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ABSTRACT

Synthetic lethality (SL) is a type of genetic interac-
tion between two genes such that simultaneous per-
turbations of the two genes result in cell death or
a dramatic decrease of cell viability, while a pertur-
bation of either gene alone is not lethal. SL reflects
the biologically endogenous difference between can-
cer cells and normal cells, and thus the inhibition
of SL partners of genes with cancer-specific mu-
tations could selectively kill cancer cells but spare
normal cells. Therefore, SL is emerging as a promis-
ing anticancer strategy that could potentially over-
come the drawbacks of traditional chemotherapies
by reducing severe side effects. Researchers have
developed experimental technologies and computa-
tional prediction methods to identify SL gene pairs
on human and a few model species. However, there
has not been a comprehensive database dedicated
to collecting SL pairs and related knowledge. In this
paper, we propose a comprehensive database, Syn-
LethDB (http://histone.sce.ntu.edu.sg/SynLethDB/),
which contains SL pairs collected from biochemical
assays, other related databases, computational pre-
dictions and text mining results on human and four
model species, i.e. mouse, fruit fly, worm and yeast.
For each SL pair, a confidence score was calculated
by integrating individual scores derived from differ-
ent evidence sources. We also developed a statisti-
cal analysis module to estimate the druggability and
sensitivity of cancer cells upon drug treatments tar-
geting human SL partners, based on large-scale ge-
nomic data, gene expression profiles and drug sen-
sitivity profiles on more than 1000 cancer cell lines.
To help users access and mine the wealth of the

data, we developed other practical functionalities,
such as search and filtering, orthology search, gene
set enrichment analysis. Furthermore, a user-friendly
web interface has been implemented to facilitate data
analysis and interpretation. With the integrated data
sets and analytics functionalities, SynLethDB would
be a useful resource for biomedical research com-
munity and pharmaceutical industry.

BACKGROUND

Two genes are said to be in a synthetic lethality (SL) rela-
tionship if a perturbation of either gene alone is not lethal
but perturbations of both genes lead to cell death or a dra-
matic decrease in cell viability (1). For example, the muta-
tion of a given gene (a loss-of-function or gain-of-function
defect) renders another gene essential so that this pair of
genes form an SL relationship. Synthetic lethal interac-
tions provide functional buffering and robustness, thereby
enabling cells to maintain homeostasis in the face of di-
verse genetic and environmental challenges (2). By expos-
ing the critical endogenous differences between cancer cells
and normal cells, SL suggests a promising anticancer strat-
egy. For instance, chemical inhibition of the SL partners
of oncogenic genes would selectively kill cancer cells but
spare normal cells (3). Therefore, SL-based therapeutics
has the potential to overcome the drawbacks of traditional
chemotherapies including severe side effects (4,5).

Since SL was first described in the studies on Drosophila
melanogaster models (6), it has been most extensively ex-
plored in human and other model species. Two projects of
genome-wide quantitative mapping of synthetic lethal inter-
actions have been conducted for Saccharomyces cerevisiae,
and the resulting SL networks provide valuable resources
for understanding the functional relationships among genes
(7,8). Recognizing the great potential of SL in anticancer
therapies, researchers have developed experimental meth-
ods to detect SL interactions in cancer cells (9,10). For ex-
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ample, high-throughput pooled shRNA screening for gene
essentiality has been developed, by which cell lines are in-
fected with short hairpin RNA libraries targeting genome-
wide mRNA. Then, the cells are cultured to allow the de-
pletion of those cells containing shRNAs that target essen-
tial genes, after which synthetic lethal interactions can be
identified by examining whether a gene is essential in the
perturbed cell line but non-essential in the control cell line
using microarray or deep sequencing (11).

