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Paroxysmal dyskinesia can be subdivided into three clinical syndromes: paroxysmal kinesigenic dyskinesia or choreoathetosis,

paroxysmal exercise-induced dyskinesia, and paroxysmal non-kinesigenic dyskinesia. Each subtype is associated with the known

causative genes PRRT2, SLC2A1 and PNKD, respectively. Although separate screening studies have been carried out on each of the

paroxysmal dyskinesia genes, to date there has been no large study across all genes in these disorders and little is known about the

pathogenic mechanisms. We analysed all three genes (the whole coding regions of SLC2A1 and PRRT2 and exons one and two of

PNKD) in a series of 145 families with paroxysmal dyskinesias as well as in a series of 53 patients with familial episodic ataxia and

hemiplegic migraine to investigate the mutation frequency and type and the genetic and phenotypic spectrum. We examined the

mRNA expression in brain regions to investigate how selective vulnerability could help explain the phenotypes and analysed the

effect of mutations on patient-derived mRNA. Mutations in the PRRT2, SLC2A1 and PNKD genes were identified in 72 families in

the entire study. In patients with paroxysmal movement disorders 68 families had mutations (47%) out of 145 patients. PRRT2

mutations were identified in 35% of patients, SLC2A1 mutations in 10%, PNKD in 2%. Two PRRT2 mutations were in familial

hemiplegic migraine or episodic ataxia, one SLC2A1 family had episodic ataxia and one PNKD family had familial hemiplegic

migraine alone. Several previously unreported mutations were identified. The phenotypes associated with PRRT2 mutations

included a high frequency of migraine and hemiplegic migraine. SLC2A1 mutations were associated with variable phenotypes

including paroxysmal kinesigenic dyskinesia, paroxysmal non-kinesigenic dyskinesia, episodic ataxia and myotonia and we identi-

fied a novel PNKD gene deletion in familial hemiplegic migraine. We found that some PRRT2 loss-of-function mutations cause

nonsense mediated decay, except when in the last exon, whereas missense mutations do not affect mRNA. In the PNKD family

with a novel deletion, mRNA was truncated losing the C-terminus of PNKD-L and still likely loss-of-function, leading to a

reduction of the inhibition of exocytosis, and similar to PRRT2, an increase in vesicle release. This study highlights the frequency,

novel mutations and clinical and molecular spectrum of PRRT2, SLC2A1 and PNKD mutations as well as the phenotype–genotype

overlap among these paroxysmal movement disorders. The investigation of paroxysmal movement disorders should always include

the analysis of all three genes, but around half of our paroxysmal series remain genetically undefined implying that additional genes

are yet to be identified.
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Introduction
Paroxysmal dyskinesia was first reported in 1892 by Shuzo

Kure in a 23-year-old Japanese man, who had frequent

movement-induced paroxysmal attacks from the age of

10 years. At that time the diagnosis was referred to as

atypical Thomsen’s disease (Kure, 1892). Later, Gowers

(1901) described a similar child, but he considered this

movement disorder an epileptic phenomenon, and in

1940, Mount and Reback (1940) described a 23-year-old

with involuntary writhing and posturing of the trunk and

extremities and labelled this condition paroxysmal dystonic

choreoathetosis. Kertesz (1967) and Weber (1967)

described families with this condition termed paroxysmal

kinesigenic choreo-athetosis and familial paroxysmal dys-

tonia, and Demirkiran and Jankovic (1995) amalgamated

the many terms used, suggesting three subtypes, comprising

paroxysmal kinesigenic (PKD or PKC), non-kinesigenic

(PNKD), and exercise-induced dyskinesia (PED) (Bruno

et al., 2004, 2007; Bhatia, 2011). A fourth type, paroxys-

mal hypnogenic dyskinesia (PHD), characterized by attacks

of dyskinesia during sleep, was previously included, but has

since been recognized as autosomal dominant nocturnal

frontal lobe epilepsy (Sohn and Lee, 2011).

The most common of the paroxysmal movement dis-

orders is PKD, in which attacks are precipitated by volun-

tary movements such as standing from a sitting position, or

the transition from walking to running. Onset is usually in

childhood, and attacks are often controlled by carbamaze-

pine (Bhatia, 2001, 2011; Erro et al., 2014). PKD is fre-

quently preceded by infantile convulsions, often with

choreoathetosis. The gene responsible for PKD proved elu-

sive for many years, but was recently identified as PRRT2,

which encodes a small proline-rich transmembrane protein

(Chen et al., 2011; Wang et al., 2011; Cloarec et al., 2012;

de Vries et al., 2012; Gardiner et al., 2012; Guerrini and

Mink, 2012; Hedera et al., 2012; Heron et al., 2012;

Li et al., 2012; Liu et al., 2012; Scheffer et al., 2012).

