranging from,

for example, minutes or hours or days or weeks [2]. Critical transitions,

where a system shifts abruptly from one stable state to another, are one of

the most commonly observed features of complex systems with nonlinear be-

haviour [5,6] and may be preceded by various early-warning signals such as

the so-called critical slowing down (increased low-frequency, auto-correlated

variability near transition points) [5,6]. Theoretical studies and computational
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simulations have yielded evidence for critical transitions in

natural phenomena, but only a few biological and medical

studies have examined the validity of these concepts in

medical applications (see [3] for a review). Furthermore,

dynamical aspects of disease onset across transition (bifur-

cation) points have not been directly explored, as until now

it has been difficult to contiguously and continuously moni-

tor disease dynamics in standard clinical settings. Here, we

provide an example of state transitions in the biomedical

field by studying disease dynamics in a well-established

animal model of alcohol addiction.

Alcohol consumption patterns in people at risk for

alcohol-use disorder or even in alcohol addicted patients are

characterized by repeated abstinence periods followed by

relapse and excessive alcohol consumption. Early abstinence

refers to acute withdrawal, whereas protracted abstinence

refers to an extended period where overt withdrawal signs

are no longer seen [7–9]. On the molecular level and also

on the neuronal network level, critical changes occur during

abstinence phases and it is suggested that those changes con-

tribute to the development of addictive behaviour [8,10].

Abstinence—be it early or protracted—can be modelled in ani-

mals by introducing a deprivation period. The alcohol

deprivation effect (ADE) model is a well-established animal

model of relapse-like excessive alcohol drinking in which

rats are given alcohol for a baseline period followed by a

deprivation period and subsequent reintroduction of alcohol

[11,12]. Following reintroduction of alcohol, excessive alcohol

consumption is seen for several days reflecting relapse-like

drinking behaviour, after which sustained increased alcohol

consumption is observed. Numerous studies have used the

ADE model to study behavioural, neurobiological and

pharmacological aspects underlying the transition to excessive

alcohol consumption [11–14].

In this study, we used the ADE model and a novel drink-

ometer system [15], a computer-based system enabling ILD

collection for rodent drinking behaviour and locomotor

activity, to study dynamical state transitions characterizing

disease onset. To this end, we examined the statistical and dyna-

mical properties of drinking behaviour and locomotor activity

ILD across baseline, deprivation and reintroduction phases,

showing that both underwent dynamical state transitions

from a stable baseline state to a new stable state with preference

for stronger alcohol and increased consumption, with distinct

early-warning signals during the early deprivation period.

Importantly, we observe that although the deprivation pushes

the system to its tipping point, the transition itself takes place

during prolonged deprivation (i.e. protracted abstinence)

spontaneously without further manipulation.
2. Material and methods
(a) Animals
Twenty-four two-month-old male Wistar rats (from the breeding

colony at the CIMH, Mannheim, Germany) were subjected to the

ADE paradigm. All animals were housed individually in standard

rat cages (Eurostandard Type III; Ehret, Emmendingen, Germany)

under an artificial 12 L : 12 D cycle (lights on at 7.00). Room

temperature was kept constant (temperature: 23+18C). Standard

laboratory rat food (Ssniff, Soest, Germany) and tap water were

provided ad libitum throughout the experiment. Body weights

were measured weekly.
(b) Experimental paradigm
The ADE paradigm [8–15] is a tightly controlled experimental pro-

cedure to model excessive relapse-like drinking in rodents. The

procedure involves a long-term baseline period of voluntary alcohol

consumption in a four-bottle free-choice paradigm with water and

three different concentrations of ethanol (5, 10 and 20%, reflecting

human consumption of beer, wine and spirits), followed by sub-

sequent deprivation and reintroduction phases. When deprived of

alcohol after long-term (i.e. two months) voluntary consumption,

rats show withdrawal symptoms during early deprivation [9,11].

While acute deprivation (i.e. forat least 3 days) can trigger a transient

ADE, it has been shown that longer periods of deprivation (greater

than one week) result in longer lasting behavioural and neurobiolo-

gical adaptations consistent with the development of addictive

behaviour. The reintroduction phase following deprivation is thus

reminiscent of ‘relapse’-like behaviour, characterized by increases

in alcohol intake and preference [8–15].

