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Exponential rise of dynamical complexity
in quantum computing through projections
Daniel Klaus Burgarth1, Paolo Facchi2,3, Vittorio Giovannetti4, Hiromichi Nakazato5,

Saverio Pascazio2,3 & Kazuya Yuasa5

The ability of quantum systems to host exponentially complex dynamics has the potential to

revolutionize science and technology. Therefore, much effort has been devoted to developing

of protocols for computation, communication and metrology, which exploit this scaling,

despite formidable technical difficulties. Here we show that the mere frequent observation of

a small part of a quantum system can turn its dynamics from a very simple one into an

exponentially complex one, capable of universal quantum computation. After discussing

examples, we go on to show that this effect is generally to be expected: almost any quantum

dynamics becomes universal once ‘observed’ as outlined above. Conversely, we show that

any complex quantum dynamics can be ‘purified’ into a simpler one in larger dimensions. We

conclude by demonstrating that even local noise can lead to an exponentially complex

dynamics.
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I
n the last 30 years, the possibility of using quantum effects to
develop an alternative approach to engineering has emerged
as a realistic way to improve the efficiency of computation,

communication and metrology1–6. At the very core of
this revolutionary idea, the possibility of designing arbitrary
dynamics of quantum systems without spoiling the rather fragile
correlations characterizing them is crucial. What experimentalists
typically do is to apply sequences of control pulses (for example,
by sequentially switching on and off different electromagnetic
fields) to steer quantum systems. In the quantum world, however,
there is another option associated with the fact that the
measurement process itself can induce a transformation on a
quantum system. In this context, an intriguing possibility is
offered by the quantum Zeno effect7,8. This effect forces the
system to evolve in a given subspace of the total Hilbert
space by performing frequent projective measurements
(Zeno dynamics)9–11, without the need of monitoring their
outcomes (non-adaptive feedback strategy). Several attempts have
already been discussed to exploit such effects for quantum
computation, see refs 12–22.

In this work, we show that the constraint imposed via a Zeno
projection can in fact enrich the dynamics induced by a series of
control pulses, allowing the system of interest to explore an
algebra that is exponentially larger than the original one. In
particular, this effect can be used to turn a small set of quantum
gates into a universal set. Thanks to the non-adaptive character of
the scheme, this Zeno enhancement can also be implemented by a
non-cooperative party, for example, by noisy environment.
Furthermore, we show that any complex quantum dynamics
can be viewed as the projected dynamics of a simpler one in larger
dimensions.

By the Zeno effect, the dynamics of the system is forced to
evolve in a given subspace of the total Hilbert space9–11. One
might therefore think that the constrained dynamics is less ‘rich’
than the original one. This naive expectation will turn out to be
incorrect. These surprising aspects of constraints bear interesting
similarities to Einstein’s precepts, according to which one can
give a geometric description of complicated motion. The key
geometrical idea is to embed the motion of the system of interest
in a larger space, obtaining a forceless dynamics taking place
along straight lines. The real dynamics, with interactions and
potentials, is then obtained by projecting the system back onto
the original space. Clearly, the constrained dynamics is more
complex than the higher-dimensional linear one. In classical
mechanics, these reduction procedures, linking a given dynamical
system with the one constrained on a lower-dimensional
manifold, have been extensively studied as an effective method
for integrating the dynamics23. In particular, different classes of
completely integrable systems arise as reductions of free ones with
higher degrees of freedom24–26. Notable examples include the
three-dimensional Kepler problem, the Calogero–Moser model,
Toda systems, KdV and other integrable systems. The lesson
learned is that in classical mechanics, by constraining the
dynamics, one often obtains an increase in complexity.