The function of the protein is unknown, but it has been

shown to interact with the synaptic protein SNAP25

(Lee et al., 2012). Mutations in the PRRT2 gene account

for a large proportion of PKD and several groups have

reported mutations in this gene (Chen et al., 2011; Wang

et al., 2011; Cao et al., 2012; de Vries et al., 2012;

Friedman et al., 2012; Gardiner et al., 2012; Heron

et al., 2012; Lee et al., 2012; Li et al., 2012; Liu et al.,

2012; Ono et al., 2012; Ishii et al., 2013; Specchio et al.,

2013).

Attacks of PNKD are usually triggered by alcohol, coffee

or strong emotion. They last longer than attacks of PKD,

often from 10 min to 1 h, but can last as long as 12 h.

However, they are much more infrequent and occur only

a few times a year (Mount and Reback, 1940; Bhatia,

1999; Lombroso and Fischman, 1999; Vercueil, 2000; Lee

et al., 2004; Engelen and Tijssen, 2005; Friedman et al.,

2009; Ghezzi et al., 2009; van Rootselaar et al., 2009;

Benz et al., 2012; Pons et al., 2012). The gene responsible

for PNKD was identified as the MR-1 gene in 2004, but it is

now referred to as PNKD (Raskind et al., 1998; Lee et al.,

2004; Rainier et al., 2004). To date three mutations in this

gene have been reported; p.A7V, p.A9V and p.A33P, the

first two of which have been found in multiple unrelated

patients (Lee et al., 2004; Friedman et al., 2009; Ghezzi

et al., 2009; Shen et al., 2011; Pons et al., 2012; Erro

et al., 2014). Recent work from Shen et al., (2015) has

shown that PNKD interacts with the synaptic active zone

proteins RAB-interacting molecule (RIM)1 and RIM2, and

modulates neurotransmitter release. The mutant protein is

less effective at inhibiting exocytosis.

Lance (1977) described a family with exercise-induced

dystonia with attacks lasting between 5 and 30 min, once

or twice per month. This disorder is now termed PED

(Lance, 1977). PED is thought to be the rarest of the

three paroxysmal movement disorders, where attacks are

induced by physical exertion after long periods of exercise.

The condition can be associated with migraine, hemiplegia,

ataxia and epilepsy (Zorzi et al., 2003; Bhatia, 2011).

Mutations in the SLC2A1 gene, which encodes the glucose

transporter type 1 protein, have recently been found to be

responsible for causing PED, often called GLUT1 deficiency
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syndrome 2 (Wang et al., 2000; Vermeer et al., 2007; Suls

et al., 2008). SLC2A1 mutations also cause GLUT1 defi-

ciency syndrome 1, a phenotypically variable syndrome

that often includes ataxia, microcephaly, intellectual dys-

function, dystonia, epilepsy and low fasting glucose levels

detected on CSF analysis (Wang et al., 2000; Vermeer

et al., 2007; Suls et al., 2008; Schneider et al., 2009;

Fung et al., 2011; Gokben et al., 2011; Hashimoto et al.,

2011; Bawazir et al., 2012; Agostinelli et al., 2013; Muhle

et al., 2013; Weller et al., 2015).

The majority of published reports on paroxysmal move-

ment disorders are single families, small series or single

gene studies with little known about the gene mechanisms.

Here, we carry out the first large screening study of the

three main paroxysmal dyskinesia genes [the total coding

regions of SLC2A1 and PRRT2 and exons one and two

(the only exons in which mutations have been previously

identified) of PNKD] in a large referral series of 145 par-

oxysmal movement disorders and in a further 53 genetic-

ally undefined patients with episodic ataxia or familial

hemiplegic migraine. We identify the mutation frequency

and spectrum as well as genetic and phenotypic heterogen-

eity, describe novel mutations, and investigate the mutation

mechanisms amongst the paroxysmal dyskinesias.

Materials and methods
Patients and unaffected family members were recruited
through the laboratory with consent and ethical approval
(NHNN studies 06/N076 and 07/Q0512/26); they were seen
either at the National Hospital in Queen Square, or referred
from other centres for genetic testing with local approval.
Patients were diagnosed with a paroxysmal dyskinesia or
movement disorder based on recognized criteria (Bruno
et al., 2004, 2007; Kinali et al., 2004; Bhatia, 2011) by the
authors. Acquired causes were excluded using clinical investi-
gation prior to genetic testing. Episodic ataxia and familial
hemiplegic migraine cases were negative for mutations in the
KCNA1 and CACNA1A genes by direct sequencing of all
codons. DNA was extracted from blood of affected patients
and unaffected family members using standard diagnostic la-
boratory methods.