In this study, the ADE paradigm was applied while a drink-

ometer system acquired drinking behaviour and locomotor

activity ILD sets from single animals in 1 min bins continuously

over several months. After two weeks of habituation to the

animal room, rats were given ad libitum access to tap water and

5, 10 and 20% ethanol solutions, and data recording was started

to monitor baseline drinking activity. Animals were exposed to

alcohol for a baseline period of eight weeks; behaviour had stabil-

ized by the last week of the baseline (denoted as BASE). The

baseline period was followed by a two-week deprivation phase

in which all bottles were filled with tap water (deprivation (DEP:

DEPwk1, DEPwk2)), and four weeks of measurements following

ethanol reintroduction (ER for four weeks: ERwk1, ERwk2, ERwk3,

ERwk4) (electronic supplementary material, figure S1a). Electronic

supplementary material, figure S1b illustrates a sample ILD set

for drinking behaviour and locomotor activity. Hereafter, we

refer to BASE, DEPwk1, DEPwk2, ERwk1, ERwk2, ERwk3 and ERwk4

as the ‘experimental periods’.

(c) High-resolution recording of alcohol drinking
behaviour

The drinkometer system is a novel method to monitor drinking

behaviour in rodents [15] and was developed in collaboration with

TSE Systems (Bad Homburg, Germany). It enables long-term high-

resolution continuous recording of liquid consumption by amount

and time in a standard rat home-cage. The system is equipped

with four drinking stations to allow liquid choice. The drinking

station consists of a glass vessel containing the liquid and a high-

precision sensor for weighing the amount of liquid removed from

the glass vessel. In this study, the four drinking bottles contained

tap water and 5, 10 and 20% ethanol solutions (v/v), which were

prepared from 96% ethanol (Sigma-Aldrich, Taufkirchen, Germany)

and diluted with tap water. Spillage and evaporation were mini-

mized using special bottle caps. All drinking stations were

monitored by a computer. The system features ultra-high-resolution

recording capability—down to 0.01 g (however, values of 0.01 g are

too small to be drinking events and were considered as measure-

ment artefacts and were excluded from the analysis, see the

electronic supplementary material). The whole system is mounted

on a custom-made free-swinging steel frame to avoid any environ-

mental disturbances. The drinkometer system measures the weight

of a vessel in 200 ms steps and saves it in 1 s steps. The sampling inter-

val was set at 1 min, giving per-minute values of solutions consumed.

(d) High-resolution recording of locomotor activity
Home-cage spontaneous locomotor activity was monitored by the

use of an infrared sensor placed above each cage (30 cm from

the bottom) connected to a recording and data storing system

(Mouse-E-Motion, Infra-e-motion, Henstedt-Ulzburg, Germany).
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The devices continuously sampled whether the rats were moving

or not. The sensors detect (and count) body movements of rats

of at least 1.5 cm from one sample point to a successive one.

The detection of motion is based upon the warmth radiation in

the infrared range emitted by the animals. The data measured by

each Mouse-E-Motion device were downloaded into a personal

computer and processed with Microsoft EXCEL/VBA and MATLAB

(R2012). The locomotor activity (i.e. number of movements)

captured was recorded in 1 min intervals in both light and

dark phases during the entire experiment. This resulted in a

time series of number of movements per minute over the entire

experiment, comprising the locomotor activity ILD set.

(e) Data analysis
(i) Alcohol preference
Alcohol consumption was calculated during five periods: the last

week before ethanol deprivation (BASE), and four weeks follow-

ing ethanol reintroduction (ERwk1, ERwk2, ERwk3 and ERwk4)

(bottles contained no ethanol during DEPwk1 and DEPwk2).

Intake values were calculated in g kg d21 for each solution and

summed (accounting for the weight of the animal and molecular

weight of ethanol and concentration of the ethanol solution).

Alcohol preference (PF) was calculated for the same five periods

by calculating density of alcohol consumed as follows:

PF ¼ 5%� vol. ð5%Þ þ 10%� vol. ð10%Þ þ 20%� vol. ð20%Þ
vol. ð5%Þ þ vol. ð10%Þ þ vol. ð20%Þ :

ð2:1Þ

(ii) Transition matrices
For each animal, transitions between the four different bottles

(water, 5, 10, 20%) were examined for all experimental periods.

Any minutes in which drinking events occurred were counted;

for minutes where multiple solutions were consumed, all tran-

sitions (stays and switches) were counted. For the full matrix,

see the electronic supplementary material, table S1.