Here we find a quantum version of this intriguing effect, which
exploits the inherent non-commutative nature of quantum
mechanics. The main idea is that even if two Hamiltonians H
and H0 are commutative, their projected counterparts can be non-
commutative

½H;H0� ¼ 0 R ½PHP; PH0P� ¼ 0; ð1Þ
where P¼ P2 is a projection. Due to this fact, we show that when
passing from a set of control Hamiltonians {H(1),y, H(n)} to
their projected versions {PH(1)P,y, PH(n)P} one can induce an
enhancement in the complexity of the system dynamics which
can be exponential, to the extent that it can be used to transform a

small number of quantum gates which are not universal into a
universal set capable of performing arbitrary quantum-computa-
tional tasks. We find that this effect is completely general and
happens in almost all systems. Conversely, we prove that any
complex dynamics can be viewed as a simple dynamics in a larger
dimension, with the original dynamics realized as a projected
dynamics. What is interesting is that, in contrast to the classical
case, the constraint which transforms a Hamiltonian H into PHP
can be imposed not by force but by a simple projective
measurement whose outcomes need not be recorded (the process
being effectively equivalent to the one associated with an external
noise that is monitoring the system).

Results
Unitary control versus Zeno dynamics. In controlled quantum
dynamics, two Hamiltonians can commute, but their projected
versions need not. This contains, in embryo, the simple idea
discussed in the introductory paragraph: interaction can arise
from constraints (in this case projections). To describe this
mechanism, it is worth recalling a few facts about quantum
control theory and the quantum Zeno effect.

In a typical quantum control scenario, it is assumed that the
system of interest (say the quantum register of a quantum
computer, or the spins in an NMR experiment) can be externally
driven by means of sequences of unitary pulses U ðjÞ ¼ e� iHðjÞt,
activated by turning on and off a set of given Hamiltonians
{H(1),y, H(n)} (Fig. 1a). If no limitations are imposed on the
temporal durations t of the pulses, it is known27 that by properly
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Figure 1 | Zeno effect in quantum control. (a) We control a quantum

system by switching on and off a set of given Hamiltonians {H(1),y, H(n)}.

(b) We perform projective measurements P at regular time intervals during

the control to check whether or not the state of the system belongs to a

given subspace HP of the global Hilbert space. (c) In the limit of infinitely

frequent measurements (Zeno limit), the system is confined in the

subspace HP, where it evolves unitarily with the Zeno Hamiltonians

{�H(1),..., �H(n)} (Zeno dynamics). The Zeno dynamics can explore the

subspace HP more thoroughly than the purely unitary control without

measurement.
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arranging sequences composed of {U(1),y, U(n)} one can in
fact force the system to evolve under the action of arbitrary
transformations of the form U¼ eY with the anti-Hermitian
operators Y being elements of the real Lie algebra
L ¼ Lie iHð1Þ; . . . ; iHðnÞ

� �
formed by the linear combinations

of iH(j) and their iterated commutators,
½iHðj1Þ; iHðj2Þ�; ½iHðj1Þ; ½iHðj2Þ; iHðj3Þ�� and so on. Full
controllability is hence achieved if the dimension of L is large
enough to permit the implementation of all possible unitary
transformations on the system, that is, L ¼ suðdÞ, with d being
the dimension of the system (without loss of generality the
Hamiltonians can be assumed to be traceless, since the global
phase does not play any role).

Suppose now that between the applications of consecutive
pulses U(j), we are allowed to perform von Neumann’s projective
measurements (Fig. 1b), aimed at checking whether or not the
state of the system belongs to a given subspace HP of the global
Hilbert space. Specifically, we will assume that the system is
originally initialized in HP while the various U(j) are infinitesimal
transformations. Under this condition, the Zeno effect can be
invoked, in the limit of infinitely frequent measurements, to
ensure that with high probability the system will be always found
inHP after each measurement, following a trajectory described by
the effective Hamiltonians �HðjÞ ¼ PHðjÞP, with P the projection
onto HP (Fig. 1c)8,11. In other words, alternating the control
pulses under frequent applications of the projection P the
sequence U ðjkÞ:::U ðj1Þ can be effectively transformed into a
rotation which on HP is defined by the unitary operator
�U ðjkÞ:::�U ðj1Þ where �U ðjÞ ¼ e� i �HðjÞt. Accordingly the real Lie
algebra LZeno ¼ Lie i �Hð1Þ; . . . ; i �HðnÞ

� �
now replaces L in

defining the space of unitary transformations which can be
forced on the system. The fundamental result of this paper is to
observe that by properly choosing the system setting, the
dimension of LZeno can be made larger than L, to the extent
that the former can be used to fully control the system on HP, in
spite of the fact that the latter is not capable of doing the same.

