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Abstract: This study was primarily focused on the supercritical fluid extraction (SFE) of cherry
seed oil and the optimization of the process using sequential extraction kinetics modeling and
artificial neural networks (ANN). The SFE study was organized according to Box-Behnken design of
experiment, with additional runs. Pressure, temperature and flow rate were chosen as independent
variables. Five well known empirical kinetic models and three mass-transfer kinetics models based
on the Sovová’s solution of SFE equations were successfully applied for kinetics modeling. The
developed mass-transfer models exhibited better fit of experimental data, according to the calculated
statistical tests (R2, SSE and AARD). The initial slope of the SFE curve was evaluated as an output
variable in the ANN optimization. The obtained results suggested that it is advisable to lead SFE
process at an increased pressure and CO2 flow rate with lower temperature and particle size values
to reach a maximal initial slope.

Keywords: cherry seed oil; supercritical fluid extraction; kinetics modeling; mass-transfer model;
artificial neural network

1. Introduction

The food industry is known for generating large amounts of food waste, which
stands for an easily available and cheap resource of high-value compounds beneficial for
human health [1]. Fruit by-products have been studied in recent years with a focus on
industrial utilization and optimization of extraction parameters for yield enhancement
of bioactive components and obtainment of high-value extracts, which can later be used
in food products [2]. Seeds and kernels, as a common stream of fruit-processing by-
products, are often used as an unique source of oils rich in polyunsaturated fatty acids,
tocopherols, carotenoids, phytosterols and squalene which can be applied in numerous
industry fields [3,4].

In recent years, the focus has been on developing modern extraction techniques
primarily emphasized on shorter processing time, reduction of hazardous organic solvents,
better extraction effectiveness, while simultaneously being cost-effective and eco-friendly
and these techniques are named green extraction techniques [5,6]. The tendencies in
research are moving towards the replacement of conventional extraction techniques by
novel approaches in order to decrease environmental pollution related to organic solvents
by using green solvents, such as water, glycerol, vegetable oils, supercritical fluids and
ionic liquids [7] and natural deep eutectic solvents.

Supercritical fluid extraction (SFE) has been recently introduced in food, pharma-
ceutical, cosmetic, nutraceutical, chemical, environmental and fuel industries [3,6]. A
supercritical state of a fluid indicates that its temperature and pressure are exceeding their
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critical points. As a consequence, its physical and thermodynamic characteristics change,
and it is often said that supercritical fluids have properties between liquid and gas. They
have liquid-like density, which produces solvating power as similar to liquids and gas-like
viscosity and diffusivity, which leads to higher mass transfer [8–10]. The most frequently
used fluid is CO2, since it is risk-free, non-toxic, readily available in high purity, eco-friendly,
low-cost solvent with moderate critical parameters (31.4 ◦C and 74.8 bar) [6,10]. SFE is ad-
vantageous for the extraction of particular compounds that are soluble in supercritical CO2,
due to its polarity that is very similar to toluene. In this way, the extraction of lipophilic
active compounds is greatly eased [1,11].

The outcome of the SFE process is influenced by different process parameters such as
pressure, temperature, solvent flow rate, but also particle size, porosity, nature of the plant
material and moisture [12]. Primary condition for a successful supercritical fluid extraction
lies in a solubility of a desired active compound in supercritical CO2. Different parameters,
such as pressure and temperature, can make an impact on the yield and composition of the
extracts, since CO2 solvation power depends considerably on heating and pressurization.
Having information about these effects can be utilized for optimization and economical
assessment of the process, which is further used to transfer process to industrial level and
to design and optimize an industrial plant [12,13]. Due to its better transfer abilities, the
diffusion into solid matrix is enhanced [7]. Additionally, CO2 is simply removed at ambient
conditions and one of the advantages of this solvent is the possibility of re-using, assisting
in cost savings and makes the process practical at industrial scale [1].

SFE is based on internal (pressure and temperature) and external (sample matrix and
ambient conditions) characteristics of the supercritical fluid, which leads to the selection of
the correct experimental design [14]. Process sustainability is influenced by thermodynamic
properties, whereas the size and scale-up of equipment depend on transport properties
and chemical kinetics parameters, so the process design and evaluation can be performed.
By using process design, it is possible to reduce energy loss and material costs [15].

Considering the outcome of the SFE process, optimization can be done in favor of
achieving the utmost total extract yield, the superior concentration of desired compounds
and/or particular components in the extracts or their fractions and the optimum recovery
of the compounds from the raw material [6]. Kinetic models, built on heat and mass
transfer correlation or mass balance relations, can be applied for resolving mathematical
analysis of the SFE process and scaling-up from laboratory to pilot scale [16]. Kinetic
curves represent functions of extracted mass depending on time, flow rate or solvent-to-
feed-mass ratio and are later used for the process scale-up and estimation of the production
expenses. Extraction curves consist of three parts according to different mass transfer
mechanisms. Firstly, it can be divided into constant extraction rate (CER) period which
depends on convective mass transfer and it is controlled by thermodynamic equilibrium
of the solute. The next period is falling extraction rate (FER) period, determined by its
slower rate since the diffusion mechanism collides with convection. The last period is the
diffusion-controlled period (DC), which occurs after the recovery of all the extractable
solutes. The principal mechanism is based on the diffusion of residual solutes from solid
matrix to extraction medium [13].