The probability to stay (stay ratio, Pstay) was estimated for

each animal by aggregating the total number of stays and

switches of all alcoholic solutions:

Pstay ¼
Stay

Stayþ Switch
, ð2:2Þ

giving an index of the pattern of alcohol drinking behaviour. It

should be noted that as water was included in the calculation of tran-

sition matrices, two drinking events from a single bottle separated

by water (i.e. 5%! water! 5%) were not counted as ‘stays’.

(iii) Locomotor activity data
Rats were placed in new clean cages once a week, resulting in a cor-

responding locomotor artefact being observed. To account for this

effect, the 24 h (from 00.00 to 00.00) within which each cage clean-

ing was done was removed from the analysis of locomotor data,

resulting in 6 out of every 7 days of locomotor data being analysed.

This resulted in a dataset of 60 min � 24 h � 6 days ¼ 8640 min-

scale locomotor counts for each animal for each week (total of 14

weeks). Removal of the transient effect of outside disturbances to

the cage is also important to evaluate the stability of locomotor

dynamics. Data for one rat was found to be incomplete (owing

to battery failure of devices) while two rats had uncharacteristi-

cally low locomotor counts for several periods; these rats were

excluded from the analysis, giving a final total of 21 rats used. It

should also be noted that the period ERwk3 contained data from

5 days owing to a change in the cage cleaning schedule.

(iv) Local statistics for locomotor activity distributions
Mean, variance and skewness of locomotor activity were calcu-

lated for each 6 day period of locomotor activity data. These
statistical moments have been shown to appropriately character-

ize locomotor activity, particularly intermittency in locomotor

dynamics, with rarer bursts of higher activity separated by

longer periods with less activity, and consequently, behavioural

alterations with symptomatic changes in humans [16,17].
(v) Cumulative distributions of resting periods
We estimated the cumulative probability distribution Pc (T � a) of

durations a (min) of resting periods during which locomotor

activity levels were continuously lower than, or equal to a certain

threshold [18,19]. As the choice of threshold values affects the

defined durations of resting periods, various threshold values

were examined for the effect of these values on the distribution

parameters. We examined fixed-level thresholds (0, 1, 10 activity

counts) and an adaptive threshold, the ‘non-zero mean’, intro-

duced in previous studies [18,19]. The ‘non-zero-mean’ is the

mean of the activity level excluding an activity level of 0, calcu-

lated for each rat and each experimental period. As a result, in

this study, the non-zero mean was found to be the threshold,

giving rise to the best linearity of the log Pc (T � a) 2 log a plot

that ensures the robust parameter estimation explained below

(see equation (2.4)) as is expected from previous studies [18,19].

Cumulative probability distributions were obtained by numeri-

cally integrating the probability density function p(t) estimated

from the whole recording period with a bin width of 1 min

(definable as discrete distributions taking integer values given

bin width) as follows:

PcðT � aÞ ¼
X1
t¼a

pðtÞ: ð2:3Þ

Following our previous work [18,19], a power-law form:

PcðT � aÞ ¼ Aa�g, ð2:4Þ

was fitted to the cumulative distributions of resting periods

on the basis of a linear least-squares method using the log-

transformed variables, log(Pc) and log(a). We set the fitting

range to 1–10 min. Smaller (larger) values for g imply higher

(lower) levels of the intermittency described above.
(vi) Time – frequency analysis using continuous wavelet
transform

Time–frequency analysis was used to study circadian and ultradian

rhythms in locomotor activity over the different experimental

periods as has been done elsewhere [20]. The continuous wavelet

transform (CWT) was used to decompose the locomotor time

series into the time and frequency domains [21]. The CWT

of a signal x(t) is the convolution of the signal with a scaled and

translocated basis function called the mother wavelet c(t):

CWTxðb, sÞ ¼ 1ffiffi
s
p
ð1

�1

xðtÞc� t� b
s

� �
dt, ð2:5Þ

where * indicates the complex conjugate. The translocation par-

ameter b focuses on a particular part of the signal in time for

analysis, while the scaling parameter s changes the frequency con-

tent of the mother wavelet. Small values of s correspond to higher

frequencies, while large values of s correspond to lower frequencies.

