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Reverse engineering of gene regulatory networks (GRNs) is the process of estimating genetic interactions of a cellular system from
gene expression data. In this paper, we propose a novel hybrid systematic algorithm based on neurofuzzy network for recon-
structing GRNs from observational gene expression data when only a medium-small number of measurements are available. The
approach uses fuzzy logic to transform gene expression values into qualitative descriptors that can be evaluated by using a set of
defined rules. The algorithm uses neurofuzzy network to model genes effects on other genes followed by four stages of decision
making to extract gene interactions. One of the main features of the proposed algorithm is that an optimal number of fuzzy rules
can be easily and rapidly extracted without overparameterizing. Data analysis and simulation are conducted on microarray expres-
sion profiles of S. cerevisiae cell cycle and demonstrate that the proposed algorithm not only selects the patterns of the time series
gene expression data accurately, but also provides models with better reconstruction accuracy when compared with four published
algorithms: DBNs, VBEM, time delay ARACNE, and PF subjected to LASSO. The accuracy of the proposed approach is evaluated
in terms of recall and F-score for the network reconstruction task.

1. Introduction

Biological systems are inherently stochastic, uncertain, and
fuzzy [1]. Therefore, research in bioinformatics and compu-
tational biology, where computer technologies are applied to
manage and analyze biological data and make computational
models, is faced with a great deal of uncertainty. For instance,
growth and development as well as environmental stresses
can all contribute to change in gene expression levels. In
addition, under such conditions, some genes influence the
expression of other genes and their functionalities.

With the advent of high-throughput technologies in
transcriptomics, proteomics, and metabolomics, now, biol-
ogists have the ability to investigate the expression of genes
and consequences on a genome-wide scale. Gene expression

data in the form of high-throughput microarray experiments
measure the amounts of RNA associated with each of
thousands of genes in parallel. Time-series microarrays have
attracted biologists’ interests for deciphering the dynamic
and complex nature of biological networks. Time-series
microarrays record multiple expression profiles at discrete
time points (i.e., hours or days) of a continuous cellular
process. Thus, analytical methods are needed to handle many
genes with uncertain functions based on discrete datasets of
continuous biological processes. The methodological areas
range from experimental design [2] to data normalization [3,
4], missing value imputation [5], cluster analysis [6, 7], clas-
sification [8], identification of differentially expressed genes
[9], and network modelling [10, 11].
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As a challenging concept, reverse engineering can be
employed to estimate gene regulatory networks from high-
throughput expression data. Genetic regulatory network
reconstruction provides a concise representation of the
interactions between multiple genes at the system level. In
addition, it confers a broader insight for biologists about the
manner in which genes interact with one another, and about
the roles that they play in various biological functions.

Viability of an organism down to the cells is essentially
controlled by gene expression regulation at the transcript
level. This concept leads one to ponder how the changes in
the expression patterns of genes during the ordinary and
the stressful conditions of cells may infer the way genes are
affected by environmental conditions (e.g., lack of nutrients)
[12]. Such studies of gene expression patterns can improve
our understanding of biological systems, and may enhance
our ability to combat undesired situations (e.g., diseases such
as cancer) with the hope of improving human life quality.

There are several limitations in the study of time-series
gene expression data such as small sample size (due to
the time-consuming nature in which samples are produced
and the high costs associated with microarray experiments,
especially in clinical studies), genes with low level expression
and noisy data structure [13, 14]. Problems related to high
dimensionality accompanied by a small sample size, such
as matrix singularity, model over-fitting and model over-
parameterization become more pronounced in the case of
the most available data [15]. Also, the unavoidable presence
of noise has more influence on the analysis of short term
rather than long term data series. This enhances the difficulty
in distinguishing actual patterns from random data, thereby
raising the potential of misleading analyses [16].

Reconstruction of gene regulatory networks based on
expression data should therefore: be able to handle con-
strained data; should be robust to, and compensate for noise
and incompleteness of data; and should be capable of pro-
viding interpretable results.

In view of recent advances, a wide spectrum of reverse
engineering approaches have been proposed to infer gene
regulatory networks (GRNs), including: Boolean networks
[17–19]; Bayesian network models [20–23]; Hidden Markov
Models (HMM) [24]; Graphical Gaussian models [25]. In
addition, state space models [26, 27], Kalman filter (KF) [28],
extended Kalman filter (EKF) [29], and Particle Filter (PF)
subjected to LASSO [30] have also been employed to model
gene regulatory networks. The goal of these methods is to
explore a high-fidelity representation to determine possible
cause-effect gene regulatory interactions, which are ulti-
mately represented as a graph [31].

Modelling based on Boolean Networks is one of the
common methods employed in GRNs inference [32]. The
goal of these models is basically to infer rules based on their
computational simplicity and ability to handle noisy exper-
imental data [17]. Even though these models can be easily
applied, much information is lost in binary encoding and, in
practice, the derived models have insufficient dynamic reso-
lution because they depend on arbitrary discretizations of the
gene expression values [33–37]. In general, Boolean networks
are limited by their definition.

Bayesian network modelling is based on probabilistic
transitions between network states and assumes that there is
no feedback in a network; in spite of the fact that cycles of
events are the major mechanism to ensure robustness of the
biological systems [21].

HMM also has been applied for analyzing time-series
gene expression data [24]. However, there are several prob-
lems with HMMs. The number of parameters that need to be
set in an HMM is quite high. As a result, the amount of data
required to train an HMM is very large. Also, concepts learnt
by an HMM are framed in terms of emission and transition
probabilities. If one is trying to understand the concept learnt
by the HMM, then this concept representation is difficult to
understand.