Sequencing

Polymerase chain reaction (PCR) was used to amplify the three
coding exons and flanking introns of the PRRT2 gene, the 10
coding exons and flanking introns of the SLC2A1 gene, and
the first two coding exons and flanking introns of the PNKD
gene (Supplementary Table 1). For each gene the longest tran-
script was used for primer design and sequencing: PRRT2-
001: ENST00000358758; SLC2A1-001: ENST00000426263;
PNKD-001: ENST00000273077. PCR amplification was per-
formed using 10 pmol of both forward and reverse genomic
primers (synthesized by Sigma-Aldrich) and FastStartTM Taq
DNA polymerase (Roche). Each purified product was then
sequenced using forward or reverse primers, as well as internal
sequencing primers to ensure complete coverage of in the case
of exon 2 of PRRT2 with Applied Biosystems BigDye�

terminator v3.3 sequencing chemistry as per the manufac-
turer’s instructions. The resulting reactions were resolved on
an ABI3730XL genetic analyser (Applied Biosystems) and ana-
lysed with SeqScape v2.5 software (Gene codes).

In developing our genetic analysis strategy for diagnostics we
also developed a custom Illumina sequencing gene panel
(Illumina Inc.). This panel included the PRRT2, SLC2A1
and PNKD genes. These genes had a mean coverage of
269� , 196� and 178� , respectively and 24 samples were
analysed in this way. All regions of the genes were covered
and no coverage gaps had to be completed by Sanger sequen-
cing. The analysis of data consisted of mapping the raw data
to the hg19 human reference assembly using Novoalign soft-
ware, and PCR duplicates were removed using the Picard soft-
ware. Indels were called using the GATK package and variants
annotated using SAMtools. Mutations were verified in both
directions. Mutation position was labelled from the transcrip-
tional start site of the genes, according to the standard
nomenclature.

Expression methods

Regional distribution of PRRT2, SLC2A1, PNKD, KCN1A,
SNAP25 and CACNA1A mRNA expression in the normal
human brain was determined using microarray analysis of
human post-mortem brain tissue from the UK Human Brain
Expression Consortium (Trabzuni et al., 2011). Brain tissues
originating from 134 control Caucasian individuals were col-
lected by the Medical Research Council (MRC) Sudden Death
Brain and Tissue Bank (Edinburgh, UK). The following brain
regions were included in the analysis: cerebellum, frontal
cortex, hippocampus, medulla, occipital cortex, putamen, sub-
stantia nigra, temporal cortex, thalamus and white matter.
Total RNA was isolated from these tissues using mRNeasy
96-well kit (Qiagen) before processing with the Ambion�

WT Expression Kit and Affymetrix GeneChip Whole
Transcript Sense Target Labeling Assay, and hybridization to
the Affymetrix Exon 1.0 ST Array. The probe set defining each
gene mRNA was determined using the Affymetrix Netaffx an-
notation file (HuEx-1_0-st-v2 Probe set Annotations, Release
31). The combined signal of the gene probe sets were used to
determine mRNA expression.

Sequencing of PNKD and PRRT2 cDNA from affected pa-
tient fibroblast mRNA was carried out to assess the presence
of nonsense-mediated decay and to indicate the presence of a
truncated protein in mutations that affect the last exon of the
gene. Fibroblasts were first taken with informed consent and
mRNA was extracted using a Qiagen miRNA kit. cDNA was
synthesized from the mRNA with SuperScript� II reverse tran-
scriptase according to the manufacturer’s protocol, 1000 ng of
mRNA was used as template with random oligonucleotide pri-
mers. The PNKD C-terminal and the PRRT2 (across the
whole gene) of the resulting cDNA product was then amplified
by 35 cycles of PCR and sequenced by the above method,
using primers designed to amplify only cDNA and not gen-
omic DNA.

Results
Mutations in the PRRT2 gene were found in 53 families or

sporadic cases, with nine different mutation types (Figs 1–5
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Figure 2 Family tree and mutation chromatograms. Filled symbols indicate family members that are affected, unfilled symbols are

unaffected. The proband is indicated with a black arrow. + /� denotes an individual that is heterozygous for the mutation shown, �/� does not

carry the mutation.

Figure 1 Genetic structure and mutations in PRRT2, SLC2A1 and PNKD. Schematic diagrams of the PRRT2 (A), SLC2A1 (B) and PNKD

(C) genes. In each case mutations that have been previously reported to cause a paroxysmal movement disorder are shown above the gene, and

mutations found in this paper are shown below (blue have previously been reported, red are novel).
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and Table 1). A male to female ratio of 2:1.3 was identified

in those expressing a phenotype, and the patient demo-

graphic was 56% British and a mixture of other popula-

tions accounting for the other 44%. As widely reported, by

far the most common mutation (44 families, 82%) was an

insertion of a cytosine into a string of nine cytosines, re-

sulting in a frame shift mutation and premature stop codon

(p.R217Pfs*8). Each of the other nine mutations accounted

for one family and the majority were loss-of-function.