The Morlet wavelet (which is a sinusoidal wave-based wavelet suit-

able for examining rhythmicity) with the following form was used

as the mother wavelet:

cðtÞ ¼ eiv0te�t2=2, ð2:6Þ

with a non-dimensional frequency of v0 ¼ 5 [22]. This form is

chosen for its fast-decaying oscillating waveform in the time

domain and compactness in the frequency domain, which enables

efficient extraction of periodic patterns (i.e. circadian and ultradian

signals), making it suitable for analysis of animal locomotor activity
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[21]. The relationship between scale s and frequency f is given by

s ¼
v0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ v2

0

q
4pf

: ð2:7Þ

In this study, we calculated the wavelet transform from 1 to

720 cycles d21 (i.e. 1 cycle every 2 min). To obtain the spectrum

of locomotor activity, we calculated the power of the wavelet

coefficient defined by

jCWTxðb, sÞj2 ¼ fReðCWTxðb, sÞÞg2 þ fImðCWTxðb, sÞÞg2, ð2:8Þ

where Re(CWTx(b, s)) and Im(CWTx(b, s)) are the real and

imaginary parts of the wavelet transform, respectively. Relative

ultradian band power was calculated by

Ð T
0

Ð f2
f1
jCWTxðb, sÞj2dfdbÐ T

0

Ð fmax

fmin
jCWTxðb, sÞj2dfdb

, ð2:9Þ

using the relationship between s and f described above, with T ¼
6 days, fmin ¼ 1 cycle d21, fmax ¼ 720 cycles d21, f1 ¼ 2 cycles d21

and f2 ¼ 5 cycles d21. Circadian power was defined as

1

T

ðT

0

jCWTxðb, s0Þj2db, ð2:10Þ

where s0 is the time scale corresponding to circadian frequency,

i.e. f ¼ 1 cycle d21, calculated with equation (2.7).

(vii) Phase space reconstruction
Single-dimensional analysis, which is often used for analysing

critical transitions, may not be sufficient for analysing the loco-

motor activity in this study because the activity exhibits oscillatory

behaviour; i.e. circadian oscillations which cannot be adequately

reconstructed in one-dimensional phase space. To examine the

rhythmicity and consistency of circadian rhythms for the different

experimental periods of interest, we reconstructed two-dimensional

trajectories (limit cycles) by embedding the locomotor activity time

series using a delayed coordinate [23]. Then, the embedded two-di-

mensional time series was used in the (two-dimensional) entropy

analysis to measure the level of disorganization of circadian oscil-

lations. Data were first pre-processed using a moving average:

XðtÞ ¼ 1

2Mþ 1

XM
i¼�M

xðtþ iÞ, ð2:11Þ

where x(t) denotes the original time series and X denotes the

data after the moving average is applied. A smoothing parameter

M ¼ 120 (min) was used yielding 8400 points of data per
experimental period (except for ERwk3 which contained 6960

points). After applying the moving average, we introduced the

two-dimensional variable (X, Y ) as X ¼ X(t), Y ¼ X(t2t) (t¼

360 min).

Here, the delay time t was defined as a quarter (6 h) of the

oscillation period of the circadian rhythm (1 day). Among some

proposed methods to determine delay time, such as the first zero

crossing of the autocorrelation and the first minimum of the

mutual information, we chose this quarter criterion (24 h/4),

which is simple but reliable when the period of the basic oscillation

is known, as in the current case (circadian rhythm: 24 h) [24]. When

the chosen criterion is appropriate, the limit cycle appears circular;

elliptical or linear limit cycles would indicate unsuitable criteria.

We calculated two-dimensional probability distribution

maps P(Xi,Yj) with a bin size of 1 count min21 � 1 count min21,

based on which the two-dimensional entropy was calculated:

En ¼ �
X

j

X
i

PðXi,YjÞ log PðXi,YjÞ: ð2:12Þ

(viii) Statistics
One-way repeated-measures analysis of variance (rmANOVA) was

used to analyse differences across experimental periods for: ethanol

consumption, ethanol preference, transition matrix indices, local

statistics for locomotor data, activity-rest parameters, wavelet

band power data and two-dimensional entropy data. For measures

which were indices of preference (ethanol consumption, ethanol

preference), DEPwk1 and DEPwk2 were not included because bottles

contained no alcohol. For all other measures, all experimental

periods were analysed. When significant effects of experimental

period were found, we compared all periods using Tukey’s tests;

although differences between BASE and other periods were

expected, differences across other periods were also of interest.

In bar graphs (figures 1a–c, 2, 3a–c and 4c–e; electronic supplemen-

tary material, figure S5), comparisons versus baseline are indicated.