The transport phenomena in the SFE process can be explained through mathematical
modeling of such processes. Known mathematical models used to explain the SFE kinetics
could be categorized in several categories: empirical models, models based on heat-transfer
analogy, mass-transfer based models, or a combination of those models [17]. The SFE mod-
eling approach finds its use in various industrial applications since it could be utilized for
scale-up and/or to improve process parameters. Recently, artificial neural network (ANN)
approach has been used extensively for simulation and optimization of SFE processes in
order to determine the best set of process parameters, which would provide the highest
yield [18–20]. This approach has limitation for optimization of SFE processes on industrial
scale since total extraction yield is determined at the end of the process, i.e., until the com-
plete exhaustion of the plant material. It is not feasible from an economical point of view
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to perform SFE until the complete exhaustion of plant matrix. Pavlic et al. [16] proposed
the alternative approach for optimization of SFE processes which aim to maximize initial
slope of kinetic curves, which is associated with solubility-controlled extraction phase and
industrial scale processes. However, all these works were based on ANNs mimicking the
natural neural system using computer software and they relied on several advantages,
such as nonlinearity, adaptively, generalization, model independence, easy to use and
high accuracy. The cherry seed oils extraction using different extraction processes [21] or
supercritical CO2 extraction of tea seed oil [22] and cherry seed oils extraction [23] were
already mentioned in the literature. However, these studies were limited in several SFE
experiments which does not provide thorough information about the influence of SFE
parameters on extraction kinetics and yield.

The fundamental objective of this investigation was the development of various
empirical and mass-transfer based models for fitting the cherry seed oil SFE process.
Furthermore, the determination of the SFE parameters’ (such as pressure, temperature,
CO2 flow rate and particle size) effect on kinetic curves and flexible model parameters
were investigated. The Box-Behnken experimental design with 15 regular and 6 additional
runs was employed with an intention to offer a thorough set of information on how
SFE parameters affect extraction kinetics, while the influence of the process parameters
was assessed by one-factor-at-a-time (OFAT) approach. The final task of this research
was the initial slope evaluation of the extraction curves through the SFE artificial neural
network optimization with a view on maximizing the initial mass transfer rate of the
extraction curves.

2. Materials and Methods
2.1. Plant Material and Chemicals

The industrial by-products of cherry seeds were received from the domestic cold-
pressed oil factory, PAN-UNION d.o.o. (Novi Sad, Serbia). The plant material was im-
mediately milled in a hammer mill (ABC Engineering, Pančevo, Serbia) and subjected to
the SFE experiments. Mean particle size of the milled sample was determined by sieving
through the vibro-sieve set (CISA Cedaceria Industrial, Barcelona, Spain) and the calculated
mean particle size of the milled plant material used in experiments was 741 µm. The same
vibro-sieve set was used to divide raw material to <0.8 and >0.8 mm particle size fractions,
which were later used to examine particle size influence on SFE process.

Carbon dioxide (99.9%) used in SFE experiments was acquired from Messer Technogas
A.D., Novi Sad, Serbia.

2.2. Supercritical Fluid Extraction (SFE)

The supercritical fluid extraction experiments (SFE) of cherry seed oil were performed
through high pressure extraction at laboratory scale (HPEP, NOVA-Swiss, Effretikon,
Switzerland) described by Pavlic et al. [24]. The high pressure extraction apparatus consists
of a gas cylinder with CO2; diaphragm type compressor with a pressure range up to
100 MPa; an extractor with a heating jacket as a heating medium (internal volume 200 mL,
maximum operating pressure of 70 Mpa); a separator with a heating jacket as a heating
medium (internal volume 200 mL, maximum operating pressure of 25 MPa); pressure
control valve; temperature regulation system; gas flow regulation valves. In individual
experiments, the extractor vessel was loaded with 130.0 ± 0.01 g of cherry seeds. Consecu-
tively, after 15, 30, 45, 60, 90, 120, 180 and 240 min of the process, the total extraction yield
(Y) was measured for every sample and this data was used to determine the dynamics
and kinetics of cherry seed oil extraction. In the first experimental part, Box-Behnken
experimental runs (15 experiments), which has been successfully used in optimization
of SFE experiments [25], were set, in which three independent variables were varied at
three levels and had three central point replicates. Pressure influence was examined at 200,
275 and 350 bar, temperature values were 40, 55 and 70 ◦C and CO2 flow rate influence
was investigated at 0.2, 0.3 and 0.4 kg/h. Other SFE variables, such as mean particle size
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(0.741 mm) and extraction time (4 h) were kept at their constant values. The six additional
runs were later added to the experimental design to examine the influence of different
combinations of independent process parameters (CO2 flow rate, temperature, pressure
and particle size). According to these results, the experimental design would give further
information on extraction dynamics and how the SFE parameters influence yield by apply-
ing one-factor-at-a-time (OFAT) approach. A complete experimental design is presented in
Table 1. Cherry seed oil was separated from CO2 at 15 bar and 25 ◦C in separator.

Table 1. Box-Behnken experimental design with 15 + 6 runs, with three independent SFE parameters: pressure, temperature
and CO2 flow rate. The additional six experiments (runs 16–21) were performed to evaluate the effects of these variables
and also the particle size of the cherry seed oil (CSO).