These mutations were found in families with a number of

different ethnicities and there was no common background

haplotype. Four mutations were novel and two of the mu-

tations (p.G305W and p.C332_V333insD) have only been

reported by us in the past. We include them here, as well as

the cases with p.R217Pfs*8 mutations, for the assessment

of the frequency of PRRT2 mutations in our cohort

(Gardiner et al., 2012; Silveira-Moriyama et al., 2013).

The p.P215R variant is also included in the mutation

table; it has a frequency of 57:10 000 in the ExAC data-

base and not seen in 488 UK control subjects. The patho-

genicity of this change is still uncertain. The p.P216H

variant has been found in our patient series but was also

found in the UK control population at a rate of 1%.

Mutations in the PRRT2 gene were mainly associated

with paroxysmal kinesigenic dyskinesia with a number of

associated phenotypes (Table 1) including: (i) episodic

ataxia; (ii) benign epilepsy; (iii) PED; and (iv) migraine

and familial hemiplegic migraine. Fifty-one patients were

part of the paroxysmal dyskinesia series and the remaining

two were from the episodic ataxia and familial hemiplegic

migraine series.

Migraine and hemiplegic migraine were by far the most

common associated phenotypes (Table 1). Interestingly, the

majority of patients were given symptomatic treatment,

mainly with carbamazepine; it has been widely reported

that patients with PRRT2-positive PKD are more likely to

respond well to the drug than patients without a mutation

(Li et al., 2013; Mao et al., 2014). There did not appear to

be a correlation between genotype and efficacy of treatment

in our cohort. Initially the extended Indian families were

taking phenytoin, which was then usually switched to car-

bamazepine, and lamotrigine in one patient. Depending on

availability some of the extended Indian family patients still

take phenytoin. Patient 48, who did appear to benefit from

even high doses of the drugs. No treatment was being given

in three families, at patients’ request. A family with episodic

ataxia and one with familial hemiplegic migraine alone

were identified with PRRT2 mutations. The familial hemi-

plegic migraine family proband presented as an infant with

infrequent seizures until age 2 years and then developed

Figure 3 The predicted protein consequence of mutations in the PRRT2 gene. Red cross = nonsense-mediated decay; burgundy

outline = mutated exon; grey outline = reduced expression. Chromatograms show the presence of a mutation in mRNA, excluding the possibility

of nonsense-mediated decay.
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Figure 4 Mutation effect in PRRT2 and PNKD frameshift mutations. (A) Schematic diagram of PRRT2 showing the elongation of the

protein caused by p.*341Lext27, and the chromatogram identifying the mutation in the patient DNA with no NMD in mRNA from this family. (B)

Schematic diagram of the wild-type and truncated PNKD-L, the result of the p.P341Pfs*2 mutation. The cDNA sequencing (B) shows the

mutation was present at the mRNA level (top = forward sequencing, bottom = reverse sequencing in the lower figure) and so excludes the

possibility of nonsense-mediated decay.

Figure 5 Likely mechanism of action of paroxysmal dyskinesia genes. A suggested mechanism for the paroxysmal dyskinesia genes,

where mutations in PRRT2, PNKD and SLC2A1 result in disruption of neurotransmitter release regulation and thus impaired synaptic release.

Circles indicate presynaptic vesicles containing neurotransmitter (dots). Yellow vesicles are affected by SLC2A1 mutations, green by PNKD

mutations and blue by PRRT2 mutations.
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typical hemiplegic migraine attacks. The sister, father and

two cousins also had classical hemiplegic migraine and the

attacks in the proband persisted until now (aged 18 years)

but responded to carbamazepine.

Fourteen SLC2A1 mutations were identified in the par-

oxysmal dyskinesia series (10%) and one in the episodic

ataxia and familial hemiplegic migraine series (Figs 1, 2

and Table 2). In general these were complex cases that

had been heavily investigated prior to obtaining a genetic

diagnosis. Eight had PED, often associated with other fea-

tures such as epilepsy and migraine. Three had PKD (one

with epilepsy) and one had PNKD, two with episodic

ataxia and one with myotonia and dystonia, as discussed

below. Eleven of the mutations had previously been re-

ported as being pathogenic. The p.C201R mutation has

not before been identified but presented with a PNKD

phenotype and was present in the affected mother.

p.C201R is not present in population databases, but is

not well conserved and predicted to be benign by

PolyPhen-2 but damaging by SIFT. p.T60M is present in

0.00015% of the population, is moderately conserved and

is predicted to be damaging by PolyPhen-2 but tolerated by

SIFT. This mutation has been reported in association with

seizures in the past but like in our family, there was

reduced penetrance. Patient 66 had sequence variants in

both SLC2A1 and PRRT2 (p.R333Q and p.P216H, re-

spectively) and a PKD phenotype, but the PRRT2 mutation

is unlikely to be pathogenic as it is present in 1% of con-

trols we analysed, and the p.R333Q mutation has been

reported previously as pathogenic.