Statistical analyses were performed in R v. 3.2.5. [25] (see the elec-

tronic supplementary material for additional details).
3. Results
With the reintroduction of ethanol solutions after deprivation,

an increase in ethanol consumption (figure 1a) and preference

for stronger alcohol typical of the ADE ensued [11] (figure 1b).

rmANOVA revealed a main effect of experimental period on

ethanol consumption (F4,80 ¼ 41.16, p , 0.001) and preference
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(F4,80 ¼ 2.96, p , 0.05). Post hoc comparisons showed that

consumption was highest in ERwk1 compared with all other

periods ( p , 0.001) and also higher in ERwk2 compared with

BASE ( p , 0.001). Preference for stronger ethanol solutions

increased over time (see the electronic supplementary material,

figure S2), with the difference significantly higher than BASE in

ERwk4 ( p , 0.05) and at the trend level in ERwk3 ( p¼ 0.074).

Although preference was not significantly higher than BASE

in ERwk1 ( p¼ 0.119), this is in part owing to the ADE itself;

upon reintroduction, rats accessed all bottles at an increased rate.

Drinking behaviour was also analysed by calculating

stay ratios (figure 1c) and computing state-transition matrices

(figure 1d; electronic supplementary material, table S1).

A significant main effect of experimental period was found

on the stay ratio (F5,120 ¼ 24.18, p , 0.001). Post hoc analyses

revealed significantly higher probabilities of staying with the

same bottle during BASE and ERwk1–ERwk4 than DEPwk1

( p , 0.001 for all). Descriptively, during BASE, rats tended to

stay with the same alcoholic solution, switching to other sol-

utions at low rates (diagonal squares, figure 1d). During

DEPwk1, increased switching was observed in bottles where

alcoholic solutions had been held, suggesting the occurrence of

alcohol-seeking/craving. In DEPwk2, the greatly decreased

number of transitions is consistent with animals giving up alco-

hol-seeking after continuously being offered only water. Upon

ethanol reintroduction (ERwk1), there was a greatly increased

amount of alcohol consumed (the ADE) while staying behaviour

re-emerged and progressively re-stabilized with fewer switches

during ERwk2, ERwk3 and ERwk4, (diagonal squares, figure 1d)

accompanied by a decreased number of stays with weak sol-

utions (5%) and an increased number of stays with stronger

solutions (20%) (electronic supplementary material, table S1).

Consumption of higher-concentration alcohol solutions (20%)
following deprivation leads to a more rapid rise in blood alcohol

concentrations and subsequent intoxication [11].

(a) Increased intermittency in locomotor activity
patterns also indicate a state transition

Following ethanol reintroduction, statistical and dynamical

characteristics of locomotor activity underwent significant

changes suggestive of increased intermittency, with rarer

bursts of higher activity separated by longer periods with less

activity. To evaluate alterations in dynamical intermittency,

cumulative probability distributions of ‘resting periods’

(continuous periods below a non-zero mean threshold) of loco-

motor activity were analysed [18,19]. Figure 2 shows the group

mean cumulative probability distributions for BASE and ERwk4,

of which the power-law exponent g is the absolute slope (see

Material and methods). Decreases in g were found over

experimental periods, with a significant main effect of the

experimental period (figure 2, inset) (F6,120 ¼ 7.36, p , 0.001).

Post hoc comparisons showed that g was significantly lower

in ERwk1 ( p , 0.01), ERwk3 and ERwk4 (both p , 0.001) than

in BASE, suggesting systematically more episodes of longer

rest following deprivation.

These results were also supported by changes observed in

statistical moments (mean, variance, skewness) [16,17] of

locomotor activity, suggestive of increased intermittency as

experimental periods progressed (figure 3a–c). Lower mean

and variance were indicative of long periods with less

activity, and higher skewness indicated bursts of increased

activity. Main effects of experimental period were found on

the mean (F6,120 ¼ 23.72, p , 0.001), variance (F6,120 ¼ 28.99,

p , 0.001) and skewness (F6,120 ¼ 12.76, p , 0.001). Post

hoc tests indicated that compared with BASE, the mean

was significantly decreased in DEPwk2, ERwk1, ERwk3, ERwk4

( p , 0.001 for all) and ERwk2 ( p , 0.05). Variance was lower

in ERwk1, DEPwk2, ERwk3, ERwk4 ( p , 0.001 for all) and

ERwk2 ( p , 0.05) than in BASE. Skewness was significantly

higher in DEPwk2 ( p , 0.05), ERwk1, ERwk3, ERwk4 ( p , 0.001

for all) and ERwk2 ( p , 0.01) compared with BASE.