However, the technology of pooled shRNA screening is
still not able to cover the large number of genetic interac-
tions that need to be surveyed across different cancer types
so far. Hence, a few computational approaches have been
proposed to complement the experimental screening for
identifying SL interactions (12–14). Most in silico methods
depend on comparative genomics to search for orthologous
genes of the SL pairs in yeast that have been experimentally
validated (14), or exploit other features such as evolutionary
characteristics, metabolic networks and signaling pathways
(15–17). Recently, a data-driven method, named DAISY,
used the somatic copy number alterations, shRNA-based
essentiality screens and co-expression patterns on hundreds
of cancer cell lines to detect SL pairs in human (13).

With the increasing amount of SL-related data, a com-
prehensive database is urgently needed to gather SL gene
pairs and relevant genomic and functional annotations.
Also, the estimation of the druggability of SL gene pairs
as drug targets and efficacy of inhibiting cancer cell via-
bility is also important for the development of anticancer
treatments. In this paper, we present SynLethDB, a com-
prehensive database dedicated to collecting SL pairs iden-
tified in various species, and integrating genomic and drug
sensitivity data to conduct statistical estimation on drugga-
bility and efficacy. As a substantial extension of our previ-
ously proposed SL knowledge base, Syn-Lethality (18), we
collected SL pairs from biochemical assays, other related
databases, computational predictions and text mining re-
sults. For each SL pair, we computed a confidence score
by integrating individual scores derived from different types
of evidence. We also developed a statistical analysis module
to estimate the druggability and efficacy of drug molecules
for human SL pairs, based on genomic data (e.g. muta-
tions, copy number alterations and gene expression pro-
files), drug–protein interactions and drug sensitivity profiles
on more than 1000 cancer cell lines. To help users explore
the wealth of data, we developed other practical function-
alities, such as query and filtering, orthologous gene search,
gene set enrichment analysis. Furthermore, we implemented
a user-friendly web interface, including an interactive net-
work and tabular viewer, statistical diagrams and graphi-
cal visualization plugins, to facilitate data display and in-
terpretation. To the best of our knowledge, SynLethDB is
the first comprehensive database that harbors a large set of
SLs, and also contains data resources for systematic evalu-
ation of SLs in anticancer drug discovery and development.
We believe that SynLethDB would greatly facilitate and ac-
celerate the discovery of selective and sensitive anticancer
drug targets, based on the SL mechanism.

SOURCES OF DATA

The first source of data in SynLethDB is the manually
curated SL pairs from research papers concentrated on
SL studies via biochemical experiments. Our previous SL
knowledge base, Syn-Lethality (18), which contains manu-
ally collected SL pairs from the experimental literature, was
integrated. Also, we collected SL pairs identified from high-
throughput screening experiments, such as pooled shRNA
screens, bi-specific shRNA screens (from the DECIPHER
Project1), and combinatorial RNAi and drug screens. For
the combinatorial RNAi and drug screening, the SL pairs
were detected by conjugating the essential genes identified
by RNAi with the drug’s primary target genes deposited in
DrugBank database (19). Secondly, a large number of ge-
netic interactions annotated as SL pairs in BioGRID (20)
were integrated into SynLethDB. Also, some gene pairs
were annotated as SL in GenomeRNAi (21), a database
devoted to collecting phenotypes from RNAi screens for
Drosophila and Homo sapiens, and therefore these gene
pairs have been added into our database. Thirdly, we in-
cluded some human SL pairs computationally predicted by
DAISY (13), in order to enrich our data set of human SL
candidates that are potentially valuable for the discovery
of anticancer drug targets. Figure 1 illustrates the various
types of sources from which we collected SL pairs.

To extend the coverage of our database, we employed text
mining tools to search for SL pairs that have been scat-
tered in the literature. Using ‘synthetic lethal’ and ‘syn-
thetic lethality’ as query keywords, we searched the whole
PubMed database, and obtained 331 distinct publications
with titles including either of the two keywords. As the con-
tents of these publications focus on synthetic lethality, we
used their abstracts as the training set to train the literature
ranking tool MedlineRanker (22), which ranks the biomed-
ical literature according to the relevance of a topic learned
from the training set. The trained MedlineRanker was used
to rank the PubMed publications published in recent 10
years, and the top 1000 publications were selected to con-
duct the following text mining procedures.