The majority of PRRT2 mutations are predicted to be

loss-of-function and likely lead to haploinsufficiency. It

has been previously demonstrated that mutations

p.Q163X, p.G192WfsX8 and p.R217PfsX8 result in non-

sense-mediated decay (Wu et al., 2014). This is not the case

for all mutations as cDNA created from two of our muta-

tions; p.G305W and p.*341Lext27 (a stop codon mutation

extending the protein, HGVS standard nomenclature used;

den Dunnen and Antonarakis, 2000) do not affect mRNA

or lead to a longer transcript (Figs 3 and 4A). The mech-

anism behind these two mutations is likely to be the same

as those causing nonsense-mediated decay with lack of as-

sociation in the SNAP25/SNARE complex and greater ves-

icle release (Fig. 5). SLC2A1 mutations were associated

with a wide spectrum of clinical features. Family 56 was

identified with a novel heterozygous mutation at p.G76V

that was not present in 488 controls and 6502 exomes in

the exome variant server. This patient was a 26-year-old,

diagnosed with attention-deficit hyperactivity disorder as a

child and since then has had episodes of ‘wobbly’ eyes, legs

and arms, and abnormal arm posturing that last 5–10 min,

several times per day. Triggers for these episodes included

tiredness, sudden movement, intercurrent infection or ill-

ness and excitement. He experienced episodes of weakness

and painful cramps in his hands and his legs. He has tried

carbamazepine, which helped a little, and acetazolamide

may have helped reduce the frequency of these attacks.

He underwent repeat long exercise testing (McManis) and

this showed significant decrement, accompanied by weak-

ness of the exercised hand muscles. This was most unex-

pected given that SLC2A1 is best known as a brain

transporter; however, there is some evidence of the protein

having an additional important role in skeletal muscle

(Andrisse et al., 2014). This result was repeated and abnor-

mal spanning over several years. The significant decrement

on McManis testing ranged from 51–66%. The clinical

diagnosis at that time suggested a periodic paralysis pheno-

type but the movement disorder was not consistent with

this.

In the PNKD gene, four mutations were identified (Figs

1–3 and Table 3). Three were in the paroxysmal dyskinesia

series and one in a familial hemiplegic migraine family. The

mutations associated with paroxysmal dyskinesias were in

phenotypically typical PNKD families with non-kinesigenic

precipitants such as stress or strong coffee. These mutations

have been reported in the past and these were in two un-

related families with p.A7V and one with p.A9V. In the

familial hemiplegic migraine family the mutation was

novel and the female proband presented at 42 years of

age with a typical attack of hemiplegic migraine with head-

ache, abnormal vision and left-sided motor and sensory

weakness that lasted for 45 min to an hour in duration.

She had a normal MRI shortly after the event and other

cardiac investigations were unremarkable, and the hemiple-

gic migraine resolved. A few months later she had a similar

hemiplegic migraine attack. Her paternal great uncle and

father had similar attacks. Her father presented at a similar

age and to date has had over 50 hemiplegic migraine at-

tacks, often without a headache. He has presented to the

emergency department many times concerned that this was

a stroke and has been extensively worked up but imaging

and other investigations have been normal. A heterozygous

mutation of c.1022delC; p.P341fs*2 was identified in the

PNKD gene in the proband and father, not in the mother.

We analysed cDNA, from mRNA extracted from patient

fibroblasts. The deletion was present in the mRNA, indicat-

ing that nonsense-mediated decay would not occur, al-

though nonsense-mediated decay is dependent on cell type

and therefore it is possible that it could occur in neurons.

This mutation therefore caused the formation of a trun-

cated PNKD in the mRNA (Figs 3 and 4B). Although func-

tional work was not carried out the truncating effect of this

mutation is likely to have an abnormal effect on exocytosis

due to impaired interaction between PNKD and RIM/

RIM1 (Fig. 5).

Discussion
High prevalences of PRRT2, SLC2A1 and PNKD muta-

tions were identified in this large, mainly London based

paroxysmal movement disorder referral series. Although

we have a multi-ethnic population the results corroborate

smaller individual gene series (Fig. 1 and Tables 1–3).