Together, the analysis of cumulative probability distri-

butions of ‘resting periods’ and other statistical moments

suggests that after the first week of deprivation, rats transitioned

into a new allostatic state with increased intermittency.

(b) Identifying early-warning signals during deprivation
Statistical properties and rhythmicity of locomotor activity

data were further examined, finding that circadian and ultra-

dian patterns underwent a dynamical state transition after

the first week of deprivation (figure 4a–e). Figure 4a shows

results of the wavelet analysis for a single representative rat

(electronic supplementary material, figure S3 contains plots

for all rats). Increases in diurnal relative wavelet power

were present during DEPwk1, suggesting increased ultradian

rhythms (figure 4c). A significant main effect of the experimen-

tal period (F6,120 ¼ 21.39, p , 0.001) was found and post hoc

comparisons showed that the relative wavelet power during

DEPwk1 was significantly higher than in all other periods

( p , 0.001). The circadian power was also analysed for

differences, finding a main effect of the experimental period

(F6,120 ¼ 15.38, p , 0.001) (figure 4d). Post hoc compari-

sons showed that the power was significantly larger for

BASE than in DEPwk1 ( p , 0.01), DEPwk2 ( p , 0.001), ERwk1
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( p , 0.001), ERwk2 ( p , 0.01), ERwk3 ( p , 0.001) and ERwk4

( p , 0.001) with a sequentially decreasing pattern.

Circadian dynamics of locomotor activity were recon-

structed into two-dimensional limit cycles (figure 4b;

electronic supplementary material, figure S4, left) yielding

two-dimensional probability density diagrams of their trajec-

tories (electronic supplementary material, figure S4, right).

The circular limit cycles which were observed indicated

that the quarter criterion used was suitable and that the

phenomenon of slowing down was well extracted. The limit

cycles showed changes across experimental periods, starting

large (in terms of circadian power, figure 4d ) and stable

during BASE, losing the clear cycle (becoming diffuse and dis-

organized) during DEPwk1, and retaking a more compact

(figure 4d ) and stable limit cycle during DEPwk2 and the ER

weeks. We also calculated the moment of inertia about the

centre of mass (average squared radius, electronic supplemen-

tary material, figure S5) for limit cycles, finding that the average

squared radius is significantly larger in BASE than all other

periods after DEPwk1. The two-dimensional entropy values
were examined to measure the disorder of this circadian organ-

ization and a significant main effect of experimental period was

found (F6,120 ¼ 21.62, p , 0.001) (figure 4e). Post hoc compari-

sons showed that two-dimensional entropy was significantly

higher for DEPwk1 than for all other periods (all p , 0.001),

suggesting increased instability. These results reflect a dynami-

cal transition from a large, stable circadian oscillation to a small,

stable one (figure 4d for the circadian power; electronic sup-

plementary material, figure S5 for the squared radius for

limit cycles; figure 4f for schematic) preceded by instability

of circadian rhythms (figure 4e) and a resultant increase in

ultradian power (i.e. slowing down; figure 4d), serving as

early-warning signals during the first week of deprivation.
4. Discussion
Here, we acquired ILD sets of drinking behaviour and loco-

motor activity in a rat model of alcohol addiction and used a

multi-scale computational approach to demonstrate a critical



rspb.royalsocietypublishing.org
Proc.R.Soc.B

284:20170882

7
transition from controlled baseline alcohol consumption to

excessive alcohol drinking (figure 4f ). This state transition is

preceded by a critical slowing down scenario (an early-

warning signal) during early deprivation. We propose that

our approach has the potential to make important contri-

butions to the understanding of disease onset in general and

can be translated to the clinical situation by the appropriate

use of wearable and mobile biomedical sensing technology [4].

The theory of critical transitions has recently attracted

interest not only in a broad range of scientific fields [5,6],

but also in the field of clinical medicine, with the expectation

that its concepts will contribute to a detailed understand-

ing of disease onset and progression [3]. In particular, the

presence of early-warning signals such as critical slowing

down has the potential to enable prediction of transitions to

or between pathological states. There are studies suggesting

the occurrence of critical transitions in clinical contexts

[26,27], but these investigations used snapshots of systems

at separate time points exhibiting stable and unstable states

near bifurcation points. While these studies used models to

simulate the state-transition phenomenon, it has been pointed

out that the existence of abrupt, disease-related and contigu-

ous state transitions has not been empirically proven [28,29].

Hence, the analysis presented here is evidence in support of

the hypothesis of a disease-related dynamical state transition.

