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Abstract
Coral surface mucus layer (SML) microbiota are critical components of the coral holobiont

and play important roles in nutrient cycling and defense against pathogens. We sequenced

16S rRNA amplicons to examine the structure of the SML microbiome within and between

colonies of the threatened Caribbean reef-building coral Acropora palmata in the Florida

Keys. Samples were taken from three spatially distinct colony regions—uppermost (high

irradiance), underside (low irradiance), and the colony base—representing microhabitats

that vary in irradiance and water flow. Phylogenetic diversity (PD) values of coral SML bac-

teria communities were greater than surrounding seawater and lower than adjacent sedi-

ment. Bacterial diversity and community composition was consistent among the three

microhabitats. Cyanobacteria, Bacteroidetes, Alphaproteobacteria, and Proteobacteria,

respectively were the most abundant phyla represented in the samples. This is the first time

spatial variability of the surface mucus layer of A. palmata has been studied. Homogeneity

in the microbiome of A. palmata contrasts with SML heterogeneity found in other Caribbean

corals. These findings suggest that, during non-stressful conditions, host regulation of SML

microbiota may override diverse physiochemical influences induced by the topographical

complexity of A. palmata. Documenting the spatial distribution of SML microbes is essential

to understanding the functional roles these microorganisms play in coral health and adapt-

ability to environmental perturbations.

Introduction
Reef-building corals host diverse assemblages of internal and external microbiota (i.e., archaea,
bacteria, cyanobacteria, fungi, protists, and viruses) [1,2] that collectively make up the coral
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holobiont [3–5]. Bacteria found within coral surface mucus layer (SML) are essential compo-
nents of the coral holobiont and have crucial roles in nutrient cycling and disease prevention
[4–6]. Under non-stressful conditions, beneficial microbial assemblages are often the first line
of defense and are thought to out-compete and prevent infection of opportunistic pathogens.
When environmental perturbations occur (e.g., coral bleaching or nutrient enrichment), these
microbial assemblages are often altered and the occurrence of coral disease can increase sub-
stantially (reviewed by: [4,6,7]).

Reef-building corals are topologically complex organisms. Although skeletal growth pro-
duces stationary structures on the reef, the three-dimensional complexity of these stationary
forms creates highly diverse photic environments [8–10] and fluid dynamic environments
around the coral [10,11]. Given the potential for rapid turnover of the corals’ SML bacterial
community and the potential importance that this community plays in metabolism and
defense against water-borne pathogens, one might predict high variance in composition and
abundance of these communities across such topologically complex forms.

To date, within-colony bacterial distribution has been studied for only two corals, the
branching finger coral, Porites furcata [3] and the boulder star coral, Orbicella annularis [12].
Spatial analysis of the highly branched finger-coral, P. furcata revealed a significant level of
within-colony heterogeneity within its SML bacterial communities. This within-colony hetero-
geneity of P. furcata is consistent with the hypothesis that holobiont composition responds
strongly to environmental variations, which occur across a topologically complex surface. The
hemispheroidal boulder coral, O. annularis, also exhibited considerable within-colony varia-
tion of bacterial assemblages between the tops and sides despite its simple geometric shape
[12]. Extrapolating these results to corals with an even greater degrees of topological complex-
ity, such as the large branching elkhorn coral, Acropora palmata would suggest that these
highly rugose corals would have either a similar or higher degree of SML bacterial community
heterogeneity.

Previous studies that have examined the A. palmata holobiont examined samples from one
region [13,14] or have combined samples into a single composite for analysis [15], while disre-
garding the possibility of within-colony SML bacterial niche diversification. To date, there is
little information to confirm these sampling assumptions, particularly among large, branching
corals with inherently high spatial variability. To better understand the spatial variability and
within-colony distributions of coral SML bacterial assemblages we sequenced the V1-V2 region
of the 16S rRNA gene to compare potential differences from three spatially distinct regions of
the threatened Caribbean reef-building coral, A. palmata. Contrary to our expectations, we
found the SML associated microbial communities of A. palmata to be homogeneous.