The clinical and genetic heterogeneity of paroxysmal dyskinesias BRAIN 2015: 138; 3567–3580 | 3575



T
a
b

le
2

C
li
n

ic
a
l

p
h

e
n

o
ty

p
e

a
n

d
d

e
m

o
g
ra

p
h

ic
s

o
f

fa
m

il
ie

s
a
n

d
p

a
ti

e
n

ts
w

it
h

S
L
C

2
A

1
m

u
ta

ti
o

n
s

P
a
ti

e
n

t
E

th
n

ic
it

y
A

g
e

a
t

o
n

se
t/

c
u

rr
e
n

t

a
g
e

A
ff

e
c
te

d

c
a
se

s

a
n

d
g
e
n

d
e
r

P
h

e
n

o
ty

p
ic

d
e
sc

ri
p

ti
o

n
F

a
m

il
y

h
is

to
r
y

F
a
m

il
y

m
e
m

b
e
rs

te
st

e
d

fo
r

se
g
re

g
a
ti

o
n

C
S

F
g
lu

c
o

se
:

b
lo

o
d

ra
ti

o

G
e
n

e
ti

c
s

F
re

q
u

e
n

c
y

in
E

x
A

C

P
re

v
io

u
sl

y

re
p

o
rt

e
d

(r
e
fe

re
n

c
e
)

5
4

B
ri

ti
sh

5
/4

0
1
F

E
x
e
rc

is
e

in
d
u
ce

d
d
ys

to
n
ia

,
se

iz
u
re

s

an
d

h
e
m

ip
le

gi
c

m
ig

ra
in

e

N
o

N
o

L
o
w

,
0
.5

p
.G

1
8
R

0
W

e
lle

r
et

al
.,

2
0
1
5

5
5

A
si

an
1
/9

1
M

Fr
e
q
u
e
n
t

p
ar

o
x
ys

m
al

e
p
is

o
d
e
s

o
f

u
n
st

e
ad

in
e
ss

,
h
e
ad

ac
h
e
s,

n
ys

ta
gm

u
s,

vo
m

it
in

g.
M

R
I

n
o
rm

al
.
P
re

se
n
t

in

u
n
af

fe
ct

e
d

fa
th

e
r

an
d

b
ro

th
e
r

N
o

Y
e
s

N
o
rm

al
p
.T

6
0
M

0
.0

0
0
0
2

A
rs

o
v

et
al

.,
2
0
1
2

5
6

B
ri

ti
sh

8
/2

8
1
M

M
yo

to
n
ia

an
d

d
ys

to
n
ia

N
o

N
o

N
o
rm

al
p
.G

7
6
V

0
N

o

5
7

B
ri

ti
sh

2
/2

5
1
F

P
E
D

N
o

N
o

N
/D

p
.R

9
1
W

0
Sc

h
n
e
id

e
r

et
al

.,
2
0
0
9

5
8

B
ri

ti
sh

6
-1

3
/1

8
-7

8
2
M

2
F

P
K

D
in

th
re

e
ca

se
s,

P
E
D

in
o
n
e
.

A
tt

ac
k
s

ty
p
ic

al
o
f

P
K

D

Y
e
s,

fa
m

ily
h
is

to
ry

o
f

m
ig

ra
in

e
.

