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Ultrafast spin exchange-coupling torque via
photo-excited charge-transfer processes
X. Ma1, F. Fang1, Q. Li2, J. Zhu2, Y. Yang2, Y.Z. Wu2, H.B. Zhao3 & G. Lüpke1

Optical control of spin is of central importance in the research of ultrafast spintronic devices

utilizing spin dynamics at short time scales. Recently developed optical approaches such as

ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to

manipulate spin through its interaction with photon, orbit, charge or phonon. However, these

processes are limited by either the long thermal recovery time or the low-temperature

requirement. Here we experimentally demonstrate ultrafast coherent spin precession

via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room

temperature. The efficiency of spin precession excitation is significantly higher and the

recovery time of the exchange-coupling torque is much shorter than for the demagnetization

procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin

valves and tunnelling junctions, and hence our findings will help promote the development of

exchange-coupled device concepts for ultrafast coherent spin manipulation.
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C
ontrol of coherent spin precession in ferromagnets is
currently a popular topic due to its importance in
magnetic recording and spintronic devices1–6. The

search for non-thermal excitation mechanisms motivates
extensive research to overcome the disadvantages of thermal
ones. The main idea is to utilize the interaction between
magnetization and photo-excited carriers that are selectively
optical pumped, where the recombination time of photocarriers is
much shorter than the heat diffusion process. A promising
approach is through ferromagnetic–antiferromagnetic (FM–AFM)
exchange coupling, as small modulation of the exchange-coupling
strength might lead to notable changes in magnetic properties7,8.
Recent studies demonstrated that short laser pulses can introduce
non-thermal spin reorientation and dynamics in AFM materials
much faster than in FM materials9,10. But the question is still
open whether it is possible to drive FM magnetization at the
speed of AFM materials through FM–AFM exchange across
heterostructure interface.

In this article, optical excitation of spin precession is
investigated in Fe/CoO exchange-coupled heterostructure with
time-resolved magneto-optic Kerr effect (TRMOKE). Photo-
excited charge-transfer processes in AFM CoO layer create a
strong transient exchange-coupling torque tex tð Þon FM Fe layer
through FM–AFM exchange coupling. The efficiency of spin
precession excitation is significantly higher and the recovery is
notably faster than the demagnetization procedure. The preces-
sion amplitude peaks around room temperature and with external
magnetic field competitive to the magnetic anisotropy field,
indicating that this efficient excitation mechanism originates from
the modulation of the uniaxial magnetic anisotropy Ku induced
by the FM/AFM exchange coupling. Our results will help
promote the development of low-energy consumption magnetic
device concepts for fast spin manipulation at room temperature.

Results
Description of ultrafast spin exchange-coupling torque. The
observed ultrafast spin precession excitation is described by
a modified Landau–Lifshitz–Gilbert (LLG) equation with an
additional torque term:

@M
@t
¼ � g M�Heffð Þþ aM� @M

@t
þ sex tð Þ; ð1Þ

where g is gyromagnetic ratio, M is the magnetization, Heff is the
effective magnetic field, a is the Gilbert damping constant,
sex tð Þ ¼ � g M�DHex tð Þð Þ denotes the instant spin exchange-
coupling torque, and DHex(t) is the change of FM–AFM exchange

field Hex by modulation of uniaxial exchange anisotropy Ku,
as discussed further below. The geometry of instant spin
exchange-coupling torque sex tð Þ is illustrated in Fig. 1.

Structure and static magnetic properties. The Fe/CoO and Fe
thin films are deposited on MgO(001) substrates by molecular
beam epitaxy (MBE) at room temperature (see Methods)7. The
thickness of CoO and Fe layers are 3 nm and 4 nm, respectively.
All of the samples are covered with a 3-nm-thick MgO protection
layer, and the epitaxial relation is CoO[110]//Fe[100]. Reflection
high-energy electron diffraction patterns reveal the high-quality,
epitaxial growth of the CoO and Fe films (see Supplementary
Fig. 1). Longitudinal MOKE measurements are carried out with
external magnetic field applied along the Fe [100] and [010]
directions (Fig. 2a, right). The easy-axis hysteresis loops show
perfect squareness, indicating the single domain of the Fe film
(see Supplementary Fig. 2 and Supplementary Note 1).