Dynamic Bayesian Network (DBN) as another method
combines the features of hidden Markov models to incor-
porate feedback [38]. Models based on Bayesian networks,
despite attractiveness due to their ability to deal with stochas-
tic aspects of gene expression and noisy measurements, have
the disadvantage of minimizing the dynamical aspects of
gene regulation [20].

A graphical Gaussian model (GGM) is an undirected
probabilistic graphical model [25]. This model allows the
identification of conditional independence relations among
genes, under the assumption of a multivariate Gaussian dis-
tribution of gene expression data. The GGM does not iden-
tify the direction of gene relationships, but rather only calcu-
lates the correlations between their gene expression data.

The Kalman filter (KF) [28] is only applicable to linear
models and the Gaussian posterior density probability. Since
position information is linear, standard Kalman filtering can
be easily applied to the tracking problem without much
difficulty. However, gene regulatory networks pose nonlinear
information, requiring a modification to the KF. To over-
come this problem, much research has been reported on
nonlinear filtering methods such as extended Kalman filter
(EKF) [29], unscented Kalman filter (UKF), and Particle
filter (PF) [30]. Currently, considerable research is being
devoted to introduce improvements in the working of these
algorithms and enhance our understanding about gene
interactions.

In this paper, we describe a novel algorithm that benefits
from using rule-based neurofuzzy networks (RBNFNs) to
extract information from time-series gene expression data.
The suggested algorithm combines neural networks with
fuzzy systems and allows for mapping the dynamics of gene
expression data. Fuzzy logic [39–41] and artificial neural net-
works [42, 43] are complementary technologies in the design
of an intelligent system, and their combination appears to be
a promising path, since neural networks are essentially low-
level, computational algorithms that sometimes offer a good
performance in pattern-recognition tasks; whilst fuzzy logic
provides a structural framework that uses and exploits those
low-level capabilities of neural networks. Thus, the combi-
nation seems to offer potential for capturing subtle effects
of genes. Neural networks can learn from data sets while
fuzzy logic solutions are easy to verify and optimize. Fuzzy
logic and neural networks generally approach the design
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Figure 1: Proposed Hybrid Rule-Based Neurofuzzy (HRBNF) algorithm for extracting the gene interactions based on rules governing the
gene expressions. The algorithm includes training with expression data (Stage 1) to extract the rules (Stage 2) which are sorted (Stage 3) to
compare the rules and prior to be used for gene interaction analysis (Stage 4) and modelling the final gene network (Stage 5).

of intelligent systems from quite different angles, and the
combined system can have advantages from both sides:
neural networks are implicit; although the system is not easily
interpreted or modified, it trains itself by data sets. Fuzzy
logic is explicit; thus the system verification and optimization
is more efficient.

Here, we present a two-level algorithm based on RBNFNs
for extracting gene interaction networks. This algorithm is
advantageous as the network is never overparameterized,
avoids redundant fuzzy sets, decreases the redundancy of the
model, thus it is simpler and drastically reduces the com-
putational cost. Also, in this network, the training process
does not depend on the number of inputs and the sample
size. The proposed networks are trained with a subset of
experimental samples and tested with the remaining samples.
Then, the constructed fuzzy functions in the gene interaction
reconstruction (referred as edges) depend on the dynamics
of input-output patterns of the networks. We applied the
network to yeast cell-cycle regulation data and the resulted

interactions from our model were compatible with previous
experimentally verified interactions.

2. Algorithm

The method proposed in this paper is a quantitative com-
putational approach consisting of five main stages shown in
Figure 1. Our methodology includes two levels. In the first
level (stage 1), RBNFNs are used for time series prediction of
gene expression; in the second level (stage 2 to 5), the rules
created by the RBNFNs for reconstructing gene regulatory
networks are employed. The detailed descriptions of these
stages are outlined as follows:

(1) Training RBNFNs by gene expression data and
creating IF-THEN rules (Section 2.1),

(2) Extracting fuzzy IF-THEN rules of each RBNFN and
the related weights (Section 2.2),
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Figure 2: The architecture of a typical rule-based neurofuzzy network (RBNFN). Expression data for each gene is normalized (input layer)
before being fuzzified using a three-state Gaussian matrix (fuzzier layer), then the preceding part of fuzzy rules are combined using a product
operator (rule base layer), before the rules are normalized (rule normalization layer) and the fuzzy target value is defuzzified (combination
& defuzzifier layer).

(3) Sorting the obtained fuzzy rules of each RBNFN to
have further analyses (Section 2.3),

(4) Extracting similarity rules as a connectivity matrix,
from sorted fuzzy rules of all RBNFNs, and generat-
ing the interactions from each rule (Section 2.4),

(5) Analyzing the extracted interactions of stage 4 to
reconstruct the final model (Section 2.5).

2.1. Rule-Based Neurofuzzy Networks (RBNFNs). Let us first
assume that there are N genes in the expression dataset we
are studying. In the first stage, N independent RBNFNs are
generated with the following structure: in each RBNFN, the
expression data for all genes are loaded as inputs except for
one gene, which is considered as an output. Training each
RBNFN with expression data gives rise to a network capable
of predicting the expression pattern of the output as the
result of input genes.

RBNFNs are employed in this stage because of their
ability to overcome the drawbacks of pure neural networks.
By incorporating elements of fuzzy reasoning processes, the
RBNFN gives meaning and function as part of a fuzzy rule

to each node via an associated weight. We have utilized the
least square (LS) technique to learn the parameters of these
RBNFNs. The architecture of a typical RBNFN (illustrated in
Figure 2) includes the following steps:

2.1.1. Input Layer (Step 1). In this layer, the input expression
dataset is normalized using (1). Each node, corresponding to
each input variable, normalizes each input value to the scale
of [0, 1] for the next layer, to facilitate in fuzzification:

O(1)
i = Gi −min(Gi)

max(Gi)−min(Gi)
, (1)

where Gi is the expression values of the ith gene, and O(1)
i is

the ith output of input layer.