Next, we adopted PESCADOR (23), an information
extraction tool for mining co-occurrences of concepts
and gene/protein pairs from the literature, to extract
gene/proteins associated with the concept of SL from the
abstracts of the 1000 publications. In particular, the dis-
criminative words identified by MedlineRanker, including
‘lethality’, ‘lethal’, ‘viability’, ‘apoptosis’, ‘cell death’, ‘syn-
thetic lethality’ and ‘synthetic lethal’, were used as cus-
tomized concepts that were taken as input by PESCADOR
to discover concept-related word co-occurrences. Accord-
ing to the semantic structure of each sentence and the whole
abstract, the genes/protein pairs co-occurring with the cus-
tomized concepts are likely SLs reported in the literature.
Furthermore, an appealing characteristic of PESCADOR
is that the genes/protein pairs are categorized into four
graded relevance degrees according to the scope (abstract or
sentence) of the co-occurrence with the customized concept:
genes/protein pairs and customized concepts co-occurring
in an abstract (type 4), in a sentence (type 3), in a sen-
tence with a biointeraction term (e.g. activates, induces, in-
hibits) (type 2) or in a sentence with a biointeraction term
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Figure 1. Schematic diagram of the data resources, functional modules and graphical visualization components included in SynLethDB. The SL sources
include manual curations from publications, three related databases (Syn-lethality, BioGRID and GenomeRNAi), bi-specific SL shRNA screens (DE-
CIPHER), computational predictions (DAISY) and text mining results. Genomic data (mutations, copy number alterations and gene expression profiles
from COSMIC), drug targets (DrugBank, STITCH and KIBA) and three drug sensitivity data sets (CCLE, GDSC and NCI-60) are integrated, so that
we can conduct Wilcoxon rank-sum tests to estimate the druggability and sensitivity of cancer cells upon drug treatments targeting human SL partners
of genes mutated in the cancer cells. Six functional modules are developed to explore the data resources, and graphical visualization components are also
implemented to facilitate data display and interpretation.

between the bioentity names (type 1). Based on the degree
of relevance to the customized concepts, we regarded the
genes/proteins pairs as SL and set their confidence scores
to 0.2, 0,5, 0.7 and 0.9 for types 4, 3, 2 and 1, respectively.
Finally, we manually curated the 337 PubMed publications
whose titles include the terms ‘synthetic lethality’ or ‘syn-
thetic lethal’, to ensure that we would not miss the SL pairs
that have been explicitly reported by these studies.

In summary, the current version of SynLethDB contains
34 089 SL pairs that comprise 19 952 of Homo sapiens, 366
of Mus musculus, 423 of Drosophila melanogaster, 107 of
Caenorhabditis elegans and 13 241 of Saccharomyces cere-
visiae. More than 200 types of diseases and information of
over 3314 publications have been deposited in SynLethDB.
For each collected SL pair, we annotated its supporting
evidence (e.g. mutations, RNAi screenings or predictions),
species, diseases, references to PubMed and other relevant
information, so that users can access the detailed informa-
tion to explore the SL gene pairs. Furthermore, to prioritize
SL pairs according to their reliability, we developed a scor-
ing scheme to compute an integrative confidence score for
each SL pair based on the annotations, as described in the
following section.

INTEGRATIVE CONFIDENCE SCORES

The SL pairs in our database were collected from differ-
ent types of sources, including biochemical assays, other
related databases, computational predictions and text min-
ing results. Furthermore, biochemical assays were based on
different experimental technologies and platforms, such as
genetic mutation and transfection, RNA interference and
drug inhibition. As multiple types of evidence contribute to
the identification of a specific SL, an integrative confidence
score combining scores from all these evidence sources can

give an overall estimation of the reliability of an SL interac-
tion. In principle, we assume that (i) experimental evidence
contributes more significantly to the confidence score than
evidence derived from predictive algorithms or text mining,
and (ii) the SL pairs supported by more evidence sources
should be given higher confidence scores than those sup-
ported by less evidence sources.