To better elucidate the idea, we find it useful to introduce a
simple example, where the system is identified with a two-qubit
system with control Hamiltonians

Hð1Þ ¼ X1X2; Hð2Þ ¼ Z1Z2; ð2Þ
(we hereafter use X, Y, Z to denote Pauli operators and write
tensor products as strings, specifying systems by subscripts and
omitting the identity operators). Notice that their commutator
vanishes [H(1), H(2)]¼ 0, and hence the naked algebra L of the
two-qubit system has dimension only 2. Consider now the Zeno
algebra induced by the projection

P1 ¼
1þðX1þY1þZ1Þ=

ffiffiffi
3
p

2
� jfi1 fh j; ð3Þ

which freezes the first qubit in the state |fS1 in the Zeno limit.
Then, the effective Zeno Hamiltonians

�Hð1Þ ¼ P1Hð1ÞP1 ¼ P1X2=
ffiffiffi
3
p

;

�Hð2Þ ¼ P1Hð2ÞP1 ¼ P1Z2=
ffiffiffi
3
p ð4Þ

exhibit a non-trivial commutator �Hð1Þ; �Hð2Þ
� �

¼ 2iP1Y2=3, which
makes the dimension of LZeno equal to 3 (the situation is
schematically illustrated in Fig. 2). This in particular implies that
LZeno can now be used to fully control the system in the subspace
HP ¼ P1 C2 � C2� �

(which is isomorphic to the Hilbert space of
qubit 2), a task that could not be fulfilled with the original L.

Zeno yields full control. The example presented in the previous
paragraph clarifies that the constrained dynamics can be more
complex than the original unconstrained one. The natural

question arises: how big can such a difference become? To what
extent can the presence of a measurement process increase the
complexity of dynamics in quantum mechanics? In the following,
we provide a couple of examples in which the enhancement in
complexity is exponential. While the unprojected dynamics are
only two or three dimensional, the projected ones are universal
for quantum computation. This shows that the simple ingredient
of projective measurement can strongly influence the complexity
of dynamics.

In Example A, we consider N qubits (Fig. 3, upper), the first
two of which are manipulated via the control Hamiltonians
H(1)¼X1X2, and complement it with H(2) consisting of the
nearest-neighbor Heisenberg interactions HðHeisÞ

3;:::;N ¼PN � 1
k¼3 ðXXþYY þZZÞk;kþ 1 involving all the qubits but the first

two, together with a coupling term acting on the first three qubits
and a local term on the third, that is,

Hð2Þ ¼
ffiffiffi
3
p
ðX1X2X3þY1Y2Y3þZ1Z2Z3ÞþZ3þHðHeisÞ

3; ... ;N : ð5Þ
Due to the anticommutation of the Pauli operators, one can

easily verify that the two Hamiltonians H(1) and H(2) commute
with each other [H(1), H(2)]¼ 0, defining hence a Lie algebra
L ¼ Lie iHð1Þ; iHð2Þ

� �
, which is barely two dimensional. Now let

us consider their constrained versions using the same projection
P1 as in equation (3). With this choice, we have
�Hð1Þ ¼ P1Hð1ÞP1 ¼ P1X2=

ffiffiffi
3
p

, and the Zeno Hamiltonian asso-
ciated to H(2) is given by

�Hð2Þ ¼ P1Hð2ÞP1 ¼ P1 Z3þHðHeisÞ
2; ... ;N

� �
; ð6Þ

where now HðHeisÞ
2;:::;N ¼

PN � 1
k¼2 ðXXþYY þZZÞk;kþ 1 is the nearest-

neighbor Heisenberg Hamiltonian acting on qubits 2,y, N.
While qubit 1 is kept frozen in the state |fS1 by the repetitive
projections P1, the remaining N� 1 qubits now form a
Heisenberg chain with a local term on qubit 3 (Fig. 3, lower).
Elementary but cumbersome calculation shows that with these
Zeno Hamiltonians qubit 2 is fully controllable, which by ref. 28
implies that the whole system apart from the frozen qubit 1

X1X2

X1X2

P1X2

P1X2 [P1X2, P1Z2] 

P1Z2

P1Z2

Z1Z2
Z1Z2

Figure 2 | Schematics of the full versus projected system algebras. The

arrows are tangents (generators) on a manifold of unitary transformations.