Observation of ultrafast spin exchange-coupling torque.
Coherent spin precessions in the Fe layers are investigated by
pump-probe TRMOKE (see Methods) in a canted magnetization
configuration where the magnetic field (H) is applied along
Fe [110] direction, as depicted in Fig. 2a. In equilibrium, the
magnetization is along an effective field Heff, which is the sum of
H, the demagnetizing field Hd and the anisotropy field Ha.
The incident pump pulses induce a transient field Htr, and the
magnetization M starts to precess around Htr. When Htr has
vanished, the vector M is away from its original equilibrium
orientation along Heff. Therefore, it starts to precess around Heff

as depicted in Fig. 2a. In general, the amplitude will show a
resonance-type dependence on an external field, and the position
and frequency of the resonance are determined by the external
field and the magnetic parameters such as the values of the
various anisotropy constants. Two strategies of pump are
employed in the measurements to investigate the optical excita-
tion mechanisms: First, the more intense pump pulses (l¼ 800
nm, 3.1 mJ cm� 2) are used to modulate the FM order of Fe layer
as shown in Fig. 2b (left) since the CoO layer is almost
transparent to 800-nm light11; Second, the weaker pump pulses
(l¼ 400 nm, 0.16 mJ cm� 2) are utilized to mainly affect the AFM
order of CoO as depicted in Fig. 2b (right). All TRMOKE
measurements are performed after field cooling the sample.

The TRMOKE result from Fe/MgO heterostructure is
displayed in Fig. 2c (black squares) with pump-pulse fluence
3.1 mJ cm� 2 and magnetic field H¼ 2 kOe at room temperature.
The sudden rise and decay of Kerr signal indicates the
demagnetization process. Meanwhile, the magnetization starts
to precess around the equilibrium direction in a damped circling
way described by LLG equation12,13. The measured Kerr signal
can be well-fitted by the following equation

yk ¼ a�exp � t=t0ð ÞþA�exp � t=tð Þsin 2pftþjð Þ; ð2Þ

where parameters A, t, f and j are the amplitude, magnetic
relaxation time, frequency and initial phase of the magnetization
precession mainly along the polar direction, respectively. Here, a
and t0 are related to the background signal owing to the slow
recovery of magnetization after fast demagnetization by the pump
pulses, which happens mainly along the longitudinal direction.

Figure 2c (red circles) shows TRMOKE result from
Fe/CoO(3 nm)/MgO structure with the same excitation condition
as the measurement on Fe/MgO (black squares). We note that the
background amplitude a remains unchanged, while the amplitude
of coherent spin precession A is enhanced. This shows that the
AFM CoO layer improves the efficiency of optically excited
coherent spin precession. The key finding here is that pronounced
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Figure 1 | Illustration of photo-excited spin exchange-coupling torque.

At to0, the magnetization M (purple arrow) in the Fe layer aligns along

the effective field direction Heff (black arrow). H denotes the external

magnetic field, and Hex is the field established by FM–AFM exchange

coupling. At t¼0, the 400-nm pump pulse (blue arrow) generates

photo-excited carriers in the CoO layer, which leads to the reorientation of

AFM spins (green arrows). This modifies the exchange coupling, DHex

(brown arrow), causing a change of the effective field direction. Then the

exchange-coupling torque sex(red arrow) forms, which triggers the

precession of M.
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spin precession is still observed with much lower pump-pulse
energy 0.16 mJ cm� 2 at 400-nm wavelength, as shown in Fig. 2c
(blue triangles). Moreover, the TRMOKE data reveal the absence
of obvious demagnetization and slow recovery of M. The instant
pronounced spin precession points towards an ultrafast non-
thermal excitation process in the AFM CoO layer as depicted in
Fig. 2b (right) and discussed further below. Furthermore, the
magnetic relaxation time t decreases from 330 ps (red circles) to
100 ps (blue triangles) in Fe/CoO with 400-nm pump pulses,
which is desirable for fast switching. To determine the origin
of the optical excitation mechanism, temperature and field-
dependent TRMOKE measurements are carried out (Fig. 3).

Temperature- and field-dependent studies. Figure 3a presents
TRMOKE results (l¼ 400 nm, H¼ 2 kOe) with pump-pulse
intensity 0.16 mJ cm� 2 at different temperatures T, where the

absence of demagnetization peak is observed. Figure 3b displays
the precession frequency f (red circles) and amplitude A (black
squares) as a function of H at room temperature. The frequency f
is well-fitted with LLG equation (red curve) to derive the mag-
netic anisotropies (see Supplementary Note 2 and Supplementary
Table 1)8. The simulation of A versus H (black curve), where A
is assumed to be proportional to the equilibrium direction
change by modulation of Ku (DKu¼ 165 Oe�MS) (refs 14–16)
(see Supplementary Note 3), agrees quite well with the
experimental data. MS is the saturation magnetization.
Furthermore, Ku increases significantly with decreasing T,
while MS remains unchanged (see Supplementary Figure 3 and
Supplementary Note 1), as shown by the blue triangles in Fig. 3c.
The derived Ku/MS behaves similarly like f (red circles and black
squares) as a function of T. The FM–AFM exchange coupling
establishes an extra preference of magnetization alignment in Fe,
where the FM spins favour perpendicular alignment with the
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Figure 2 | Experimental design and observation of ultrafast exchange-coupling torque. Schematic of TRMOKE measurement geometry, depiction of