Run
Factor 1 Factor 2 Factor 3

Density Particle Size
Pressure Temperature CO2 Flow Rate

(bar) (◦C) (kg/h) (g/cm3) (µm)

Box-Behnken Experimental Design

1 −1 200 1 70 0 0.3 658.95 741
2 1 350 0 55 −1 0.2 881.30 741
3 0 275 −1 40 1 0.4 894.80 741
4 0 275 1 70 −1 0.2 762.35 741
5 0 275 −1 40 −1 0.2 894.80 741
6 1 350 1 70 0 0.3 826.30 741
7 −1 200 0 55 1 0.4 754.10 741
8 −1 200 0 55 −1 0.2 754.10 741
9 1 350 −1 40 0 0.3 934.90 741
10 0 275 1 70 1 0.4 762.35 741
11 0 275 0 55 0 0.3 830.45 741
12 −1 200 −1 40 0 0.3 839.90 741
13 0 275 0 55 0 0.3 830.45 741
14 0 275 0 55 0 0.3 830.45 741
15 1 350 0 55 1 0.4 881.30 741

Additional Experiments

16 1 350 1 70 1 0.4 826.30 741
17 1 350 −1 40 1 0.4 934.90 741
18 −1 200 1 70 1 0.4 658.95 741
19 1 350 1 70 1 0.4 826.30 741
20 1 350 1 70 1 0.4 826.30 <800
21 1 350 1 70 1 0.4 826.30 >800

Experiments 1–19 were used in extraction kinetics modeling and ANN simulation.

2.3. Mathematical Modeling of Kinetic Curves
2.3.1. Empirical Models

The experimentally obtained results (15 + 6 runs in total, with the different SFE pa-
rameters) were fitted to five kinetics and three mass-transfer based models. Five frequently
used empirical models which were implemented for the SFE kinetics of the cherry seed oil
(CSO) are presented in Table 2. These empirical models are well-known and widely used
for SFE modeling and are further described by other authors [26]. Nomenclature of the
abbreviations used in all applied models is given in Supplementary Material.
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Table 2. Frequently applied empirical models implemented for fitting of cherry seed oil SFE.

No Model Equation Reference

Model I Y = Y∞ ·
(

1 − e−k·t
)

[27]

Model II Y = Y∞ ·
(

1 − e(a·t+b)
)

[28,29]

Model III Y = Y∞ · t
k+t [30,31]

Model IV Y = Y∞ ·
[
1 −

(
f1 · e−k1·t + f2 · e−k2·t

)]
[32]

Model V
Y = Y∞ · G · t

t1
, for t ≤ t1 = G

Km ·
.
q [33]

Y = Y∞ ·
[

1 − (1 − G) · e
t−t1

ti

]
, for t ≥ t1

2.3.2. Mass-Transfer Models

The mass-transfer SFE models investigated in this study were based on the equation
system proposed by Sovová [33,34]. The solution of the Sovová’s model was presented
as the first mass-transfer model (designated as Model VI), which was solved by the Excel
procedures presented in the paper by Cabeza et al. [34]. A few assumptions were made
in order to solve the Sovová’s model: (1) a non-stationary mass balance was considered
in each phase, (2) the bed porosity remains constant during the SFE process, (3) there is
no diffusion transport within the extraction column, (4) the diffusion effects in the axial
direction are minor and (5) the solubilization of the CSO according to Henry’s equation [34].

The simplified set of balance equations for the supercritical fluid (SCF) and the solid
phase may be expressed as [34]:

∂CSCF
∂t

=
1
ε
·
[
−u

L
·∂CSCF

∂z
+ K·α·(C∗

SCF − CSCF)

]
(1)

∂CS
∂t

=
1

1 − ε
·[−K·α·(C∗

SCF − CSCF)] (2)

where C∗
SCF is the equilibrium concentration of the extracted compound in the SCF com-

puted by a Henry’s relation with the concentration in the solid (CS): C∗
SCF = H·CS.

An additional equation should be presented, for a global coefficient calculation, to
determine the equilibrium concentration and the concentration in the SCF phase, which
would include all three steps of the extraction process. This coefficient could be calculated
as a function of the time where the alternation among these steps occurs [34]:

K·a =
kSCF·aSCF· F

1+exp(−(t−tc1))

1 + exp(t − tc2)
+

kS·aS
1 + exp(t − tc2)

(3)

F represents a correction factor (between 0 and 1). The term kSCF·aSCF·F presents the
overall mass transfer coefficient in which internal and external diffusion are co-dominant.
tc1 is the extraction time interval driven by internal diffusion and external mass transport,
while tc2 is linked to external transport dictated extraction.

According to the original Sovová’s SFE model [33,35], a solution of the theoretical
model was presented in the paper by Rizza [36]. The implementation of this solution was
applied in Matlab code. Based on the aforementioned study, two mass-transfer models
were developed and presented within this study. The second mass-transfer model of SFE
process (Model VII) is a simplified model presented by only two equations that explain the
extraction yield (e) in the two extraction periods:

e = q·yS, 0 ≤ q ≤ qc (4)

e = xu·[1 − C1·exp(−C2·q)], q > qc (5)
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where xu is the solute weight fraction in the unprocessed solid, qc is the relative amount
of elapsed solvent at the end of the first extraction period (CER) and C1 and C2 are the
adjustable parameters.