In the larger space (upper), the operations commute, so no matter

which way we go, we end up at the same point. It is not the case for the

projected system (lower): the projected operations do not commute, and

the gap represents the non-commutativity. Even though the projected

system is embedded in a smaller space, its dynamics is more complex,

because of the curvature induced by the projection: new directions

can be explored.
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is fully controllable. Consequently, we have LZeno ¼
Lie i �Hð1Þ; i �Hð2Þ
� �

¼ P1su 2N � 1ð Þ, so that the Zeno algebra is of
exponential size, as claimed.

The next example, Example B, is an alternative that does not
involve three-body interactions. Consider, for instance, three

Hamiltonians H(1)¼Z1Z2, H(2)¼X3X4, and Hð3Þ ¼
ffiffiffi
3
p

HðHeisÞ
1;2

þ
ffiffiffi
3
p

HðHeisÞ
3;4 þZ2Z5þZ5þX4X5þX5þHðHeisÞ

5;:::;N , and take the
Zeno projection to be P¼P1P3 with P1 and P3 projecting qubits
1 and 3, respectively into the states |fS1 and |fS3 defined as in
equation (3). These Hamiltonians commute with each other, and
their Lie algebra L ¼ Lie iHð1Þ; iHð2Þ; iHð3Þ

� �
is only three

dimensional. Analogously to the previous example, by exploiting
the results of ref. 28, one can easily show that the dimension
of LZeno ¼ Lieði �Hð1Þ; i �Hð2Þ; i �Hð3ÞÞ ¼ P1P3su 2N � 2ð Þ is again
exponential, allowing the full control of all the qubits but the
first and the third.

Generality and Hamiltonian purification. What we have
observed above is not a contrived phenomenon, but actually quite
a general one. Considering the pair of Hamiltonians H(1) and H(2)

with the projection P1 from Example A above, we can be certain
that there exists a projection and a pair of commutative Hamil-
tonians such that the projected dynamics is essentially su 2N � 1ð Þ.
A standard argument in control theory is that if a system is fully
controllable for a specific choice of parameters, then it is also fully
controllable for almost all parameters27. In our case, it implies
that almost all commuting Hamiltonians will become universal
through the Zeno projection on a single qubit (see Methods for
more details).

Furthermore, we can show the converse: any non-commutative
dynamics can be thought of as the projected version of
commutative dynamics in a larger space. This general phenom-
enon is in accord with the philosophy of geometrization discussed
in the introduction. In analogy with the purification of states
in quantum information theory5, we call it Hamiltonian
purification. While we give a detailed mathematical analysis

elsewhere, let us present the simplest case. Consider two arbitrary
d-dimensional Hamiltonians h(1) and h(2). We extend the Hilbert
space by a single qubit and define their ‘purifications’ by

Hð1Þ ¼ 1 � hð1Þ þX � hð2Þ;

Hð2Þ ¼ 1 � hð2Þ þX � hð1Þ:
ð7Þ

These extended Hamiltonians H(1) and H(2) are easily seen to
commute with each other, [H(1), H(2)]¼ 0, and the projection by
P¼ (1þZ)#1/2 yields �Hð1Þ ¼ PHð1ÞP ¼ ð1þZÞ � hð1Þ=2 and
�Hð2Þ ¼ PHð2ÞP ¼ ð1þZÞ � hð2Þ=2, which act as h(1) and h(2) in
the original space before the extension. We can furthermore apply
this procedure iteratively to larger sets of Hamiltonians, which
means that any complex dynamics can be thought of as a simple
one taking place on a larger space, with the complexity arising
only from projections.