Due to the lack of a gold-standard set of SL pairs
for validating the confidence scores, we aim to develop
a scoring scheme that does not rely on comparison with
any third-party data but rather relies on the available an-
notations associated with each SL pair. We developed a
procedure of two steps, i.e. quantification and integration,
to compute the confidence scores. A large number of SL
pairs collected from wet-lab experiments and other related
databases have only qualitative annotation evidence (such
as ‘high-throughput’ or ‘low-throughput’), or technolog-
ical descriptions about the wet-lab experiments (such as
‘shRNA screening’ or ‘mutation’), hence the quantification
step is necessary to assign quantitative scores to those SL
pairs before the calculation of integrative scores. Similar to
the scoring scheme for protein–protein interactions (PPI)
proposed by Cao et al. (25), we assigned the quantitative
scores based on the experimental methods that were used to
perturb SL partners, as shown in Table 1. For instance, ‘Mu-
tant & Mutant’ means that the pair of SL genes are both
perturbed via mutations induced by transgenic or genetic
deletions, and ‘RNA interference & Mutant’ means that
one gene is perturbed by RNAi and the other is perturbed
via mutation. In general, results from low-throughput ex-
periments, due to a lower false positive rate, are considered
to be more reliable than results from high-throughput ex-
periments, hence we assigned a higher confidence score to
low-throughput evidence than high-throughput evidence.
RNA interference experiments, such as shRNA, siRNA
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Table 1. Quantitative scores assigned to SLs according to the experimental
methods annotated in evidence sources

Experimental method Score

Mutant & Mutant 0.90
RNA interference & Mutant 0.75
Bi-specific RNA interference 0.50
RNA interference & Drug inhibition 0.50
Low-throughput 0.80
High-throughput 0.50

and dsRNA, frequently manifest considerable variability in
knockdown efficacy and off-target effects; drug inhibitors
also tend to show limited inhibition on target proteins and
off-target effects which may lead to false positives. Ac-
cordingly, they are assigned relatively low confidence scores
compared to the scores of mutation or transfection experi-
ments.

If there exist multiple pieces of evidence of the same type
(e.g. experimental evidence) supporting a specific SL pair,
we adopted the probability disjunction formula to combine
the individual scores as follows:

s = 1 −
n∏

i=1

(1 − pi ), (1)

in which s represents the integrative score corresponding to
the experimental evidence, pi is the individual score and n
is the total number of pieces of experimentally supporting
evidence. For example, an SL with one ‘RNA interference
& Mutant’ evidence and one ‘bi-specific RNA interference’
screening evidence will lead to the combined score of 0.875,
i.e. 1 − (1 − 0.75)(1 − 0.5) = 0.875. Note that the probability
disjunction formula has been frequently used to calculate
combined scores in the case that multiple pieces of evidence
exist, such as in STITCH (26) and ComPPI (27).

In the integration step, we introduced weight factors to
reflect the importance of different types of evidence. To ob-
tain a normalized score between 0 and 1, such that a score
closer to 1 represents higher confidence, we computed the
normalized weighted sum as:

S = wmsm + wdsd + wpsp + wtst

wm + wd + wp + wt
, (2)

in which S represents the integrative confidence score; wm,
wd, wp and wt are the weight factors of biochemical exper-
iment, other related databases, computational prediction
and text mining-based evidence; sm, sd, sp and st are corre-
sponding individual scores. Following the convention that
evidence from biochemical experiments is the most reliable,
followed by other related databases and in silico predictions,
and text mining-based evidence is the least reliable, we set
the weight factors wm, wd, wp and wt to 0.8, 0.5, 0.3 and
0.2, respectively.