Material and Methods

Coral Mucus, Seawater, and Sediment Sampling and Processing
Colonies (n = 4) of Acropora palmata were sampled from Looe Key (3 m depth; N 24°32.724’
W81°24.360’), located in the Florida Keys National Marine Sanctuary during June 2011 using
SCUBA. Sterile, needleless syringes (10 ml) were used to gently withdraw the surface mucus
layer (SML) of A. palmata from biologically relevant regions: uppermost (high irradiance),
underside (low irradiance), and the base of replicate coral colonies (Fig 1). All samples were
collected from colonies that visually appeared healthy (i.e. no bleaching or disease lesions). Sea-
water was collected, in 10-ml syringes, approximately 1 m directly above sampled corals. Sedi-
ment was scooped into 50-ml conical vials directly from the base of sampled corals. All
samples were placed on ice, transported to the laboratory, and processed within 2 h of collec-
tion. Syringe contents were transferred into 15 ml conical tubes, vortexed for 5–10 s, and 2 ml
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were pelleted by centrifuging at 20,000 x g for 20 min. Two-ml aliquots from sediment samples
were processed in the same manner. After centrifugation, supernatant fluids were carefully
poured off and pellets were frozen at -20°C.

DNA extraction and 16S rDNA amplification
DNA was extracted following the protocol described in Boström et al. [16]. Briefly, pellets were
thawed, dissolved in 175 μl of lysis buffer (400 mMNaCl, 750 mM sucrose, 20 mM ethylenedi-
aminetetraacetic acid (EDTA), 50 mM Tris-HCL pH 9.0), followed by a lysozyme digestion (1
mg ml-1 final) for 30 min at 37°C and a proteinase K (100 μg ml-1 final) / sodium dodecyl sul-
fate (1% v/ν final) overnight digestion at 55°C. DNA was recovered with 50 μg Baker’s yeast
tRNA as a coprecipitant [17] with 1:10 vol 3M NaOAc, pH 5.2, and 0.6 volume of isopropanol
and incubated at -20°C for 1 h. Samples were placed in a microcentrifuge at 4°C and spun for
20 min (20,000 x g). Supernatant fluids were discarded and pellets were washed with 500 μL of
70% ethanol and then spun a second time (4°C, 20 min, 20,000 x g). DNA pellets were dried in
a SpeedVac (Thermo Scientific, Asheville, NC) for 20 min and dissolved in 20 μl of 10 mM
Tris-HCl pH 7–8. Extracted DNA was stored at -20°C until use.

The V1-V2 region of the 16S ribosomal rRNA gene was amplified using error-correcting
DNA barcoded PCR primers developed by Hamady et al. [18] for multiplexed pyrosequencing.
The forward primer (5’-GCC TTG CCA GCC CGC TCA GTC AGA GTT TGA TCC TGG CTC
AG-3’) contained the 454 Life Sciences primer B sequence, the broadly conserved bacterial
primer 27F, and a two-base linker sequence (“TC”). The reverse primer (5’–GCC TCC CTC
GCG CCA TCA GNN NNN NNN NCA TGC TGC CTC CCG TAG GAG T- 3’) contained the 454
Life Sciences primer A sequence, a unique 8-nt error-correcting Golay barcode, (designated by
NNNNNNNN), the bacterial primer 338R, and “CA” linker sequence [18]. Four replicate 50-μl
PCR amplifications were prepared for each sample and amplified products were combined.
Each PCR consisted of 26 μl of Promega ultra pure water (Madison, WI, USA), MgCl2 (2.5
mM), dNTPs (final concentration 200 μM), 1u of AmpliTaq Gold DNA polymerase LD (Invi-
trogen, Carlsbad, CA, USA) and 2 μl of genomic DNA (~ 5 ng). Negative controls, Promega
ultra pure water, were run in parallel to all environmental samples to check for potential primer
or sample DNA contamination. Triplicate reactions were held at 95°C for 5 min to denature
DNA, then 30 cycles of 94°C for 30s, 55°C for 60s, and 72°C for 90s, and a final extension at

Fig 1. Regions of the surfacemucus layer (SML) sampled (uppermost, underside, base) from A.
palmata.

doi:10.1371/journal.pone.0143790.g001
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72°C for 10 min. All PCR products were loaded on 2% agarose gels and electrophoresed for 1h
at 60V to verify amplification and screen for potential contamination.

Pyrosequencing sample preparation and analysis
The composite samples were purified using StrataPrep PCR Purification Kits (Agilent Technol-
ogies, Santa Clara, CA, USA). Coral and sediment samples were submitted to the Georgia
Genomics Facility (Athens, GA, USA) and seawater samples were submitted to Molecular
Research Laboratories (Shallowater, TX, USA) for library preparation, emulsion PCR, and
sequencing on a 454 Life Sciences Genome Sequencer FLX (Roche, Branford, Connecticut,
USA).