Local noise yields full control. In a classical setting, the mea-
surement process is typically perceived as a passive resource that
enforces control only when properly inserted in a feedback loop.
As explicitly shown by our analysis, and more generally by the
results of refs 9–22, this is no longer the case in quantum
mechanics: measurements can indeed be used to directly drive a
quantum system even in the absence of a feedback mechanism.

Interestingly enough, for the control scheme we are analysing
here, measurement is not the only way to implement the required
projection P. The same effect is attainable by fast unitary kicks
and by strong continuous coupling8,11,29. Furthermore, owing to
the non-adaptive character of the procedure (we never need to
use the measurement outcomes to implement the control), it is
also achievable by tailoring a strong dissipative process21,30–32.
The latter option is of particular interest for us since, along the
line of refs 33–35, it points out the possibility of taking
advantages of the interaction of the system of interest with an
external environment, which is typically considered detrimental
for quantum processing.

Specifically, for the qubit chain analysed above (Example A),
one can show that the action of a simple amplitude damping
channel5 can raise the dynamical complexity to the level of
universal quantum computation. In fact, the decay process
bringing qubit 1 to the state |fS1 can act as a projection P1 (see
Methods), and in the strong-damping limit it is effective in
inducing a quantum Zeno effect on qubit 1, yielding the full Lie
algebra LZeno in the rest of the qubit chain. Moreover, due to the
same reasoning as the one outlined above, almost all qubit
amplitude damping channels induce exponential complexity.

A comment regarding the presence of further decoherence,
besides the one employed to enforce the Zeno limit, is in order.
It is clear that additional decoherence will be detrimental
for the performance of the scheme. Accordingly, one
should adopt computational schemes that protect the encoded
information from the action of this noise (for example,
exploiting quantum error correction embeddings). In a sense,
the view is to identify two kinds of noise sources: the ‘good’
noise (which can be exploited to induce control via the Zeno
effect) and the ‘bad’ noise, which instead has to be controlled and
removed. Whether or not a given system will allow such
separation cannot be decided a priori: to answer this question,
one needs to look at the specific properties of the system under
consideration.

Similarly, the problems arising from the finiteness of the
measurement procedure (or the application of wrong projections)
are complex and model dependent. In the approach we propose,
the environment performs a kind of ‘adaptive’ feedback. The
scheme, in its generality, appears to be feasible and robust.
Clearly, errors will inevitably lead to quantitative deterioration,
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Figure 3 | Schematics of the N-qubit model described in Example A.

Straight edges represent the Heisenberg interactions, while the triple edge

represents the three-body interaction among qubits 1–3. The red part in the

upper figure corresponds to H(1) acting on qubits 1 and 2, while the

remainder including a local term Z3 on qubit 3 corresponds to H(2) acting on

all the N qubits. The Zeno projection P1 on qubit 1 transforms the upper

Hamiltonians to the lower model, where the state of qubit 1 is frozen, while

we are left with a Heisenberg chain with the local term Z3 and a control �Hð2Þ

on qubit 2. The Lie algebra of the upper system is only two dimensional,

while the lower allows us to perform full control over the system apart from

the frozen qubit 1.
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but we expect that the main positive qualitative features will still
be present when additional factors will be taken into account.
These are all topics of practical interest, to be addressed in the
future.

Discussion
The schemes presented in this work are not meant to implement
an efficient quantum computer themselves (note, however,
ref. 36), but rather to provide a novel method for control,
which might find applications in quantum information
processing. Instead they should be viewed as a proof of the fact
that generally adding a simple projection or noise to a dynamical
system can profoundly modify the global picture and provoke a
drastic increase in complexity. This bears some similarities to
measurement-based quantum computation37,38 and related
schemes39,40, although there are important differences, in that
one does not require the system to be initialized in a complex
state; the measurement is constant; and its outcome is not used
adaptively in future computations41.

Our results can be presented as a quantum version of the
Plato’s Cave allegory42. In the original version of the myth, the
reality perceived within the Cave is described by the projected
shadows of some more fundamental dynamics (‘the Ideals’),
which is intrinsically more simple (‘intelligible’). In the quantum
world, the projection plays a more active role, making the
dynamics of the associated quantum shadows as complex as
universal quantum computation and, conversely through
Hamiltonian purification, making non-commutative dynamics
simple.