N
o

N
o
rm

al
p
.R

9
2
W

0
N

o

5
9

B
ri

ti
sh

1
1
/4

6
3
F

Se
ve

re
P
E
D

an
d

P
K

D
Y
e
s,

A
D

fa
m

ily
h
is

to
ry

N
o

L
o
w

,
0
.4

p
.M

9
6
V

0
L
e
e
n

et
al

.,
2
0
1
0

6
0

B
ri

ti
sh

Te
e
n
s/

4
9

1
M

2
F

P
N

K
D

A
ff
e
ct

e
d

m
o
th

e
r

Y
e
s

N
o
rm

al
p
.C

2
0
1
R

0
N

o

6
1

B
ri

ti
sh

8
/2

4
1
M

P
K

D
w

it
h

e
p
ile

p
sy

N
o

N
o

N
/A

p
.R

2
2
3
W

0
L
e
e
n

et
al

.,
2
0
1
0

6
2

B
ri

ti
sh

1
2
/4

2
1
M

1
F

P
E
D

D
o
m

in
an

t
in

h
e
ri

ta
n
ce

Y
e
s

N
o
rm

al
p
.A

2
7
5
T

0
W

e
b
e
r

et
al

.,
2
0
0
8

6
3

B
ri

ti
sh

1
5
/2

8
1
F

P
E
D

an
d

se
iz

u
re

s
N

o
N

o
L
o
w

0
.5

5
p
.S

2
8
5
P

0
N

o

6
4

Ir
e
la

n
d

4
/1

7
1
M

2
F

E
A

2
,
e
ar

ly
ab

se
n
ce

se
iz

u
re

s
N

o
N

o
N

/A
p
.T

2
9
5
M

0
W

e
b
e
r

et
al

.,
2
0
0
8

6
5

B
ri

ti
sh

C
h
ild

/3
6

1
M

2
F

P
E
D

N
o

N
o

N
/A

T
2
9
5
M

0
W

e
b
e
r

et
al

.,
2
0
0
8

6
6

B
ri

ti
sh

5
/1

3
1
F

P
K

D
,
lo

n
g

an
d

fr
e
q
u
e
n
t

e
p
is

o
d
e
s

o
f

d
ys

to
n
ia

an
d

u
n
u
su

al
to

n
gu

e
d
ys

to
n
ia

.

N
o

N
o

N
/A

p
.R

3
3
3
Q

+
P
R

R
T

2

(p
.R

2
1
6
H

)

0
Sc

h
n
e
id

e
r

et
al

.,
2
0
0
9

6
7

B
ri

ti
sh

4
/5

4
1
M

1
F

P
E
D

,
m

ig
ra

in
e
s

an
d

se
iz

u
re

s
N

o
N

o
L
o
w

,
0
.5

p
.R

3
3
3
Q

0
Sc

h
n
e
id

e
r

et
al

.,
2
0
0
9

6
8

B
ri

ti
sh

1
2
/2

6
1
M

1
F

P
E
D

,
se

iz
u
re

s
D

au
gh

te
r

af
fe

ct
e
d

Y
e
s

L
o
w

,
0
.5

p
.R

3
3
3
W

0
W

an
g

et
al

.,
2
0
0
0

A
D

=
A

lz
h
e
im

e
r’
s

d
is

e
as

e
;
E
A

=
e
p
is

o
d
ic

at
ax

ia
;
H

M
=

h
e
m

ip
le

gi
c

m
ig

ra
in

e
;
N

/D
=

n
o
t

d
e
te

rm
in

e
d
.

3576 | BRAIN 2015: 138; 3567–3580 A. R. Gardiner et al.



There was a spectrum of clinical features and many patients

had additional clinical features such as seizures. The fre-

quency of migraine and hemiplegic migraine was highly

associated with these phenotypes although this is also

common in the general population. Some individuals in

the extended PKD families did not have a movement dis-

order at all or were affected by seizures or hemiplegic mi-

graine alone. The usual mechanism for PRRT2 mutations

is loss of function due to nonsense-mediated decay, leading

to haploinsufficiency (Figs 2–5) and likely lead to a lack of

SNAP25/SNARE interaction and increased vesicle release.

Segregating PRRT2 missense mutations were also identified

where there was no change in the PRRT2 mRNA, but we

expect a loss of SNAP25/SNARE interaction or prevention

of the PRRT2 protein from anchoring to the presynaptic

membrane, and thus leading to a similar lack of inhibition

of vesicle release due to reduced tethering (Fig. 5).

Fewer mutations were identified in the SLC2A1 and

PNKD genes, and primarily in patients with PKD and

PNKD (Fig. 1 and Table 2). The patients with SLC2A1

mutations had the broadest spectrum of clinical pheno-

types. There was overlap clinically with PKD (as in the

p.R223W family) and PNKD (as with the p.C210R

family). This group were the most extensively investigated

before a genetic diagnosis was sought, and fasting CSF glu-

cose was frequently low in affected individuals with a more

complex phenotype associated with seizures but usually

normal with a movement disorder alone. There was also

a greater rate of an incorrect clinical diagnosis and overlap

with other channelopathies, as with the family with the

p.G76V mutation and abnormal McManis testing, and in

the family with the p.R333Q mutation and unusual tongue

dystonia as part of the phenotype. These families are simi-

lar to those first described in 1892 as atypical Thomsen’s

disease (Kure, 1892). The p.R333Q had an additional vari-

ant in the PRRT2 gene (p.P216H), which may be benign or

modifying the effect of the p.R333Q mutation. In addition

there was evidence of reduced penetrance in SLC2A1, most

clearly in the family with the p.T60M mutation that pre-

sented with paroxysmal attacks, headaches and nystagmus

where the father and brother had the mutation but were

unaffected (see family tree, Fig. 2). The p.T60M mutation

has previously been identified in idiopathic epilepsy, further

extending the heterogeneity.