2.1.2. Fuzzier Layer (Step 2). In layer 2, the normalized
expression values are fuzzified using a three-state Gaussian
matrix, with linguistic values of “Low,” “Medium,” and
“High.” These linguistic labels represent the data in fuzzy
logic terms. Figure 3 depicts the Gaussian membership
functions (MFs) for the three-state model employed to find
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Table 1: Membership matrix of a three-state fuzzy logic model.

Labels
Genes

G1, k G2, k G3, k · · · Gn, k

Low Expressed OL
1, k OL

2, k OL
3, k · · · OL

n, k

Medium Expressed OM
1, k OM

2, k OM
3, k · · · OM

n, k

High Expressed OH
1, k OH

2, k OH
3, k · · · OH

n, k

Entries within the columns are the normalized expression value of genes in the kth time point applied to the membership functions of low, medium, and high
expressed.
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Figure 3: Three state fuzzy Gaussian membership functions. Two
examples of normalized expression levels and their fuzzy represen-
tation for two genes are depicted. Oi(max), shown by green circle,
is the maximum membership value of each input.

the maximum degree that each sample of normalized input
belongs to the respective label. In (2), the membership
functions are represented in Gaussian form:

O(2)
i,k = exp

⎛
⎜⎝−

(
O(1)

i,k −m
j
i,k

)2

σ
j
i,k

2

⎞
⎟⎠, (2)

where i, k, and jindicate the label of the input variable, the
time point and the MF, respectively, m and σ are the mean

and variance of the membership functions, while O(1)
i,k is the

value of the ith input variable in the kth time point.
We have considered constant values for the means and

variances of MFs in a manner that they cover the scale of
[0, 1] in equal partitions. The constant means and variances
are assumed in order to maintain an ability to compare and
analyze the extracted rules in the next layers. In other words,
if these values are different for each input, the concept of
low, medium, and high expressed for each gene will not be
the same as for the others. In addition, employing constant
means and variances allows for fewer parameters to be
trained in the network; an advantage of which is that, when
encountering small sample size temporal genetic data, the
network will not be overparameterized during training.

As described earlier, the algorithm in step 2 partitions
the input/output space. This space is an n-dimensional unit
hypercube [0, 1]n similar to Table 1. This hypercube results
when membership functions map the points in the input/
output space to a degree of membership between 0 and 1.
Table 1 presents the membership value of the normalized
expression data of each gene assigned to low, medium, and

high labels by (2). In this table, O
j
i,k represents the member-

ship value of kth data point for ith gene assigned to jth label.

2.1.3. Rule Base Layer (Step 3). Upon the fuzzified output
of layer 2, a rule-based profile is set up in layer 3. This
profile consists of fuzzy IF-THEN rules for determining the
expression value of a target gene according to the expression
levels of input genes. For instance, as illustrated in Figure 4
for a sample three-state model, a fuzzy IF-THEN rule may be
presented as follows: IF “the expression level of G1, G2 and
G3 are respectively Low, High and Medium as input genes,”
THEN “the corresponding expression level for the target
gene, GT , will be Low.” The method used in our fuzzy system
is based on a singleton output function, which assigns a
single value to each of the N fuzzy states in the model.

In order to reduce the search space of possible fuzzy rule
combinations from the rule-based layer, we only create new
rules associated with output states observed in the training
sample set. As such, each new rule corresponds to interaction
clusters discovered in the input/output space. This indicates
that the number of created rules in the RBNFN depends on
the number of sample sets of input/output genes. Thus, the
more samples of genes presented, the greater number of rules
created. The expected benefit of this approach is that there
would be less contamination in knowledge extracted by not
considering irrelevant states for gene interaction.

When a new set of input/output data is applied to the
RBNFN, the network determines whether to generate a new
rule for describing the incoming pattern (x, y) or not. This
occurs after checking the similarities between the new rule
and the previous ones. This process leads to a reduction
in the number of fuzzy sets and avoids the existence of
redundant rules.

Each node in layer 3 combines the antecedent part of a
fuzzy rule using a T-norm operator. In this study, the T-
norm operator is considered as a product operation. The
output of each node represents the firing strength of the
corresponding fuzzy rule, which is calculated by

O(3)
k =Prodr

(
exp
(
−
{
δ−1
r

(
O(1)

r −Cr

)}T{
δ−1
r

(
O(1)

r −Cr

)}))
,

δ−1
r = diag

(
1
σr1

,
1
σr2

, . . . ,
1
σrn

)
,

Cr = (cr1, cr2, . . . , crn)T ,
(3)
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where r runs through all the selected nodes of step 2 cor-
responding to the kth rule.

2.1.4. Rule Normalization Layer (Step 4). The number of
nodes in this step is the same as step 3. The nodes in layer
4 calculate the ratio of the ith rule’s firing power to the sum
of all rules’ firing strengths, which can be formulated by (4).
Indeed, the rules are normalized in this layer in the scale of
[0, 1]

O(4)
i = O(3)

i∑m
i=1 O

(3)
i

, (4)

where m is the number of all rule sets. The output of this
layer is also called normalized firing power.

2.1.5. Combination and Defuzzification Layer (Step 5). After
applying the decision matrix to the fuzzified expression
levels in step 4, the membership degree of a target to a
statement is determined. At step 5, the fuzzy target value is
transformed back into a value between 0 and 1 via the process
of defuzzification; indeed, the output is the predicted value of
the RBNFN.