magnetization precession and longitudinal hysteresis loops (a). Two pump strategies to optically excite the spin precession (b), where the black arrows

represent the magnetic moments. Optical charge-transfer transition in CoO is depicted. TRMOKE results from Fe/MgO (black squares) and Fe/CoO (red
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frozen AFM spins due to the spin flop coupling between them. As
the number of frozen AFM spins in CoO grows with lower T, the
FM/AFM exchange coupling builds up, which leads to an increase
of Ku and hence f rises with lower T as shown in Fig. 3c. Figure 3d
displays the precession amplitude A as a function of T for

different H. The amplitude A peaks around 270 K (H¼ 2 kOe)
and 290 K (H¼ 0.7 kOe), when H is approximately equal to the
anisotropy field Ha. At higher temperatures, A drops sharply
similar to Ku/MS, because the AFM order in CoO is greatly
diminished above 270 K, since the temperature is close to its Neel
temperature (B290 K) and the FM/AFM exchange coupling
becomes weaker. Therefore the uniaxial anisotropy Ku is small
compared with H when approaching room temperature. This
behaviour is similar to the peak shown in Fig. 3b. As T decreases,
Ku enhances Ha, which requires a stronger H to compete with Ha,
hence the generated transient torque and amplitude A decrease.
As a result, the peak in A shifts to lower T and becomes broader
at higher fields, which agrees well with the simulation based on
the modulation of Ku (dashed curves). Therefore, the origin of
this efficient excitation mechanism with 400-nm pump pulses has
to be the modulation of magnetic anisotropy constant Ku.

Discussion
The modulation of Ku also sheds light on the difference between
the two optical excitation strategies, 800-nm versus 400-nm
wavelength pump pulses. On one hand, the CoO layer is almost
transparent to light with l¼ 800 nm, as its bandgap is B2.5 eV
(ref. 11). Therefore, the 800-nm pump pulses mainly excite hot
electrons in the FM Fe layer as depicted in Fig. 2b (left) which
also modulate the FM–AFM exchange coupling and hence Ku.
This leads to improvement of spin precession excitation efficiency
as compared with Fe/MgO thin film (Fig. 2c). Ju. et al.17 reported
that in the exchange-coupled NiFe/NiO bilayer the photo-excited
hot electrons in the FM layer partially diffuse to the interface and
slightly modulate the interface AFM order. The authors called
this process an ‘ultrafast unpinning of the exchange bias’17. The
authors also note that the bulk magnetic structure of NiO is
frozen17. This is markedly different from the phenomenon
observed here, which we assume here to modulate the AFM order
in the CoO layer.
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Photon-induced interband transitions occur in bulk CoO at
l¼ 455 nm (2.73 eV) (see Supplementary Note 4). Hence the
near-gap, 400-nm pump photons excite charge-transfer transi-
tions from O 2p-band to Co 3d-band that is partially occupied
with minority spins, as depicted in Fig. 2b (ref. 18). This
promotes the nearest-neighbour FM exchange interaction19,
which modulates the AFM order in the CoO layer. Similarly,
Duong et al.20 reported ultrafast manipulation of AFM order in
NiO. Photoexcitation of NiO leads to ultrafast reorientation of
Ni2þ spins due to change of the magnetic anisotropy20. The
variance of AFM order in CoO layer notably modulates the FM/
AFM exchange coupling and Ku, since the coupling between Fe
and CoO is a long-range interaction21. This leads to a change of
the effective field direction, as depicted in Fig. 1, causing a
transient torque on the ferromagnetic magnetization and thus
leads to significant enhancement of the excited FM spin
precession. We call this process an ‘ultrafast spin exchange-
coupling torque’, which is markedly different from the ultrafast
unpinning process due to hot electrons in the FM layer. For the
ultrafast spin exchange-coupling torque, the carrier excitation is
instant on photoexcitation, thus the AFM modulation is fast. In
addition, the exchange interaction between Fe FM spins and CoO
AFM spins are very strong and the modulation of this exchange
interaction is fast. Among the magnetic interactions, the spin
exchange-coupling interaction has the largest energy and thus the
shortest time scale. This process is also repeatable many times
without any thermally induced degradation. Larger magnetization
precession may be obtained with shorter wavelengths, thereby
enhancing (reducing) the absorption in the CoO (Fe) layer, which
will also lower the thermal load (larger heat capacity of CoO)
allowing the application of higher pump-pulse power.