The passed solvent at the end of the CER period (qc) was also calculated considering
that the initial value of the second equation is equal to the first one (with qc as unknown
value). While parameters C1, C2, and qc were calculated, the grinding efficiency and
the internal mass transfer coefficient should be evaluated according to the following
equations [36]:

r = 1 − C1·exp
(
−C·qc

2

)
, ksas = (1 − r)·(1 − ε)·

.
Q· C2

Nm
(6)

The parameters presented in the Equation (6) were used as the initial values of r and
ksas during the calculation of the complete model.

An improved mass-transfer model (in comparison with the Model VII), also based on
the Sovová’s SFE model, was presented in the following text (Model VIII). The limiting
points between the first (CER) and the second period (FER), and between the second and
the third period (diffusion-controlled rate—DCR period) is calculated using the equations:

qm =
r·xu·θe

ys
(7)

qn = qm + γ·θi·ln
[

1 − r + r·exp
(

1
β

)]
(8)

where qm and qn are the relative amount of elapsed solvent at the end of the CER and the
FER period, respectively.

These equations are derived, with the assumption of the plug flow, without a solute-
to-matrix interaction. Additionally, the solute was considered homogeneously distributed
within the solid matrix, while the solvent density and the bed characteristics (such as void
fraction and specific surface area) were considered invariant to the displacement of the
solute from particles to solvent. The complete model equations could be written as [37]:

e = q·ys·
[

1 − exp
(

1
θe

)]
, 0 ≤ q ≤ qm (9)

e = q·yu − r·xi·θe·exp
(

β

θe
·ln
(

1 +
1
r
·
(

exp
(

q − qm

γ·θi

)
− 1
))

− 1
θe

)
, qm ≤ q ≤ qn (10)

e = xu·
(

1 − β·ln
(
(1 − r)·

(
exp
(

1
β

)
− 1
)
·exp

(
q − qm

γ·θi

)))
, qm ≤ q ≤ qn (11)

2.4. Artificial Neural Network (ANN) Optimization

Artificial neural network model is a mathematical tool widely applied for solving
nonlinear problems and problems involving numerical constraints [38,39]. This research
made an attempt to predict the initial slope of the SFE curve, according to the process
parameters such as pressure, temperature, CO2 flow rate and particle size. A multi-layer
perceptron model (MLP), containing three layers, was utilized for the optimization of the
initial slope of the SFE process [40,41]. Experimental data from runs 1–19 (Table 1) were
used in ANN simulation. All the data from the experimental work for ANN modeling was
randomly divided—60% was used for training, 20% was used for testing and 20% was used
for validation. For solving unrestricted ANN modeling optimization problems, Broyden–
Fletcher–Goldfarb–Shanno (BFGS) algorithm was applied as an iterative method [42].

The learning cycle of ANN was based on the training data, which was additionally
used to evaluate the optimal number of neurons in the hidden layer and each neuron’s
weight coefficient. When learning and cross-validation curves approach zero, training can
be considered successful [43].
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2.5. Global Sensitivity Analysis

Evaluation of the relative impact of the parameters on the initial slope of the SFE
curve was evaluated by Yoon’s interpretation method [44]. The Yoon’s equation was used
according to the calculated ANN weight coefficients.

2.6. Statistical Analysis

The extraction kinetics modeling for Models I-V was conducted using MS Excel 2007,
Model VI was calculated in Excel, using Cabeza’s Excel routines [34], Models VII and
VIII were calculated using Matlab code estimations [36], while the ANN calculation was
performed in Statistica 12.0 (StatSoft, Palo Alto, CA, USA). The investigated correlation
among experimentally acquired SFE yields and the appropriately calculated values found
by developed models was evaluated in terms of the sum of squared errors (SSE), coefficient
of determination (R2) and average absolute relative deviation (AARD).

3. Results and Discussion
3.1. Influence of SFE Parameters

In this research, cherry seed (CS) was investigated as a plant resource for oil extraction.
Primarily, moisture content and particle size were determined. The SFE parameters are
widely known to influence mass-transfer from plant material in a remarkable manner and
can explain SFE process kinetics. The properties of plant matrix, such as morphology,
herbal part, water content, shape and porosity can be useful to model the SFE process, but
the most influential parameters stated in the literature are pressure, temperature, solvent
flow rate and target compound solubility [45].

The Box-Behnken design was arranged with 15 regular and 6 additional experiments
to provide a detailed dataset on how the SFE parameters make an impact on the extraction
kinetics. One-factor-at-a-time (OFAT) procedure was applied to evaluate the influence of
the SFE parameters. Impact of pressure (200, 275 and 350 bar), temperature (40, 55 and
70 ◦C), CO2 flow rate (0.2, 0.3 and 0.4 kg/h) and particle size <741, 741 and >800 µm) on
total extraction yield (Y) and kinetic parameters was also studied by OFAT approach.

The estimation of the pressure impact during the process was done using OFAT
method, while other SFE parameters were kept constant (temperature was 70 ◦C; CO2 flow
rate was 0.4 kg/h, and particle size was 741 µm), which is shown in Figure 1a. Based on
the acquired results, the extract yield increased with the increase of pressure.