Through the course of the baseline period, rats acquired

some level of preference for lower percentage alcohol solutions

(5 and 10%); like humans, they take some time to get accus-

tomed to the taste of alcohol. This is consistent with the

literature—rats initially prefer these weaker alcohol solutions

owing to the slightly sweet taste, but find the smell and taste

of strong (20%) solutions aversive [11]. Previous studies have

shown that without a deprivation period, or with a too short

deprivation period, excessive relapse-like drinking with a

shift of preference to stronger alcohol is not observed [11].

Shifts are only observed with protracted periods of deprivation,

suggesting that changes are not gradual but abrupt.

During the final week of the baseline period, transition

matrices show that rats had a strong tendency to stay with the

same solution during successive accesses. By contrast, the first

week of deprivation was characterized by a marked increase

in switching between bottles which is consistent with alcohol-

seeking behaviour during deprivation; i.e. craving for alcohol.

Following the reintroduction of alcohol solutions, there was a

return of an increasingly strong stay ratio with one important

difference, an increased preference for stronger alcohol (20%),

suggesting that the rats settled into a new, stable, allostatic

state. An allostatic model for alcoholism has been proposed,

integrating molecular, cellular and circuitry neuroadaptations

in brain motivational systems produced by chronic alcohol

consumption [30,31]—we now provide quantitative empirical

evidence that allostatic switches occur following long-term

voluntary alcohol consumption and deprivation.

The sudden behavioural shift observed in drinking patterns

was also demonstrated in both the statistics describing local

dynamics (figure 3a–c) and the circadian organization of

locomotor activity (figure 4c–e). Properties found in various

multi-scale complex systems can be observed in the local

dynamics of intensive longitudinal locomotor activity time

series [2,18,19], and the statistical properties of these data are

shown to be related to pathological states in depression

[18,32], schizophrenia [32,33] and bipolar disorder [2,34].

Particularly, it has been observed that disease states can be
characterized by increased intermittency in locomotor activity

[17]. The degree of intermittency was evaluated using two

different approaches. First, intermittency in locomotor activity

has been shown to be effectively captured by statistical

moments and particularly a combination of mean and skewness

[16,17]. The decreased mean and variance across experimental

periods indicate decreased overall activity, while the increased

skewness reflects the presence of occasional or intermittent

bursts. Specifically, mean, variance and skewness after depriva-

tion are significantly different in these directions, suggesting

that a transition between two states is also seen in local

locomotor dynamics.

Second, the dynamical aspects of intermittency were exam-

ined by analysing probability distributions of resting periods in

rest–activity transitions. Decreases in the scaling exponent g

indicate increased intermittency in locomotor activity, or sys-

tematically higher probabilities of observing longer resting

periods [18], tendencies which were observed after rats transi-

tioned into a new allostatic state. These changes are consistent

with those previously observed in patients with depression

[18], schizophrenia [33] and bipolar disorder [2], illnesses

known to show high comorbidity with alcohol-use disorder

[35]. Increased intermittency in locomotor activity has been

also observed in mice with circadian clock gene (Per2)

mutations [19,20]. These mutant mice also exhibit increased

preference for and consumption of alcohol [36]. Furthermore,

a theoretical model for intermittent behavioural dynamics

and its alterations has been proposed [20] based on a priority

stochastic queuing theory [37]. This model explains increased

intermittency as strategic changes in decision-making to

initiate actions with preferential selectivity to demands with

higher priority (in this case, alcohol), showing tendencies to

react only to higher demands (generating occasional activity

bursts) while remaining quiet most of the time resulting in

reduced activity. Within the framework of this model, the

changes observed here in locomotor activity may reflect

enhanced vulnerability towards alcohol and may thus mark

a transition towards addictive behaviour.

It is of note that changes seem to start in the middle of

the deprivation period (DEPwk2), suggesting that the state

transition is spontaneous in nature. This finding is in line

with a recent cross-sectional study [10] which suggests a

dopaminergic mechanism behind the differences between

the first and second weeks of deprivation. This study

observed a time-dependent effect during deprivation, finding

a hypo-dopaminergic state during the first week and a hyper-

dopaminergic state after the first week. The abrupt changes

we observed in our longitudinal dataset were on a similar

timeline and appear to reflect neural changes and adaptations

in regulatory reward circuitry. Our results also point to early

deprivation (the first of two weeks) as a critical driver for the

onset of addictive behaviour which is consistent with the lit-

erature on alcohol addiction emphasizing the importance of

deprivation in the development of addiction [8,11].