To investigate the duration of this fast FM–AFM exchange
torque, simulations of real-time magnetization precession are
carried out from LLG equation. The observed pronounced
coherent spin precession starts right at t¼ 0, indicating a sudden
change of equilibrium direction caused by DKu. We assume that
the reduction of Ku (165 Oe�MS) happens instantly at t¼ 0,
followed by an exponential recovery process with time constant
tr, as shown by the blue curve in Fig. 4. With tr¼ 40 ps, the
simulated time evolution of magnetization (red curve) agrees
quite well with the probed Kerr signal (black dots), since the
TRMOKE signal is proportional to the polar component of
magnetization precession. Shorter or longer tr leads to mismatch
in the oscillation phase (See Supplementary Fig. 4). The fast
recovery from photo-excited transitions might be due to the
strong carrier-phonon interaction, which results in non-radiative
and phonon-assisted carrier recombination22. Moreover, the
recovery time of the instant photo-induced exchange-coupling
torque is much faster than the cooling time from
demagnetization, which can promote novel device concepts for
fast spin manipulation.

In summary, the efficiency of spin precession excitation by
laser pulses is significantly improved by inserting an AFM CoO
layer in Fe/MgO heterostructure, which establishes the uniaxial
magnetic anisotropy Ku along Fe [100] direction. The modulation
of Ku by laser pump pulses generates a fast exchange-coupling
torque to the FM Fe magnetization. The transient torque is
enhanced at temperatures where Ku varies significantly and with
external magnetic fields comparable to the magnetic anisotropy
fields. The excitation is much more efficient with 400-nm pump
pulses via photo-excited charge-transfer processes in AFM CoO
layer than modulating the FM order of Fe via generation of
hot electrons with 800-nm-wavelength pulses. The recovery time
of the exchange-coupling torque is B40 ps, much faster than
the cooling time from demagnetization. Our results will help
promote the development of low-energy consumption magnetic

device concepts for fast spin manipulation at room
temperature.

Methods
Sample fabrication. The Fe/CoO thin films are grown on the MgO(001) substrate
in an ultrahigh vacuum chamber with MBE. The MgO(001) substrate with a miscut
angle o0.5� is prepared by annealing at 600 �C for 30 min. The AFM CoO thin
films are grown by a reactive deposition of Co under an oxygen pressure of
2� 10� 6 torr. A 4-nm-thick Fe film is then grown epitaxially on top of the
CoO film at room temperature. All samples are covered with a 3-nm-thick MgO
protection layer. As a control group, Fe thin films are grown directly on the MgO
substrate with MBE at room temperature.

MOKE measurements. In the longitudinal MOKE studies, we measured the FM
magnetization of Fe layer by irradiating the sample with p-polarized light and
detecting the s-component of the reflected light with a photodiode. The external
magnetic field is applied in-plane along the Fe [100] or [010] directions from 80 K
to above room temperature.

Time-resolved MOKE measurements. We performed TRMOKE measurements
in a pump-probe set-up, where the intensity ratio of the pump to probe pulses is set
to be about 6:1. The probe (l¼ 800 nm) utilizes the MOKE technique with crossed
polarizers and incident angle B40� to investigate the transient magnetic state
change along longitudinal and polar directions. The intense pump pulses
(3.1 mJ cm� 2) are generated by a Ti/sapphire amplifier laser system delivering
150-fs pulses at 800-nm wavelength with a repetition rate of 1 kHz. The 400-nm
pump pulses (0.16 mJ cm� 2) are generated by frequency-doubling the 800-nm
pulses (200 fs) from a 250-kHz Ti/sapphire laser system in a beta barium borate
(BBO) crystal.

Data analysis and simulations. The TRMOKE raw data is fitted using the built-in
non-linear-fit function of Origin 8.5 software with expression programmed as
equation (2). The uncertainties of A and f are provided by the software from least
squares fitting. Least square methods are also programmed with Matlab 2014 and
used to fit the change of f and A as functions of H with Supplementary Equations
1 and 3 (see Supplementary Note 3), where the uncertainties of anisotropy fields
are estimated through error propagation method. To simulate the real-time
magnetization precession in Fig. 4, LLG equation is written numerically in
Supplementary Equations 4 and 5, with very small time interval Dt¼ 0.2 ps
(see Supplementary Note 5). The evolution of y and z magnetization components
with time is derived through iteration, which is programmed with Matlab 2014.
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