STATISTICAL ANALYSIS OF DRUG SENSITIVITY

Although a perturbation of an SL pair via genetic muta-
tion or RNAi inhibition can induce cell death with a high
probability, it is likely that only low sensitivity or even no
lethal response upon drug treatments can be observed. A

reason may be that the proteins encoded by the SL parters
are not accessible to drug molecules (i.e. lack of druggabil-
ity), or their biological functions are not completely blocked
by small drug molecules (i.e. low efficacy). Insufficient re-
sponse to drug treatments could hinder the practical appli-
cation of the SL concept to anticancer drug design.

To give a preliminary evaluation of the SL pairs as poten-
tial anticancer drug targets, we developed a statistical anal-
ysis module to evaluate the druggability and efficacy of SL
pairs upon drug treatments, based on the large-scale drug
sensitivity data sets. In particular, we built a set of high-
quality drug–protein interactions from the drug targets in
DrugBank (19), drug–protein interactions with experimen-
tally supportive scores >0.9 in STITCH (26), and the drug–
kinase binding affinity profiles, referred to as KIBA (28),
which were integrated from three drug bioactivity assays
(29–31) and ChEMBL (32). We also integrated three large-
scale drug sensitivity data sets, i.e. CCLE (33), GDSC (34)
and NCI-60 (35), together with genome-wide gene expres-
sion profiles, copy number alterations (CNA) and muta-
tions obtained from the Catalogue of Somatic Mutations
in Cancer (COSMIC) database (36). Overall, these data
sets contain drug sensitivity values (represented as the half
maximal inhibitory concentration values, i.e. IC50) of 19
017 unique approved and experimental drugs on more than
1000 cancer cell lines. The large amount of data allows us
to carry out powerful statistical tests to examine whether a
specific SL can induce significant cancer cell death or reduce
cancer cell viability when perturbed by a drug. Formally, for
each SL pair, denoted as A and B, a Wilcoxon rank sum test
can be conducted to examine if inhibiting gene B by drugs
yields significant drug sensitivity levels in samples in which
gene A is inactive (or overactive) than in the rest of the sam-
ples. It is worth noting that such a statistical test was also
used by the DAISY method to detect SL pairs from somatic
copy number alterations and shRNA essentiality screening
data (13).

FUNCTIONALITIES

We have developed six functional modules to help users ex-
plore the wealth of data. The query, filtering and ranking
module take as input one or more gene names to search
for all associated SL partners, and the SL pairs are repre-
sented in the form of both network and tabular viewers. To
provide users with a biological context, the network also
includes the SL relationships between the genes associated
with query genes. In the network viewer, the widths of the
edges are proportional to the integrative confidence scores
corresponding to the SL pairs, and users can filter the query
results by specifying different thresholds of the confidence
score and numbers of SLs, as shown in Figure 2. Each gene
is linked to public resources such as UniProt (37), Ensembl
(38) and NCBI GenBank (39). In the tabular viewer, the
species, diseases and integrative confidence scores are dis-
played for each SL pair. Detailed information about the ev-
idence sources and individual scores can be displayed by
clicking the hyperlinks of evidence sources. With the rank-
ing function of the tabular viewer, users can easily pick up
high-confidence SL pairs according to the integrative con-
fidence scores, as shown in Figure 3.
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Figure 2. Screenshot of the main page of the SynLethDB database which displays the search result of the query gene Fen1 on human. This network shows
all human SL pairs collected by our database. Users can update the network by set a different threshold for the confidence score and the number of SL pairs
to be displayed via the network viewer. On the right part of the page, statistics about the percentages of evidence sources, reference number and confidence
score curve are displayed.

Figure 3. Screenshot of a tabular viewer that displays all the SL partners of Fen1 deposited in SynLethDB, along with the corresponding evidence sources,
species, diseases, confidence scores and PubMed references associated with each SL pair. Users can rank the SL pairs according to integrative confidence
scores by clicking the column name. Also, one click can launch the statistical analysis of the responses of cancer cells upon drug treatments targeting human
SL genes.