Equation (5) formulates the output of layer 5, as the
overall output of RBNFN. In fact, this equation combines
and defuzzifies all the rules from previous steps

O(5)
i =

m∑

i=1

wiO
(4)
i , (5)

where wi is the weight multiplied to the ith rule.
Figure 5 illustrates this process as an example. In this

figure, each row indicates a rule calculated from normalized
expression values of input genes at a sample time point.

As described above, in our methodology, we have an
RBNFN for each gene. In a particular RBNFN, the expression
value of the output gene is assumed to be the outcome of all
other genes. In other words, all remaining genes are consid-
ered to be either activators or repressors for the target gene,
and the predicted expression pattern for this gene is deduced
from the expression levels of all other ones.

Also we compare the prediction of the RBNFN with the
real expression pattern of a target gene in order to calculate
the weights of the network. A greater weight specifies that the
corresponding input gene has a greater affect on the output,
so it can be considered as a greater activator or repressor
effect on the target gene.
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Table 2: Extracted rules of ith network.

Rule
Gene

G1 G2 · · · Gi−1 Gi+1 · · · Gn W Gi

Rule 1 Li1, 1 Li1, 2 · · · Li1, i−1 Li1, i+1 · · · Li1,n wi
1 Li1, i

Rule 2 Li2, 1 Li2, 2 · · · Li2, i−1 Li2, i+1 · · · Li2,n wi
2 Li2, i

...
...

...
...

...
...

...
...

...
...

Rule K LiK , 1 LiK , 2 · · · LiK , i−1 LiK , i+1 · · · LiK ,n wi
K LiK , i
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Figure 5: The defuzzification process.

2.2. RBNFNs Learning Procedure. The parameters of pro-
posed RBNFN must be trained to obtain a prediction system
for our data. Therefore, in the learning procedure, the related
parameters of rules (weights) are trained by LS the least
squares (LS) learning algorithm. The simplicity of LS algo-
rithm makes it a common and suitable method for training
and tuning parameters of neural or fuzzy networks.

An error criterion is defined for each RBNFN in order to
test the accuracy of a given data set. The error criterion is an
overall error measurement based on the differences between
the predictions and target values. We used mean square error
(MSE) as our error criterion which is a very common crite-
rion described by

Ei = 1
N

N∑

i=1

(
y Predicted
i − yMeasured

i

)2
, (6)

where N is the number of samples in the data set. Intuitively,
an increase in the number of rules results in a decrease in the
error measure of (6).

In the next step, we attempt to extract the most of
available information from provided genetic data in order
to make the most possible understanding of behaviour and
interaction among genes.

2.3. Extracting Fuzzy IF-THEN Rules. As stated above, in the
proposed HRBNF algorithm, we construct network models
for as many genes as possible from the data available. In each
model, one of the genes is considered as the output and the
others as the input nodes. The model attempts to describe the
behaviour of the output gene based on the possible interac-
tions of input genes.

Finally, it stores the derived knowledge from gene-gene
interactions in the fuzzy rules and their corresponding
weights.

Table 2 presents the extracted rules of ith network. In this
table, i, k run through all the input variables and extracted
rules, respectively, for n genes. Lik, j indicates the fuzzy label
of jth gene in kth rule of ith RBNFN.

2.4. Fuzzy Rules Preparation. After extracting fuzzy IF-THEN
rules such as those in Table 2, the rules are sorted in a way
that the ith gene takes the ith position in the matrix; so we
shift it between i − 1th and i + 1th column of the matrix.
This leads us to have similar rule matrices in all RBNFNs and
a decision agent to find gene interactions. The interactions
are delineated according to the weight values and upon com-
paring them in similar rules of different RBNFNs. As stated
in previous sections, to extract more precise relationships
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Table 3: The networks effects on jth rule.

Rule
Gene

G1 G2 · · · Gi−1 Gi Gi+1 · · · Gn W

Rule j L1
j, 1 L1

j, 2 · · · L1
j, i−1 L1

j, i L1
j, i+1 · · · L1

j,n w1
j

Rule j L2
j, 1 L2

j, 2 · · · L2
j, i−1 L2

j, i L2
j, i+1 · · · L2

j,n w2
j

...
...

...
...

...
...

...
...

...
...

Rule j Lnj, 1 Lnj, 2 · · · Lnj, i−1 Lnj, i Lnj, i+1 · · · Lnj,n wn
j

between genes, a full capacity of all available data is used in
HRBNF algorithm. The proposed analysis of obtained rules
and the way interactions among genes occurs are described
in the next stage.

2.5. Similar Rules Extraction. Assuming that we have N
genes, the outputs of previous stages are N matrices with K
similar rules in each one. In this stage, we create a new set
of matrices from previous tables in order to extract informa-
tion. To achieve this target, N matrices are defined with K
rules in them. A new table in this stage consists of K similar
rules gained from all RBNFNs. Regarding the weights of a
specified rule in RBNFNs, we can find the effect of that
particular rule in every RBNFN; therefore, its effect on every
output gene can be evaluated. This guides us to extract the
relationships between genes by exploiting these matrices.

In Table 3, an example to the jth rule is illustrated. We
call this table as the table of network effects on the similar
rule (NESR) matrix.

In order to estimate gene interactions from NESR matrix,
the weights have to be analyzed. Therefore, we define some
thresholds to identify the effect of a rule on all genes.