Sequences from the V1-V2 16S rRNA region were analyzed using a suite of tools available
in QIIME version 1.8 [19]. Sequences libraries were demultiplexed and processed through
Denoiser [20] to remove homopolymer errors characteristic of pyrosequencing. The initial
assignment of operational taxonomic units at the 97% similarity level (OTUs0.03) was made
using the denovo OTU picker script in QIIME with Usearch for clustering [21]. OTUs0.03
with 2 or fewer reads were removed (5% of all sequences) to reduce the artificial inflation of
diversity estimates due to sequencing errors. Reads were aligned with PyNAST [22] and
Chimera Slayer [23] was used to identify chimeric reads. Source tracker [24] was used to
identify samples that contained either significant laboratory or seawater contamination. Only
one sample, taken from the SML at the base of colony Ap62, was determined to be 50% PCR
contamination and was omitted from further analyses. No other samples showed
contamination.

Taxonomic assignment of OTUs was completed using the Ribosomal Database Project
(RDP) classifier and the RDP dataset [25,26] at a confidence threshold of 70%. OTUs0.03 classi-
fied as chloroplast or mitochondria by RDP were removed and BLAST [27] searches were con-
ducted to verify that mitochondria and chloroplast sequences from Acropora sp. and
Symbiodinium sp. were not present in the final libraries. Approximate maximum-likelihood
phylogenetic trees were built using FastTree2 [28] and samples were ordered by their UniFrac
dissimilarity matrix [29] using the complete linkage hierarchical clustering method in R [30].
Taxa were represented at the phylum, class or family level depending on their abundance in
the samples and plotted using rColorBrewer color palates in R [30].

To examine potential differences in alpha-diversity, samples were rarefied to 10 sequencing
depths 10 times and observed OTUs0.03, whole tree phylogenetic distance (PD), Chao1, and
Shannon-Wiener diversity were calculated using the alpha diversity script in QIIME (S1
Table). Beta diversity, the differentiation between the microbial communities, was estimated by
comparing weighted UniFrac indices to evaluate the relative abundances as well as presence of
OTUs0.03 [31]. To visualize the taxonomic variation between samples and sample sources,
these distance matrices were then used in a principal coordinate analysis (PCoA) using the
QIIME scripts principal_coordinates.py. PCA data were plotted with R. The significance of dif-
ferences in community structure between sample types (coral, seawater, sediment) and among
coral location (uppermost, underside, base) was evaluated by Permutational ANOVA of a
Bray-Curtis dissimilarity matrix based on phylogenetic distance using the Adonis method in
the R package Vegan [32]. Scripts to fully reproduce the analyses in this paper are available at
https://github.com/arivers/CoralPaper2015.

Results
We obtained 64,022 high-quality 16S rRNA gene pyrosequencing reads (mean corrected length
313 nt; BioProject database ID PRJNA230817) from three regions located on Acropora palmata
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colonies (uppermost, underside, and base), adjacent sediments, and seawater 1 m above coral
colonies (Fig 1). To investigate phylogenetic richness within each sample, rarefaction curves
for phylogenetic diversity (PD) were calculated for each sample type. Using the highest sam-
pled number of sequences available in all samples (1158) as a comparison point (Fig 2,
Table 1), microbial PD was greatest in the sediment (36.52 ± 0.30 SE) and lowest in the water

Fig 2. Measurements of biodiversity within each coral region, surrounding reef seawater, and sediment sampled. Rarefaction curves for microbial
communities calculated for 3 coral surface types (n = 3–4; 11 samples), reef seawater (n = 4), and sediment samples (n = 2). Operational taxonomic unit
(OTU0.03) richness rarefaction curves were estimated by phylogenetic diversity (PD).

doi:10.1371/journal.pone.0143790.g002
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samples (13.68 ± 1.02). All three coral regions examined had similar PD values (uppermost,
17.88 ± 0.69 SE; underside, 17.84 ± 0.77 SE; base, 17.98 ± 1.94 SE).

The three sampled regions of the surface mucus layer microbiota from A. palmata colonies
(base, underside, and uppermost) were dominated by similar taxa. Sequences from Cyanobac-
teria, Bacteroidetes, Deltaproteobacteria and Alphaproteobacteria in the orders Pelagibacter-
ales, Rhodobacterales were the most abundant taxa, respectively (Fig 3). The two sediment
samples were found to have the highest alpha-diversity (Fig 2, Table 1) with an average Chao1
diversity index 1165.91 ± 129.86 SE at a rarefaction depth of 1158 sequences. Sediment samples
were dominated by sequences belonging to Bacteroidetes, Cyanobacteria, Rhodobacterales,
and Gammaproteobacteria, respectively. Sediment samples had a higher prevalence of Rhodo-
bacterales than coral or seawater samples (Fig 3). Seawater samples were found to have the

Table 1. Diversity by sample type at the rarefaction depth of 1158 sequences averaged for 10 random sequence subsets. Numbers within brackets
indicate standard errors.