The increase of the applied pressure up to 350 bar showed a significant impact on
Y, in comparison to pressure levels of 200 and 275 bar (Figure 1a). The pressure increase
to 350 bar exhibited a positive impact to the kinetics curves, since solvation power of
supercritical CO2 increases with pressure elevation. High pressure causes disruption of
plant cells and tissues and increases extraction efficiency [46]. Similar occurrence was
observed in various studies. Pavlić et al. [22] have shown that an augmentin pressure from
100 to 300 bar enhanced extraction yield of sage herbal dust. However, when the pressure
was enhanced from 100 to 200 bar, the yield increase was more prominent, while further
increase to 300 bar did not significantly enhance yield. An identical phenomenon appeared
in wheat germ oil extraction, performed in 250–350 bar pressure range, since higher
pressure values did not alter extraction yields considerably. It can be concluded that each
plant material has to be studied individually with a view of industrial application, since
pressure may be a prevailing factor which influences extraction kinetics [26]. Other authors
reported that pressure was also the prevailing factor, individually and in interaction with
other parameters, in the SFE of elderberry, raspberry, blackberry and black currant [47–50].

The effect of CO2 density on total extraction yield at isothermal and isobaric conditions,
calculated using OFAT approach is presented in Figure 2.
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The increase of pressure directly influences the density of supercritical CO2 in terms
of contribution to the solvent density increase and its ability for better dissolving the target
compounds. However, the density is somewhat limited at higher pressure levels [51].
Temperature increase diminishes CO2 density and solubility, but simultaneously, at the
higher temperatures, solutes become more volatile and the final results could not always
be easily predicted. This phenomenon was investigated in similar temperature conditions
for coriander seed extraction and increase from 40 to 70 ◦C has decreased CO2 density [52].
The global yield of açaí berry oil depended predominantly on carbon dioxide density,
which was influenced by a combination of pressure and temperature [53]. The economic
benefits of the SFE process at an elevated pressure level should be further investigated
in every case study to more precisely define the extract yield and energy consumption
equilibrium [54].

The temperature effect at a constant set of SFE parameters (350 bar, 0.4 kg CO2/h and
741 µm) can be observed in Figure 1b. It could be inferred that the temperature showed a
limited impact since the obtained Y values reached 5.31; 5.54 and 4.93% at 40, 55 and 70 ◦C,
respectively. The SFE curve trend was similar for all the observed temperatures, with an
insignificant increase of the extraction rate, when elevating the temperature level from 55
to 70 ◦C. Obtained results are in agreement with a study focused on SFE of raspberry seed
oil on temperatures between 30 and 60 ◦C, showing minor impact of this parameter on
oil yield [48]. Additionally, this variable did not express crucial influence on wheat germ
oil yield in range from 40 to 60 ◦C and it can be concluded that SFE may be performed on
lower temperatures to reduce energy waste [26].

The increase of temperature (with a fixed pressure level) contributed to the decrease
of the supercritical CO2 density, and thus its solvation power. In contrast to pressure,
temperature exerts influence on both solvent and solute properties. When the temperature
is increased, the solute vapor pressure is increased simultaneously, which could lead to
better extraction rate [55], consistent with our conclusions. This synergistic effect was
proven in the SFE extraction of blackberry and cranberry pomace [49,56]. Additionally, this
phenomenon relies on the nature of the solute and plant material and may not be suitable
for crude extracts [13]. For example, higher yields were recovered at 80 ◦C for cloudberry
and black currant seeds, but yield for bilberry seeds was higher at 50 ◦C, because complex
intramolecular interactions in compound mixtures make the extraction yield more difficult
to estimate [57].

The thermodynamic parameters (such as density and solvent solubility) and transport
properties (viscosity and internal diffusivity) are controlled by pressure and temperature.
On contrary, convective mass-transfer phenomena, axial dispersion and accumulation
in the supercritical phase depend on flow rate and solvent velocity [51]. Concentration
gradient is predicted to be higher with increasing solvent flow rate, thus the extraction rate
would be improved, which could be observed in Figure 1c. These conclusions correspond
to previous studies [54]. Similar flow rate increase from 0.2 to 0.4 kg/h enhanced the
yield of sage herbal dust, wheat germ and grape seed extracts [22,26,58]. It should be
emphasized that higher operational costs may be caused by increased flow rate, which
should be estimated for each case from an industrial point of view [45]. It is also important
to observe that high flow rates cause scarce contact time between solutes and solvent
and may decrease the yield [16]. The CER period would define economic reasons for the
supercritical CO2 consumption within the industry.

The impact of particle size on the SFE process was assessed at constant pressure (350 bar),
temperature (70 ◦C) and CO2 flow rate (0.4 kg/h) and is depicted in Figure 3. According
to the results, downsizing the particle size from >800 to <800 µm caused an increase of
Y. Smaller particles were characterized by greater surface area per unit of volume and
possess a larger amount of free oil which is easily accessible for dissolution; consequently,
the internal mass-transfer resistance is lowered. Additionally, the core of the cherry seeds,
which is rich in oil, may be concentrated in fraction containing smaller particles [35]. The
disadvantage of particle size reduction is aggregation and channeling of the particles,
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which leads to lower extraction rate caused by reduced fluidized bed velocity and filter
congestion [16]. This trend was reported by Pavlić et al. [22], in the range <200 µm, which
had negative impact on raspberry oil yield, while fraction between 200 and 400 µm has
been proven for obtaining the highest yield.
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3.2. SFE Kinetics Modeling