It is not easy to determine an optimal threshold value
since a large value may result in the elimination of true
connections with small effects during the procedure. On the
other hand, a small threshold is not able to retrieve true
connections from false connections in an inherently sparse
genetic dataset. Our proposed criterion to obtain an appro-
priate threshold is called “effectivity threshold (ET).” This
threshold is different for each RBNFN and is defined as the
average of all weights calculated in that RBNFN, as shown
in (7). We defined different thresholds for RBNFNs because
the range of weights in each RBNFN is different from others;
thus, by having different thresholds, a more realistic view of
the effect of similar rules in different networks is provided

Ti = 1
k

k∑

p=1

wi
p. (7)

In (7) i, k denote ith RBNFN and the number of rules in ith
RBNFN, respectively. Also, wi

p is the calculated weight value
for pth rule in ith RBNFN.

After defining the thresholds, ETs are compared with
thresholds. We also define a parameter named effectivity
symbol (ES), which describes the state of each ET. According
to (8), an ES equals to “+1” when the related weight is pos-
itive with absolute value greater than the defined threshold,
or equals to “−1” when the related weight is negative with

absolute value bigger than the defined threshold. An ES is
considered to be “0” if the absolute value of related weight is
less than the threshold

if
∣∣∣wi

j

∣∣∣ < Ti then ESij = 0,

if
∣∣∣wi

j

∣∣∣> T i, wi
j > 0 then ESij = 1,

if
∣∣∣wi

j

∣∣∣> T i, wi
j < 0 then ESij = −1.

(8)

In the above equations, i, j denotes ith RBNFN for jth rule;
and ESij shows whether the jth rule has an effect more than
the threshold on the ith gene or not.

By defining ESs, new matrices are obtained from NESR
matrices with ES values instead of weights. We named these
matrices as “ES matrices.” Table 4 is an instance of an ES
matrix related to jth rule. This matrix contains similar jth
rule extracted from different RBNFNs.

This stage is finalized by a decision-making process, in
which we extract the connections from ES matrices. The con-
nection of two genes is displayed by a directed graph in which
an edge from one gene is directed to the other one, showing
that the former gene has effect on the latter one. Our pro-
posed procedure of extracting the connections among genes
from the ES matrix is outlined in the following.

As stated before, a rule with ES equals to “0” implies that
the weight of this rule in the related RBNFN is less than
defined threshold; this means that the input genes of the
RBNFN have effects less than the threshold on the output
gene. Thus, we can consider that the output gene is not
affected by the input genes. In other words, a rule with ES =
“0” in an RBNFN means there is no inferred connection from
the input gene to output gene. On the other hand, a rule
with ES = “1” in an RBNFN means that the input genes have
effects on the output gene as activators. Finally, a rule with
ES = “−1” in an RBNFN indicates that the input genes are
repressors of the output gene.

The decision-making process is formalized by (9):

In Rule j: if ESij = 0 & ES
p
j /= 0, p=1,...,n, p /= i

⇒
G(i) connect to G

(
p
)

if ES
p
j = −1 then connection is repressor

if ES
p
j = 1 then connection is activator

(9)

2.6. Final Genetic Interaction Network Extraction. In the
former section, we presented a procedure for extracting
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Table 4: Decision-making table related to jth rule for depicting graph.

Rule
Gene

G1 G2 · · · Gi−1 Gi Gi+1 · · · Gn ES

Rule j L1
j, 1 L1

j, 2 · · · L1
j, i−1 L1

j, i L1
j, i+1 · · · L1

j,n ES1
j

Rule j L2
j, 1 L2

j, 2 · · · L2
j, i−1 L2

j, i L2
j, i+1 · · · L2

j,n ES2
j

...
...

...
...

...
...

...
...

...
...

Rule j Lnj, 1 Lnj, 2 · · · Lnj, i−1 Lnj, i Lnj, i+1 · · · Lnj,n ESn
j

Table 5: Resultant of activator interactions.

Gene
Gene

G1 G2 · · · Gi · · · Gn

G1 0
∑k

j=1 AC
j
1→ 2 · · · ∑k

j=1 AC
j
1→ i · · · ∑k

j=1 AC
j
1→n

G2
∑k

j=1 AC
j
2→ 1 0 · · · ∑k

j=1 AC
j
2→ i · · · ∑k

j=1 AC
j
2→n

...
...

...
...

...
...

...

Gi

∑k
j=1 AC

j
i→ 1

∑k
j=1 AC

j
i→ 2 · · · 0 · · · ∑k

j=1 AC
j
i→n

...
...

...
...

...
...

...

Gn

∑k
j=1 AC

j
n→ 1

∑k
j=1 AC

j
n→ 2 · · · ∑k

j=1 AC
j
n→ i · · · 0

the connections among genes from ES tables. This procedure
leads us to create two connection networks (CNs) for each
ES matrix: one for activator connections and the other for
repressor connections. As previously discussed, ES matrices
are obtained from the same rules extracted from all RBNFNs.
Thus, the number of CNs attained from a genetic dataset
is two times that of the extracted rules. In this section, we
attempt to achieve a final genetic interaction network from
these CNs. This goal is acquired by analyzing and interpret-
ing the activator and repressor connections of all rules.

We define two criteria for all connections of different
CNs: activator criterion (AC) and repressor criterion (RC).
Activator criterion, as shown in (10), has been employed to
survey the activator interactions; as a result of which, Table 6
is obtained from all connections in CNs

For Rule j⇒ if G(i) connect to G
(
p
) (

p = 1, . . . ,n, p /= i
)

and connection is activator

AC
j
i→ p = 1

else AC
j
i→ p = 0

(10)

In (10), AC = 1 denotes the existence of an activator con-
nection and AC = 0 does not indicate whether an activator
connection exists or not. The interaction is estimated by
summation of ACs as shown in Table 5. In this estimation,
first we calculate the summation of ACs that confirm an
interaction from ith gene to pth gene (

∑k
j=1 AC

j
i→ p), and the

summation of ACs that confirm an interaction from pth gene

to ith gene (
∑k

j=1 AC
j
p→ i); then, the interaction between ith

gene and pth gene is estimated as the subtraction of these
two values. By estimating the interactions between all pairs of
genes, the final activator interaction network can be ascer-
tained.