As comparative genomic analysis has been successfully
used to predict SL by searching for orthologous genes
across species, we collected the orthologs among the five or-
ganisms identified by four leading methods, i.e. InParanoid
(release 8.0) (40), HomoloGene2 (build68), Ensembl Com-
para (41) and PhylomeDB v4 (42). The four methods differ
from each other in the underlying rationales for orthology
inference and thus complement each other, allowing us to
construct a comprehensive set of orthologs (43,44). For any
SL pair of interest in one species, users can search for the or-

thologous genes in the other four species. This functionality
could potentially extend the coverage of our SL database.
Particularly, if any pair of orthologs found in other species
has been already annotated as SL, this could strengthen our
confidence in the SL pair, although currently we have not
yet considered its contribution to the integrative confidence
score.

For human SL pairs, we developed the statistical analysis
of drug sensitivity functional module to test the druggabil-
ity and efficacy to drugs targeting SL partners based on the



D1016 Nucleic Acids Research, 2016, Vol. 44, Database issue

collected large-scale drug sensitivity data sets. For each SL
pair, one click can launch the statistical analysis procedure
and the statistical significance (measured by P-value) will be
calculated. To facilitate data interpretation, graphical rep-
resentations with interactive features, such as scatter plots,
statistical boxplots and scatter plots, are employed. In these
graphical plots, drug names, sensitivity values and cancer
cell lines are interactively displayed. Also, the drugs target-
ing the SL partners of interest can be viewed via the drug-SL
partner interaction query functionality. All displayed drugs
are linked to the PubChem database (45) which provides de-
tailed properties and chemical structures.

Furthermore, as gene set enrichment analysis (GSEA) is
helpful for understanding the molecular mechanisms of SL
interactions, we carried out gene set enrichment analysis to
find statistically significant pathways and GO (gene ontol-
ogy) functional annotation terms, based on the subset of
genes constituting SL relationships with each specific gene.
For the identified pathways and GO terms, links to external
databases, such as KEGG (46), Reactome (47) and Gene
Ontology (48), are provided.

CONCLUSION AND FUTURE DEVELOPMENT

In this paper, we proposed SynLethDB, a comprehensive
database of synthetic lethality. SL pairs were collected from
multiple sources, including biochemical assays, other re-
lated databases, computational predictions and text-mining
outputs for five species. To extend the coverage of SL gene
pairs, we adopted text mining tools to analyze the PubMed
literature related to synthetic lethality. To facilitate the data
interpretation and evaluation, we developed useful func-
tional modules such as orthology search, query and filter-
ing, statistical analysis on drug sensitivity and gene set en-
richment analysis, etc. As the first comprehensive database
dedicated to synthetic lethality, which is an emerging anti-
cancer strategy promising to be selective and sensitive, Syn-
LethDB can be a valuable resource to facilitate the discov-
ery of new anticancer drug targets.

In future, we will expand the coverage of data types and
species, on the basis of a rapidly increasing numbers of stud-
ies focused on SL screening and sensitivity analysis of can-
cer cells to drugs. We will continuously increase the num-
ber of manually curated SL pairs to ensure the reliability
of data, and build a gold standard for human SL, which
would be very helpful for biomedical research community
in validating and evaluating results produced with both ex-
perimental and computational approaches. In addition, we
will incorporate new SL pairs from other sources, such as
more computational predictions and text mining results, to
complement the manual curations.

Furthermore, it has been realized that the cellular re-
sponse of cancer cells to drug treatments depends strongly
on the genetic context, such as spectrum of mutations, copy
number alterations and epigenetic modifications (49). We
will go on to identify cancer-specific SL pairs by integrat-
ing the genomic and epigenetic features into our database.
Also, we will develop more functional modules and data vi-
sualization tools to analyze and display the data.
1 http://www.decipherproject.net/shRNA-libraries/bi-specific/
2 http://www.ncbi.nlm.nih.gov/homologene/
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