Sample Type Sample Number Observed OTUs0.03 Chao1 Shannon-Wiener Phylogenetic Diversity

Coral Uppermost 4 182.60 (6.74) 305.86 (7.30) 6.14 (0.12) 17.88 (0.69)

Coral Underside 4 182.58 (7.93) 321.77 (38.09) 6.05 (0.10) 17.84 (0.77)

Coral Base 3 182.20 (28.26) 309.23 (94.14) 6.01 (0.37) 17.98 (1.94)

Seawater 4 151.95 (10.91) 200.37 (22.55) 5.49 (0.15) 13.68 (1.02)

Sediment 2 436.50 (17.30) 1165.91 (129.86) 7.25 (0.09) 36.52 (0.30)

doi:10.1371/journal.pone.0143790.t001

Fig 3. Microbial diversity in different regions of the SML of A. palmata (n = 3–4; 11 samples), reef seawater (n = 4), and adjacent sediment (n = 2).

doi:10.1371/journal.pone.0143790.g003
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lowest alpha-diversity with an average Chao1 index of 200.37 ± 22.55 SE at a rarefaction depth
of 1158 sequences (Table 1). Seawater samples had a high abundance of Pelagibacteriaceae,
Gammaproteobacteria, Cyanobacteria, Bacteriodetes, and Firmicutes (Fig 3).

Community composition was significantly different between coral, seawater, and sediment.
No significant differences in community assemblages were found between any of the three
coral regions or between any of the individual coral colonies (Fig 3). The PCoA results clearly
separate sediment, seawater and coral samples, with the associated first principle coordinate
explaining 53% of the taxonomic variation and sediment sample variation further separated by
the second principle coordinate axis, explaining another 20% of the taxonomic variation (Fig
4). Permutational ANOVA analyses based on a Bray-Curtis dissimilarity matrix of phyloge-
netic distance (S2 Table) revealed that coral associated microbial communities were structur-
ally different from those in seawater (R2 = 0.82, p = 0.0008) and those in sediments (R2 = 0.58,
p = 0.013). There was no detectable community-level difference among the microbiota of the
uppermost, underside, and base of A. palmata (R2 = 0.20, p = 0.51), indicating homogeneity
among these coral regions.

Discussion
Vertical stratification of bacterioplankton is commonly found in marine environments [33–
35]. Similarly, physicochemical factors (e.g., temperature, pH, and nutrients) have been shown
to influence prevalence and diversity of surface-attached bacteria [36]. The three-dimensional
structure of A. palmata colonies creates distinct microenvironments, separated by only a few
centimeters, which differ in levels of irradiance and water velocity [10]. Microbes that tolerate
high irradiance and ultraviolet radiation would be expected to have disproportionate abun-
dances in the uppermost (exposed) regions of the coral [37]. Surprisingly, in this study, coral-
associated microbiota from the surface mucus layer (SML) of A. palmata were found to have
similar assemblages between uppermost (high irradiance), underside (low irradiance), and the
base of replicate coral colonies (Figs 3 and 4).

This study documents the spatially homogeneous nature of SML bacterial communities
associated with A. palmata during non-stressful conditions and offers helpful guidelines for
study design. In 2006, A. palmata was classified as critically threated under the U.S. Endan-
gered Species Act, necessitating the development and application of benign sampling tech-
niques. Our data shows clear separation of microbial communities associated with seawater
versus the A. palmata SML (Fig 4; Permutational ANOVA, R2 = 0.82, p = 0.0008), providing
support for the use of non-destructive, syringe-sampling methods. Moreover, our data vali-
dates sampling schemes that collect material from a single location on an A. palmata colony.