It has been assumed that there are no other studies conducting an investigation on
the SFE kinetics of CSO. This study aims to contribute to this research field by evaluating
the SFE kinetics using the following process parameters: pressure (200, 275 and 350 bar),
temperature (40, 55 and 70 ◦C) and CO2 flow rate (0.2, 0.3 and 0.4 kg/h) during extraction
(0, 15, 30, 45, 60, 120, 180 and 240 min). Five common empirical equations and three
mass-transfer models were applied to fit acquired experimental results. The adequacy of fit
among experimental data and suggested models was examined using statistical parameters,
such as sum of squared errors (SSE), coefficient of determination (R2) and average absolute
relative deviation (AARD). For all implemented models, remarkably high values of R2

and low SSE and AARD (Tables S1 and S2) suggested the adequate fit. The best fit was
achieved by Model VI as it had the lowest SSE and AARD values and the highest R2 (mean
for all experiments: 0.052; 0.043 and 0.998, respectively). The recent SFE research on wheat
germ oil has shown similar results in comparable experimental conditions [26].

Flexible parameters obtained from Model I, Y∞ and k were affected by the SFE pa-
rameters (pressure, temperature, CO2 flow rate and particle size) observed in this study
(Table 3). The parameter Y∞ ranged from 2.97 to 6.48% while k ranged between 0.002 and
0.014 min−1. The largest Y∞ value was gained at 200 bar, 55 ◦C and 0.4 kg/h CO2 (run 7),
while the highest value of k was achieved at 350 bar, 40 ◦C and 0.4 kg/h CO2 (run 17). Three
SFE parameters that were modified in experimental design caused a complex influence
on customizable model parameters, thus it was important to precisely express how the
particular SFE parameter affects the process and it was done according to OFAT approach
(Table 3). The pressure exhibited a positive influence on k. Furthermore, Y∞ also increased
with pressure increase, since solvent density and solvation power were intensified at higher
pressures. Temperature also showed positive impact on Y∞ for Model I (Tables 1 and 3).
This may indicate how the increase of the temperature, while keeping other SFE parameters
constant, showed notable influence towards the vapor pressure of the solute, rather than
expressing negative influence on solvent density.

Model II was obtained through the modification of Model I by adding the correction
term b. A similar trend of the SFE parameters impact on Y∞ was obtained through Model
II, because pressure, temperature and CO2 exerted positive influence on Y∞ (Table 3). Y∞
value was between 2.98 and 6.51%, a was in the range of −0.015–−0.002, while parameter
b was in the range from −0.014 to 0.026 min−1.
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Table 3. Calculated adjustable parameters of Models I–IV used for SFE modeling.

Model I Model II Model III Model IV

Run Y∞ k Y∞ a b Y∞ k Y∞ f 1 k1 f 2 k2
(%) (min−1) (%) (%) (min−1) (%) (min−1) (min−1)

Box-Behnken Experimental Design

1 5.13 0.002 4.97 −0.002 0.001 5.61 503.21 5.29 0.997 0.002 0.010 0.280
2 4.32 0.009 4.28 −0.010 0.010 6.19 139.24 4.31 0.996 0.009 0.015 0.036
3 2.97 0.013 2.99 −0.012 −0.012 3.97 88.93 3.42 0.641 0.006 0.361 0.025
4 3.86 0.004 3.68 −0.005 0.008 6.43 392.84 3.69 0.708 0.005 0.300 0.004
5 3.02 0.007 2.98 −0.008 0.010 4.57 192.46 4.14 0.969 0.006 0.034 −0.006
6 4.07 0.011 4.11 −0.011 −0.010 5.62 111.32 4.12 0.980 0.011 0.010 0.003
7 6.48 0.003 6.51 −0.003 0.000 8.99 492.99 7.08 0.994 0.002 0.010 0.099
8 4.63 0.002 4.63 −0.002 0.007 4.63 525.40 4.63 0.997 0.002 0.010 0.002
9 4.88 0.012 4.80 −0.012 0.026 6.85 115.48 4.70 0.916 0.013 0.131 0.011
10 5.42 0.007 5.58 −0.007 −0.014 8.05 194.20 10.61 0.901 0.002 0.105 0.033
11 4.61 0.007 4.55 −0.007 0.007 7.04 211.43 10.55 0.696 0.001 0.309 0.009
12 4.78 0.003 4.37 −0.004 0.011 7.75 477.20 7.75 0.022 −0.006 0.983 0.002
13 3.95 0.008 3.94 −0.008 0.002 5.87 178.90 3.99 0.023 0.001 0.980 0.008
14 3.81 0.007 3.80 −0.007 0.001 5.71 189.60 3.92 0.116 0.003 0.885 0.008
15 5.71 0.012 5.66 −0.012 0.016 7.84 101.30 5.66 1.006 0.012 0.010 0.012

Additional Experiments

16 5.71 0.013 5.76 −0.013 0.005 7.81 94.30 9.10 0.469 0.001 0.537 0.015
17 5.13 0.014 5.10 −0.015 0.019 6.81 79.72 9.13 0.364 −0.001 0.644 0.013
18 4.42 0.009 4.32 −0.010 0.024 6.39 142.30 9.18 0.582 0.000 0.431 0.011
19 5.15 0.003 5.18 −0.003 −0.001 7.49 489.91 7.48 0.607 0.001 0.392 0.004

Additionally, it can be noted that SFE parameters expressed a similar effect on Y∞ and
this tendency can be recognized in all other models (Table 3). Pressure and CO2 flow rate
contributed to the declining trend of the adjustable parameter a, while temperature had
a rather irrelevant effect. In the case of b, pressure and temperature showed a negative
impact (Table 3).