In the episodic ataxia cohort, one family was identified

with a mutation in the PRRT2 gene, one with a defect in

the SLC2A1 gene and two familial hemiplegic migraine

families were identified, one with a PRRT2 mutation and

one with a novel PNKD mutation. The familial hemiplegic

migraine families were of most interest as they have a typical

phenotype and the mutations segregate in the family. The

novel PNKD mutation is a frameshift deletion located in

exon 10, which is predicted to cause a truncated protein,

this segregated with the disease, predicted pathogenic and

was not identified in controls (Figs 2, 3 and 4B). Alternate

splicing of the PNKD gene results in three isoforms of the

protein of varying length; PNKD-S, PNKD-M (both ex-

pressed ubiquitously), and PNKD-L (expressed in the CNS)

(Shen et al., 2011). All previously reported mutations are

located in the 5’ end of the gene, found in both PNKD-L

and PNKD-S but not PNKD-M. This mutation, instead af-

fects PNKD-L and PNKD-M and the location and truncating

effect of the change in shortening the PNKD protein is likely

to lead to reduced RIM/RIM1 binding (Shen et al., 2015) in

the SNARE complex and abnormal vesicle release (Fig. 5).

While there is a great deal more to be understood, it

seems likely that these three paroxysmal genes are acting

on the presynaptic terminal, possibly with overlapping

pathways, and thus result in a similar dysregulated and

possibly increased vesicular release. Although there is clin-

ical overlap, there are also additional clinical features. This

overlap is seen in the brain expression patterns where genes

with a similar mechanism have identical regional expres-

sion patterns (Supplementary Fig. 1) as for PRRT2,

SNAP25, KCNA1 and CACNA1A (all presynaptic) where

they share highest expression levels in the cerebellum, and

frontal, temporal and occipital cortices as compared with

SLC2A1 and PNKD. This could explain the subtle pheno-

typic differences and the regional effect on vesicle release. It

has recently been reported that overexpression of wild-type

PNKD in rat hippocampal cultures reduced neurotransmit-

ter release in comparison to an empty vector, whereas

Table 3 Clinical phenotypes of the four PNKD probands and mutations

n Ethnicity Age at onset

/current age

Sex Phenotypic

description

Family history Family

members

tested for

segregation

Genetics Frequency

in ExAC

Previously

reported

(reference)

69 German Teens/20s 3F 3M PKD Four generation

large family

Yes p.A7V 0 Lee et al., 2004;

Rainier et al., 2004
70 British 16/32 2M 2F PNKD with

atypical features

Yes, father, paternal

uncle and grandmother

Yes p.A9V 0 Lee et al., 2004;

Rainier et al., 2004
71 British 8-22/20-64 17M 10F PNKD Several affected over

three generations

Yes p.A9V 0 Lee et al., 2004;

Rainier et al., 2004
72 British 30-34/44-78 2M 1F Familial hemiplegic

migraine

Father, great-uncle and

proband over three

generations

Yes c.1022delC

p.Pro341fs

0 No
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overexpression of mutant PNKD did not. This suggested

that PNKD also has a role in regulating presynaptic exo-

cytosis (Lee et al., 2015). It is also known that PRRT2

interacts with SNAP25, a protein important in facilitating

synaptic exocytosis (Lee et al., 2015). Therefore, we suggest

a possible disease mechanism whereby both PNKD and

PRRT2 perform similar roles in restricting synaptic exocyt-

osis. Disease-causing mutations that either reduce levels of

PRRT2 or disrupt PNKD function reduce this restriction

and result in excessive neurotransmitter release (Fig. 5). It

is unclear how SLC2A1 mutations contribute to this

theory, but it has been shown that they result in reduced

glucose transport into the brain, so perhaps glucose is also

involved in the regulation of exocytosis. The functional

consequence of the regional expression patterns remains

to be seen but may indicate that SLC2A1 and PNKD path-

ways are more closely related to dystonic genes located in

the basal ganglia and brainstem.

Little is known about how disruption of these proteins

results in migraine, a clinical manifestation that has been

seen frequently here and elsewhere. However, in a recent

study, transgenic mice with human monogenic migraine

gene mutations (thus mimicking the types of migraine

seen in this cohort) were shown to display increased gluta-

matergic neurotransmission and cerebral hyperexcitability

(Ferrari et al., 2015). This finding indicates that the lack

of neurotransmitter release regulation postulated here could

also result in the migraine exhibited. There is clearly a large

pathophysiological overlap between all of these related

neurological disorders, which required further investigation

to be understood more fully.

Overall this work reveals a wide spectrum of mutations

and phenotypes and has expanded the broad phenotypic

spectrum of these paroxysmal movement disorders, suggest-

ing where possible, as part of the investigative work-up, all

three genes should be analysed in these conditions. We also

highlight novel mutations and a likely distinct mechanism

for 3’ PNKD mutations that lead to PNKD-L dysregula-

tion. There is genetic and phenotypic overlap amongst

other episodic movement disorders with episodic ataxia,

the neuronal channelopathies and familial hemiplegic mi-

graine all being identified with defects in these three genes.
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