Similar to the procedure described above, we define a
repressor criterion in order to obtain the repressor con-
nections and to achieve the final repression interactions
network. The repressor criterion is presented in (11) and the
repressor interactions are illustrated in Table 6

For Rule j⇒ if G(i) connect to G
(
p
)(
p = 1, . . . ,n, p /= i

)

and connection is repressor

RC
j
i→ p = 1

else RC
j
i→ p = 0,

(11)

where RC denotes the repressor connections.
In Table 6, similar to Table 5, the repressor interaction

between ith gene and pth gene is estimated as the subtraction

of
∑k

j=1 RC
j
i→ p and

∑k
j=1 RC

j
p→ i. The final repressor inter-

action network will be provided by estimating the repressor
interactions between all pairs of genes.

3. Results

In this section, we present the results of HRBNF algorithm
for an experimental data. In Section 3.1, we will introduce
yeast (Saccharomyces cerevisiae) cell cycle microarray time
series data sets presented in [47, 48]. This data has been
extensively exploited for both practical and academic appli-
cations. Researchers frequently use these data sets to demon-
strate and validate statistical and clustering analysis (e.g.,
[49–52]), mathematical modelling [37, 38], and reverse
engineering methods [36, 53].

In Section 3.2, we present the results of RBNFNs per-
formance in predicting the time series data sets. Finally, in
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Table 6: Resultant of repressor interactions.

Gene
Gene

G1 G2 · · · Gi · · · Gn

G1 0
∑k

j=1 RC
j
1→ 2 · · · ∑k

j=1 RC
j
1→ i · · · ∑k

j=1 RC
j
1→n

G2
∑k

j=1 RC
j
2→ 1 0 · · · ∑k

j=1 RC
j
2→ i · · · ∑k

j=1 RC
j
2→n

...
...

...
...

...
...

...

Gi

∑k
j=1 RC

j
i→ 1

∑k
j=1 RC

j
i→ 2 · · · 0 · · · ∑k

j=1 RC
j
i→n

...
...

...
...

...
...

...

Gn

∑k
j=1 RC

j
n→ 1

∑k
j=1 RC

j
n→ 2 · · · ∑k

j=1 RC
j
n→ i · · · 0

Table 7: List of a subset of genes involved in the yeast cell cycle selected for our demonstration network. Descriptions were adopted from
the Yeast Protein Database [46].

Gene Name ORF Description

SIC01 YLR079W inhibitor of the Cdc28-Clb protein kinase complex

CLB05 YPR120C B-type cyclin

CDC20 YGL116W cell division control protein

CLN03 YAL040C G1/S-specific cyclin

SWI06 YLR182W transcription factor, subunit of SBF and MBF

CLN01 YMR199W G1/S-specific cyclin

CLN02 YPL256C G1/S-specific cyclin

CLB06 YGR109C B-type cyclin

CDC28 YBR160W cyclin-dependent protein kinase

MBP01 YDL056W transcription factor, subunit of MBF

CDC06 YJL194W initiates DNA replication, active late G1/S

SWI04 YER111C transcription factor, subunit of the SBF factor

Section 3.3, the designed interaction network, the compari-
son of the results with experimentally evaluated network and
previous works are presented.

3.1. Data: Yeast Cell Cycle Dataset. In order to evaluate
HRBNF algorithm, we generated fuzzy gene networks based
on yeast cell cycle microarray time series data sets. We
focused on twelve yeast genes playing key roles in the control
of cell cycle as listed in Table 7 with descriptions taken from
the Yeast Proteome Database [46]. The protein-protein and
the regulatory interaction of the coded proteins for these
genes which are involved in yeast cell-cycle are well-studied.
The high-throughput techniques such as microarray pro-
vided us with the time-series expression of these genes
reflecting the dynamic behaviour of these genes in cell cycle.
Although the new techniques such as RNA-seq are already
out there which give us better resolution of expression
profile, the main pattern of genes expression profile can be
extracted from microarray expression data. Consequently,
HRBNF algorithm is used as a “reverse engineering” method
to find all possible genetic interaction network models that
fit the data for the set of twelve genes and to demonstrate its
ability to handle other similarly noisy data sets.

In addition to the vast studies on the yeast data sets spe-
cially in systems biology that allow us to have a better assess-
ment on the acquired results, these data sets are advantageous

because of having adequate number of genes and time points
for testing results.

As described by Cho et al. [48], gene expression profiles
for yeast cell cycle have been studied through four microarray
time series data sets: Alpha, Cdc15, Cdc28, and Elu with 18,
24, 17, and 14 time points, respectively. We have used Alpha,
Cdc15, and Cdc28 data sets, in which still some samples
were missed. The missing values are computed using an
estimation method based on the K-Nearest Neighbourhood
(KNN) algorithm [54].

S. cerevisiae cell cycle regulatory protein-DNA interac-
tions were also the subject of a recent extensive experimental
study [55] for which a great deal of information has been
compiled in KEGG pathway database [44, 45]. Figure 6,
shows the interactions of the cell cycle regulatory protein
subset shown experimentally so far [56]. We applied HRBNF
algorithm on gene expression values corresponding to these
twelve genes, and compared to the estimated directed net-
work with the pathway depicted in KEGG.

3.2. Prediction of Gene Expression Level. In order to constrain
the number of parameters, we have to restrict the structure
of our RBNFNs according to the size of employed data set.
As a result, we consider the following hypothesis for the
RBNFNs: (i) focusing on 12-key yeast cell cycle genes as the
input/output nodes of the RBNFNs; (ii) setting the number
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Table 8: The accuracy of extracted interactions after considering different variances.