The baseline diversity estimate provided here can be used to determine the sequencing effort
needed to characterize microbiota found in the SML of A. palmata. We found a similar level of
alpha diversity, or species richness, in SML microbial communities of A. palmata in the Florida
Keys (~180 observed OTUs0.03 and Shannon-Wiener diversity index ~6, Table 1) compared to
a previous investigation utilizing pyrosequencing to examine A. palmata SML microbial com-
munities in the Mexican Caribbean (~70–100 observed OTUs0.03 and Shannon-Wiener diver-
sity index ~3) [15]. However, comparisons across 16S rRNA amplicon studies are often
confounded by differences in sequencing depth and bioinformatic processing. Sunagawa and
colleagues [14] report higher values of observed and Chao1 predicted OTUs0.03 for micro-
biomes of A. palmata in Panamá. These differences may be attributable to their (1) sampling of
coral fragment homogenates, which includes microbes present in coral tissue and skeleton in
addition to mucus, (2) inclusion of rare OTUs0.03 (with 2 or fewer reads) in analyses of alpha-
diversity, and (3) use of a different variable region of the 16S rRNA gene.
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This is the first fine-scale analysis of spatial variability within SML microbial communities
of A. palmata. Previous work investigated within-colony spatial variability of the Caribbean
reef-building corals Porites furcata and Orbicella annularis and found microbial assemblages to
exhibit patterns of within-colony heterogeneity [12,38]. These contrasting results—within-col-
ony heterogeneity in P. furcata and O. annularis and homogeneity in A. palmata—may be
explained, in part, by whether or not the coral simultaneously hosts diverse assemblages of
photosymbionts. Microbial communities of marine invertebrates, including corals, have been

Fig 4. Principal coordinate analysis of beta-diversity metrics amongmicrobial samples from A. palmata. Samples are coded by source tissue or
environment (base, underside, uppermost, reef seawater, and sediment).

doi:10.1371/journal.pone.0143790.g004
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shown to be influenced by the presence of photosymbionts [39]. Endosymbiotic dinoflagellates
(Symbiodinium spp.) provide the majority of metabolic carbon to most tropical and sub-tropi-
cal reef-building corals [40]. Symbiodinium-derived products include carbohydrates, fatty
acids, sugars, starches, and amino acids (Reviewed by: [41,42]), and likely influence the compo-
sition of coral mucus. Acropora palmata colonies in the Florida Keys are typically dominated
by a single strain of Symbiodinium [43]. By contrast, species of the O. annularis complex are
known to commonly associate simultaneously with diverse assemblages of Symbiodinium [44–
46]. These contrasting results suggest that within-colony spatial heterogeneity in dominant
Symbiodinium types may beget greater spatial heterogeneity in SML microbial communities.
However, few studies have explicitly addressed this question [47,48] and fine scale analyses of
how spatial heterogeneity of dominant Symbiodinium influences mucus composition are
needed [39,49].

The homogeneity patterns described in this study also suggest that A. palmata strongly reg-
ulates its SML microbiota during non-stressful conditions. Multiple mechanisms for host regu-
lation of microbiota associated with corals have been suggested and include the ability of coral
to 1) detect specific micro-organism-associated molecular patterns (MAMPs) and regulate
components of the innate immune system, 2) excrete compounds with antimicrobial properties
to suppress the growth of undesirable microbiota, and/or 3) release compounds that attract
and maintain keystone taxa capable of stabilizing the community and preventing opportunistic
invasions from undesirable microbes (reviewed by: [2]). Full genome analysis of the Pacific
coral Acropora digitifera revealed an extraordinarily high number of loci encoding for domains
within MAMP recognition receptors compared to a representative range of metazoans for
which whole-genome data are available [50]. More investigations of host-regulatory mecha-
nisms in symbiotic corals are needed to understand whether the extraordinary diversity of
MAMP recognition receptors—representing the potential for recognition and strong regula-
tory control over microbial symbionts—uncovered in Acropora is unique to this genus, or com-
parable to other coral species.

Coral-associated microbiota found on the SML are highly diverse and play vital roles in
coral health [4,51,52]. This study documents the spatially homogeneous nature and provides
an important baseline diversity estimate of SML bacterial communities associated with A. pal-
mata during non-stressful conditions. Stability of A. palmatamicrobial community structure
may result from 1) regulatory control of the coral host 2) highly stable symbiosis with only one
type of algal symbiont 3) other unknown mechanisms. The highly specific nature of the A. pal-
matamucus microbial community will help us define the roles these microorganisms play in
assuring coral health, guarding against coral disease, and responding to environmental
perturbations.

Supporting Information
S1 Table. Rarefaction results.
(PDF)

S2 Table. Results of permutational ANOVA based on Bray-Curtis dissimilarities of phylo-
genetic distance.
(PDF)
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