Methods
Sketch of the proof of the generality. We found the two commuting Hamilto-
nians H(1) and H(2) in the N-qubit model depicted in Fig. 3 (Example A), whose
projected counterparts �Hð1Þ and �Hð2Þ with the projection in equation (3) of the
structure P¼P1#1 generate LZeno ¼ Lie i �Hð1Þ; i �Hð2Þ

� �
¼ P1su 2N � 1ð Þ. This single

example makes us sure that it is the case for almost all systems.
To see this, let us formalize in the following way. Take (H(1), H(2), P) of

Example A again. We extract the relevant sector specified by P from each element
of LZeno and call it Lj (j¼ 1,y,d2� 1), which is a d� d matrix with dimension
d¼ 2N� 1 and is a function Lj¼ Lj(H(1), H(2)) of H(1) and H(2). Together with the
d� d identity matrix L0¼ 1, the matrices {Lj} form uðdÞ. This fact can be
mathematically expressed as follows. We ‘vectorize’ each matrix Lj to a d2-
dimensional column vector |Lj) by lining up the columns of the matrix Lj from top
to bottom, and gather the column vectors |Lj) side by side to make up a d2� d2

matrix L¼ (|L0)y|Ld2� 1)). Then, the fact that the matrices {Lj} span uðdÞ is
expressed as D¼ det La0. Note that this determinant is also a function
D¼D(H(1), H(2)) of H(1) and H(2).

Now take a generic pair of commuting Hamiltonians ~Hð1Þ and ~Hð2Þ of N qubits,

that is, we randomly choose their eigenvalues f~eð1Þ1 ; . . . ;~eð1Þ2N g, f~eð2Þ1 ; . . . ;~eð2Þ2N g and
a common unitary matrix ~U that diagonalizes ~Hð1Þ and ~Hð2Þ simultaneously.
Inserting this pair of Hamiltonians, the determinant D ~Hð1Þ; ~Hð2Þ

� �
is, by

construction, a polynomial in the parameters f~eðiÞj ; ~Uklg (i¼ 1, 2; j, k, l¼ 1,y, 2N).
We already know that this polynomial is non-vanishing for the parameter set

feðiÞj ;Uklg corresponding to the above specific choice of the Hamiltonians H(1) and
H(2). Therefore, the determinant D is a non-zero polynomial in the parameters

f~eðiÞj ; ~Uklg, implying that its roots are of measure zero in the parameter space. In

other words, for almost all parameters f~eðiÞj ; ~Uklg, the determinant D is non-
vanishing, and in turn, almost all pairs of commuting Hamiltonians become
universal, generating LZeno ¼ P1su 2N � 1ð Þ, by the projection P on the first qubit.
This argument can be generalized to any rank 2N� 1 projection, and also to any
qubit amplitude damping channel in the strong-damping limit.

Projection by amplitude damping channel. The continuous projection P1

required for the qubit-chain model depicted in Fig. 3 can be induced by an
amplitude damping channel acting on qubit 1. In fact, consider the master

equation _rðtÞ ¼ � 1
2 gðLyLrþrLyL� 2LrLyÞ with a single Lindblad operator

L¼ |fS1/f>|, which describes the decay of qubit 1 from |f>S1 to |fS1, where
|fS1 is associated with the projection P1 in equation (3) and |f>S1 is the state
orthogonal to |fS1. Solving the system dynamics under the master equation yields
r(t)¼ (1� e� gt)�P1Tr1r(0)þ e� gt[P1r(0)P1þQ1r(0)Q1]þ e� gt/2[P1r(0)Q1þ

Q1r(0)P1], where Q1¼ 1�P1 and Tr1 represents the partial trace over qubit 1.
Thus, in the limit gt-N, we have r(t)-P1Tr1r(0), and qubit 1 is projected into
the state |fS1 with probability 1. If this process takes place on a timescale g� 1

much shorter than any other timescales involved in the dynamics or the controls,
then it is effective in inducing a quantum Zeno effect on qubit 1, and it is essentially
equivalent to repeating projective measurements.
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