Correct Interactions
Variances

0.05 0.1 0.15 0.2 0.25 0.3 0.35

% 24.2% 27.3% 27.3% 33.3% 39.4% 27.3% 24.2%

Figure 6: KEGG yeast cell cycle interactions—Schematic of known yeast cell cycle interactions between protein products of twelve studied
genes regulatory (Table 7). An arrow indicates a positive interaction and a closed circle indicates negative interaction [44, 45].

of MFs to three, as the minimum meaningful resolution. The
centers and variances of search space with three MFs are
considered as follows (identified empirically):

Center = [0.2, 0.5, 0.8]; Variance = 0.25. (12)

The centers are selected according to the considered three
MFs and linguistic values of “Low,” “Medium,” and “High”;
the variances are obtained from results of Table 8. This table
presents the accuracy of extracted interactions compared
with real interactions, and shows that variance of 0.25 can
extract the best result. Also this variance represents a distri-
bution over the entire range of our search space.

The RBNFNs are trained using Cdc15 dataset, and tested
by Cdc28 and Alpha datasets. The test results are shown in
Table 9.

3.3. Genetic Interaction Network Reconstruction for Yeast Cell
Cycle Data. To test the capability of our proposed method,
we used the RBNFNs to predict time-series gene expres-
sion values and then, extract gene regulatory network
(GRN) structures from inferred rules. The results of GRN
reconstruction were evaluated by a part of yeast cell cycle

Table 9: MSE errors of HRBNF models for testing data.

Genes Name
MSE error

Data Set (Cdc28) Data Set (Alpha)

SIC01 0.047 0.125

CLB05 0.096 0.020

CDC20 0.051 0.082

CLN03 0.059 0.163

SWI06 0.184 0.102

CLN01 0.108 0.107

CLN02 0.044 0.016

CLB06 0.046 0.024

CDC28 0.112 0.123

MBP01 0.146 0.138

CDC06 0.123 0.094

SWI04 0.050 0.054

regulatory network extracted from KEGG database [44, 45].
Figure 7 illustrates the extracted genetic network of activator
and repressor interactions.
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Figure 7: Inferred genetic interaction network for twelve yeast cell cycle regulatory genes. Each node represents a gene and the presence of
an edge between the two nodes represents the existence of interaction between the two genes. Symbols “→ ” and “�”, shown by blue and red
edges, illustrate activator and repressor interactions, respectively. Dashed edges represent interactions that have been verified. In contrast,
dotted edges are incorrect extracted interactions.

4. Discussion

We compared genetic interaction networks constructed
based on five algorithms from the same dataset. The results
show that the inferred network from our proposed algorithm
has the best performance.

As shown in Table 10, the extracted network from
HRBNF algorithm demonstrates a more complete match
with the KEGG pathway than proposed methods from litera-
ture. Indeed, we observe that our HRBNF algorithm is capa-
ble to extract 13 true connections out of 33 available experi-
mentally illustrated connections, while only 4, 5, 10, and 7
true connections are captured by DBN [57], VBEM [58],
Time delay-ARACNE [59], and PF subjected to LASSO [30],
respectively. It is clear that we reduced the misdirected edges.

Some criteria are useful to evaluate the goodness of fit of
the inferred network [60]: the proportion of recovered true
edges in the target network that is called Recall and precision
corresponds to the expected success rate in the experimental
validation of the predicted interactions.

We can compute sensitivity and precision from following
equations:

Sensitivity = TP
TP + FN

,

Precision = TP
TP + FP

,

(13)

where true positive (TP) is the inferred number of edges
identified correctly, false negative (FN) is the number of
edges that were not identified, and false positives (FP) is the
number of edges identified incorrectly.

Also, we calculated the F-score by using (14) to further
quantify the performance of the algorithms [60]:

F-score = 1
α(1/Precision) + (1− α)

(
1/Sensitivity

) ,

(14)

where α is a weighting factor and here we consider α = 0.5
that is called the harmonic mean of precision and sensitivity
because the importance of precision and sensitivity is even.

Consequently, the goodness of fit of the results based
on HRBNF and the other structure learning approaches in
predicting the connectivity network of the KEGG pathway
were compared using estimates of above criteria.

The results, presented in Table 11, show that evaluation
criteria, sensitivity, and F-score, are distinctively higher for
our approach compared to previous methods indicating
the efficiency of our approach. In a good system, precision
decreases as sensitivity increases.

Considering the results obtained from proposed method,
it can be concluded that there are considerable agreements
between the findings of HRBNF algorithm and experimental
results reported in the literature. The main advantage of
proposed method is that HRBNF algorithm searches for the
relationships that fit to a logical understanding of how a
set of genes should interact. By using the same criteria that
biologists would use to describe the gene regulatory function
(i.e., framed as an “IF-THEN-ELSE” relationship in terms
of expression level), HRBNF algorithm based on fuzzy logic
approximates the thought process that an expert would use
to analyze these kinds of data; however, in contrast to an
expert, HRBNF algorithm is automated and unbiased. If gene
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Table 10: Comparison of our algorithm performance by other methods in literature in detecting interactions among experimentally known
gene interactions.