It has been shown that alcoholic patients experiencing

alcohol withdrawal show disrupted sleep [38] and melatonin

release [39], while in rodents, long-term alcohol intake and

alcohol withdrawal have also been shown to affect circadian

rhythms of drinking activity [40,41] and free wheel running

activity [42,43]. In particular, in animals exposed to up to

20% alcohol solutions (but not when exposed to up to

10%), decreased circadian amplitudes were found during

alcohol deprivation [40,44]. In this study, we used continuous
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measurements of locomotor activity, finding decreased circa-

dian power during both deprivation and reintroduction

phases (figure 4d ). Moreover, decreases in circadian power

began when the deprivation started and not before even

though rats had been consuming alcohol for eight weeks.

This finding is important as it suggests that it is not alcohol

consumption that causes disruptions in circadian rhythms

per se, but instead the deprivation that may be the culprit.

Studies on critical transitions have identified the presence of

early-warning signs of abrupt transitions or shifts from one

state to another [5,6]. The most well known of these is ‘critical

slowing down’, i.e. the appearance of low-frequency, highly

correlated behaviour near bifurcation, or tipping points where

there is low resilience to perturbations owing to system instabil-

ity [5,6]. In this study, we found increased instability of

circadian locomotor rhythms and increased ultradian rhythms

by using wavelet analysis (i.e. multiple cycles per day,

figure 4a), specifically during the first week of deprivation.

This suggests that early deprivation is characterized by

dynamics often seen when systems are close to bifurcation

points, and the increase in ultradian rhythms can be regarded

as an early warning of a transition into excessive relapse-like

drinking via the critical slowing down scenario. Moreover, we

observed alterations in the dynamical signatures of stability of

attractors (limit cycles) themselves in phase space. More disor-

ganized and dynamically unstable trajectories were observed

during the first week of deprivation, signalling a transition

from large stable limit cycles during baseline to smaller stable

limit cycles during protracted deprivation and subsequent

excessive drinking periods (illustrated by figure 4f).
The potential indicators for early warning identified in the

literature so far present analytical techniques, such as using

autocorrelation coefficients at a specific scale [5], which

can be augmented [3,6] by using a multi-dimensional and

multi-scale approach such as the current one. This method

clearly captures transitions between different states, differen-

tiating not only between stability and instability but also

characterizing the distinct stable baseline and vulnerable

state for addicted behaviours themselves. Importantly, using

this approach on contiguous and longitudinal data enables

visualization of transitions as they happen.

It might be thought that excessive drinking and the

increase in preference observed is the natural progression

when rats are given prolonged continuous exposure to alco-

hol. However, as seen in the electronic supplementary

material, figure S2, this is not the case—during BASE, drink-

ing behaviour is already stable and the deprivation is what

drives the system to instability, after which it transitions

into the new steady state that is characterized by excessive

alcohol consumption, especially of higher concentrated alco-

hol solutions.
It should be recognized that the ADE model and alcohol

deprivation represent just a single model of disease onset.

Other types of disease are characterized by gradual change in

response to stressors over time (i.e. gradual deterioration of

mental state) and may follow alternative courses. As the pre-

sent model involves an external event pushing the system to

a state of instability, followed in time by a transition, the

approach used here is likely to have applications in psychiatric

disorders which are phasic or episodic in nature that are often

externally triggered (e.g. substance use disorders, major

depression, bipolar disorder, post-traumatic stress disorder).

The next step is to verify, translate and adapt these methods

in other disease scenarios.

Thus, the results and especially the computational methods

applied here are considered to outline an adaptable framework

for processing ILD and understanding disease dynamics in the

biomedical field. Indeed, the initial idea of ‘dynamical disease’

proposed almost 40 years ago [45] discussed bifurcations

between normal and pathological oscillations in a variety of ill-

nesses. While the implementation and realization of this

concept have been difficult [2], the use of biomedical ILD to

examine limit-cycle bifurcations may now begin to substantiate

the concept of dynamical disease using the untapped potential

of sensing and measuring technologies which have enabled the

non-invasive acquisition of longitudinal and contiguous data

from various behavioural and physiological patterns. Also,

the ability to identify early-warning signals which precede dis-

ease onset, together with prospective translational studies, will

lead to the timely implementation of preventive measures and

treatments, and provide far-reaching ICT applications in

healthcare [2,4].
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