Model III parameters Y∞ and k were influenced by pressure, temperature and solvent
flow rate almost likewise. The parameter Y∞ was calculated from 3.97 to 9.00% while k was
between 79.72 and 525.40 min−1. All SFE parameters positively affected Y∞ according to
the OFAT approach.

According to Figure 4d, it could be concluded that the extraction curve obtained
by Model IV consists of two individual curves, which refer to extracted fractions during
solubility-controlled and diffusion-controlled periods, respectively. The overall extraction
curve for Model IV was derived as the sum of two separate curves for f 1 and f 2 extraction
parts, and it could be related to the extraction curves obtained using other kinetics models
(Figure 4).

Calculated parameters taken from the Model V suggested that the CER period ranged
from 291.10 to 787.47 min (Table 4). The results indicated that the lowest t1 was achieved
at the lowest pressure, while experiment 11, conducted on central level parameter values
(275 bar, 55 ◦C and 0.3 kg CO2/h), contributed to the shortest CER period (Table 4), while
the temperature had a negative impact on t1 (Table 4), which was consistent with the
former research [26]. A notable amount of oil in the sample clarifies the relatively long t1 in
comparison with the extraction time. The second extraction step (falling extraction rate;
FER period) was described by parameter ti with values between 2.64 and 5.91 min (Table 4).
It could be observed that the FER period did not finish after 240 min for a number of runs,
suggesting that the total extraction time applied in experiments was not enough to entirely
release the extract from the plant material. However, the SFE process on the industrial
level does not depend entirely on the FER period and would be terminated as soon as CER
period is finished [59].
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Table 4. Evaluated adjustable parameters of Models V and VI used for SFE modeling.

Model V Model VI

Run Y∞ G Km t1 ti kf ks tc1 tc2
(%) (min−1) (%) (min) (min) (min−1) (min−1) (min) (min)

Box-Behnken Experimental Design

1 3.88 0.493 228.16 329.67 3.88 0.050 0.026 194.46 204.81
2 3.79 0.900 130.01 500.00 3.79 0.030 0.029 127.88 217.03
3 3.31 0.800 136.72 500.01 3.31 0.044 0.020 180.00 205.76
4 2.64 0.800 144.81 421.97 2.64 0.016 0.025 182.89 295.91
5 2.82 0.800 147.48 388.93 2.81 0.025 0.010 118.63 321.91
6 3.91 0.800 136.44 365.38 3.91 0.019 0.024 107.56 348.93
7 3.88 0.777 215.38 349.89 3.88 0.026 0.004 192.19 209.36
8 3.88 0.409 233.92 339.62 3.88 0.028 0.019 179.36 373.64
9 4.75 0.800 81.34 477.01 4.75 0.023 0.008 200.00 493.26
10 5.59 0.800 188.83 329.53 5.59 0.023 0.016 184.45 489.20
11 4.17 0.800 152.21 291.10 4.17 0.017 0.011 197.54 464.52
12 3.88 0.710 203.19 322.60 3.88 0.019 0.013 130.21 282.01
13 3.89 0.800 155.88 306.12 3.89 0.021 0.022 161.25 334.66
14 3.88 0.785 155.59 306.08 3.88 0.040 0.026 164.86 249.71
15 5.91 0.800 94.72 787.47 5.91 0.047 0.030 92.51 499.689

Additional Experiments

16 5.80 0.800 70.92 446.78 5.80 0.041 0.010 195.64 334.39
17 5.71 0.782 79.28 617.99 5.71 0.040 0.028 188.37 477.63
18 3.94 0.800 76.88 361.10 3.94 0.022 0.026 128.44 417.75
19 3.88 0.632 226.28 346.98 3.88 0.028 0.019 44.56 411.69

G—parameter related to particle size and fragmentation; Km—mass related coefficient; Y∞—total yield in infinite time of extraction process
(%); t1—time constant extraction rate (min); ti—time of internal mass transfer (min); kf—solvent-phase mass transfer coefficient (min-1);
ks—solid-phase mass transfer coefficient (min−1).
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The OFAT analysis showed that temperature revealed a negative influence on Y∞,
while solvent flow rate had a positive effect on adjustable parameter Y∞ (Table 4). The
Model V results suggested that Km values were between 70.92 and 233.92, aligning with
previous SFE process studies with different plant materials in similar experimental condi-
tions [26,52]. Asymptotic yield (Y∞) is used in empirical models as an adjustable variable
providing significantly high values of calculated Y∞.

These models are easily calculated since they have fewer parameters, but they do not
describe the process adequately, according to R2, AARD and SSE. On the other hand, mass
transfer models use more parameters and have an advantage over empirical models.