No Interactions DBN [57] VBEM [58] Time delay-ARACNE [59] PF subjected to LASSO [30] Propose Algorithm

1 CLN03 → SWI04 Consistent Consistent Consistent Not Found Consistent

2 CLN03 → SWI06 Not Found Not Found Consistent Inconsistent Not Found

3 CLN03 → MBP01 Not Found Not Found Consistent Not Found Not Found

4 CDC28 → MBP01 Not Found Consistent Consistent Not Found Consistent

5 CDC28 → SWI04 Not Found Not Found Not Found Not Found Consistent

6 CDC28 → SWI06 Not Found Not Found Consistent Inconsistent Not Found

7 CDC28 → CDC06 Not Found Consistent Not Found Not Found Not Found

8 CDC28 � SIC01 Not Found Not Found Not Found Not Found Not Found

9 SWI04 → CLN01 Consistent Consistent Consistent Not Found Not Found

10 SWI04 → CLN02 Consistent Not Found Not Found Not Found Not Found

11 SWI04 → CDC28 Not Found Not Found Not Found Not Found Not Found

12 SWI06 → CLB05 Not Found Not Found Not Found Consistent Consistent

13 SWI06 → CLB06 Not Found Consistent Consistent Not Found Consistent

14 SWI06 → CLN1 Inconsistent Inconsistent Consistent Consistent Inconsistent

15 SWI06 → CLN2 Not Found Not Found Not Found Consistent Consistent

16 SWI06 → CDC28 Not Found Not Found Not Found Not Found Consistent

17 MBP01 → CLB05 Not Found Not Found Not Found Not Found Not Found

18 MBP01 → CLB06 Not Found Not Found Not Found Not Found Consistent

19 MBP01 → CDC28 Not Found Not Found Not Found Not Found Not Found

20 CLN01 → SWI06 Not Found Not Found Not Found Consistent Consistent

21 CLN01 → SWI04 Not Found Not Found Not Found Not Found Consistent

22 CLN01 � SIC01 Consistent Inconsistent Inconsistent Consistent Inconsistent

23 CLN02 � SIC01 Not Found Not Found Inconsistent Not Found Not Found

24 CLN02 → SWI04 Not Found Not Found Consistent Not Found Consistent

25 CLN02 → SWI06 Not Found Not Found Not Found Consistent Not Found

26 SIC01 � CDC28 Not Found Not Found Not Found Inconsistent Not Found

27 SIC01 � CLB05 Not Found Not Found Not Found Not Found Not Found

28 SIC01 � CLB06 Not Found Not Found Not Found Not Found Not Found

29 CDC20 � CLB05 Not Found Not Found Not Found Not Found Consistent

30 CDC20 � CLB06 Not Found Not Found Not Found Not Found Inconsistent

31 CDC20 � CDC28 Not Found Not Found Not Found Consistent Consistent

32 CLB05 → CDC06 Not Found Not Found Not Found Not Found Not Found

33 CLB06 → CDC06 Not Found Inconsistent Consistent Not Found Not Found
∗

Symbols “→ ” and “�” illustrate activator and repressor interactions, respectively.

Table 11: Comparison of the proposed algorithm with other methods using statistical criteria.

TP FP FN Sensitivity Precision F-Score

DBN [57] 4 1 29 12.1% 80% 21%

VBEM [58] 5 3 28 15.2% 62.5% 23.5%

Time delay-ARACNE [59] 10 2 23 30.3% 83.3% 44.4%

PF subjected to LASSO [30] 7 3 26 21.2% 70% 32.5%

Proposed Algorithm 13 3 20 39.4% 81.3% 53.1%

expression data is not analyzed properly, it can be difficult to
interpret and can easily be misconstrued.

In comparison to other methods, our computational
algorithm analyses the data more efficient, unbiased, and
fast. Our proposed model and Time delay-ARACNE [59]
used less than one second against PF subjected to LASSO [30]
which in turn used 23 minutes and 37 seconds on a Core

i7 PC with 8 GB main memory, respectively. We speculate
that this is due to the reduction in search space that results
from by applying relevant rule selection (Section 2.1.3) prior
to neurofuzzy network learning.

Algorithm based on neurofuzzy networks found a dis-
proportionately large number of interactions for the roles of
activators and repressors due to available datasets with small
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size samples. Of course, if expression profiling technologies
become more sensitive and faster, our HRBNF algorithm
would detect a more precise effect of gene expression on the
activator and repressor roles, providing more information to
decrease the number of interactions, which leads to a better
understanding.

5. Conclusions

In this paper, we described a novel algorithm based on
RBNFNs for gene regulatory network reconstruction. We
demonstrated our approach by developing RBNFN models
that more accurately predict gene expression data from
typically noisy microarray experiments. Looking at the gene
regulatory networks provides us a systemic view at the “gene
interaction” level.

Our HRBNF algorithm was successfully validated using
yeast cell cycle data. The rules of inferred networks reflect
most interactions previously identified by genome-scale
analysis and match the existing literature. At the network
level, the inferred rules provide more detailed information
about genes and the interactions among them. Potential new
interesting interactions were identified, which provide novel
hypotheses for new lines of further research. As a con-
sequence, common rules among all the RBNFNs and the
plausible model were identified, giving rise to better under-
standing of the system.

RBNFNs can simultaneously extract both quantitative
and qualitative information. However, the insufficiency in
both data and biological understanding of gene interactions
limit the results obtained from RBNFN models.

We arrive to the conclusion that the presented HRBNF
algorithm provides a comprehensive method with the capa-
bility of capturing meaningful results. It should be noted that
the goal of HRBNF algorithm is not only to provide quanti-
tative predictions, but also to extract knowledge for interac-
tions among genes.

Finally, among these five algorithms, our proposed algo-
rithm has the increased performance in terms of execution
time, sensitivity, precision, and F-score. This study found
that proposed method is a good strategy to more readily
infer gene networks due to its better performance and short
execution time.

Despite great progress made with different algorithms,
many problems remain unsolved, and much improvement is
still required.
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