The mass-transfer based model proposed by Sovová [35] and solved by Cabeza et al. [34],
(Model VI) was the most compatible fit to the experimental data (Figure 5 and Table S2).
One of the advantages of this model is the ability to accurately identify the process periods:
CER, FER and DCR. The CER period was depicted by parameter tc1, which predominantly
depends on the SFE parameters (Table 4). The increase of pressure and the augment of
solvent flow rate estimated by the OFAT method caused an increase of tc1 and also a
reduction of tc2 (Table 4). This can be attributed to the fact that mass-transfer resistance
becomes lower with a higher solvation power and concentration gradient. This trend was
dependent on the positive impact of pressure on the diffusion constant kSCFaSCF (min−1)
(CER) (due to the modification of solvent density and solutes vapor pressure), and a
negative impact on diffusion constant ksas, (min−1) (FER), which was noticed in the case
of cupuassu butter extraction process as well [59]. On the contrary, temperature elevation
contributed to the extension of CER period. This model also showed the best fit in the SFE
of raspberry seeds [24].

Foods 2021, 10, 1513 15 of 20 
 

 

 
Figure 5. Extraction curves with experimental and model data obtained for Models V–VII at the 
following SFE conditions: 350 bar, 70 °C and 0.4 kg CO2/h, comparison of the experimental data 
with (a) Model V, (b) Model VI, (c) Model VII and (d) Model VIII. 

3.3. ANN Optimization 
The optimization of SFE process parameters leading towards oil recovery is usually 

performed with an idea to increase the value of Y. However, recent research mentions 
that scale-up from experimental results to industrial level would benefit from the initial 
slope maximization [26]. In the usual approach, it could be performed by response 
surface methodology [26] or by an ANN calculation [22]. An important parameter which 
describes solubility-controlled phase (CER) is the initial slope of the SFE curve. 
Optimization of this parameter can later be used in the industrial process. The 
experimental results were used to obtain the initial slope, which was later used as an 
input variable for the ANN modeling. 

Depending on high values of R2 (0.995 during the training period) and low values of 
SOS (Table S3), the optimal number of hidden neurons was 6 (network MLP 3-6-1) and it 
was used to calculate the slope of FSE curve. The ANN model was proven to successfully 
predict experimental values of the slope during supercritical extraction in CO2 for the 
majority of experimental runs, as presented in Figure 6. The ANN model was complex 
(with 31 weights-biases) according to the high nonlinearity of the system. The R2 values 
between experimental measurements of the initial slope of the SFE curve and the ANN 
model outputs during the training cycle of the ANN calculation was 0.995. The elements 
of W1 and B1, W2 and B2 matrices, used for evaluation of the ANN model are presented in 
Table S4 and Table S5, respectively. The quality of the model fit was verified and the 
residual analysis of the created model was proved by an especially high R2 (Table S6). 

The ANN optimization of the CSO during the SFE process was performed using the 
initial slope calculated from the experimental data. The initial phase of SFE process is 
controlled by solubility phase and can be presented through initial slope obtained from 
ANN model calculation. CER period is defined as linear part of the SFE curve, which is 
described by the initial slope. Total extraction yield is often determined after long 
extraction time, hence the optimization of the SFE process could be bypassed by ANN 
approach, according to this factor. Additionally, the extraction period of presented 
experiments was set to 240 min, but a number of runs exceeded this period. 

The ANN model was employed to fit experimental data and obtain the initial slope 
of the extraction curves. Model adequacy can be confirmed by the coefficient of 

Figure 5. Extraction curves with experimental and model data obtained for Models V–VII at the
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The mass-transfer based model suggested by Sovová [35] exhibited an adequate fit
to the experimental data (Table 5). The CER period was defined by t’ parameter, which
was affected by SFE parameters in a great manner (Table 5). Lowering of ti was caused by
pressure and solvent flow rate increase, determined by OFAT method (Table 5).
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Table 5. Calculated adjustable parameters of Models VII and VIII applied for SFE modeling.

Sample
cu n Nmg xu γ ti G t’ τe kfa0 r ksas qm τi βm qn

- - g kg/kg - min - min - - - -

1 0.8 4 23.764 4 0.327 372.99 0.102 43.637 0.023 833.043 0.07 0.033 0.326 576.228 0.94 23.907
2 0.84 4 19.011 5.25 0.437 192.158 0.32 52.612 0.019 625.744 0.271 0.051 0.277 233.86 1.922 17.652
3 0.75 3 29.705 3 0.444 86.507 0.337 30 0.024 625.744 0.298 0.114 0.226 133.366 1.893 11.376
4 0.8 6 23.764 4 0.378 260.264 0.303 86.675 0.027 418.445 0.21 0.044 0.65 250.59 0.814 39.538
5 0.75 5 29.705 3 0.444 128.779 0.362 58.852 0.024 314.795 0.285 0.084 0.338 90.354 0.813 21.36
6 0.82 4 21.388 4.556 0.41 136.522 0.362 41.524 0.021 833.043 0.309 0.071 0.388 239.789 1.609 23.604
7 0.85 5 17.823 5.667 0.374 310.699 0.162 58.866 0.024 1247.642 0.117 0.043 1.049 703.984 0.705 83.137
8 0.8 6 23.764 4 0.374 472.761 0.157 90 0.018 625.744 0.081 0.031 0.325 366.712 0.616 39.529
9 0.821 4 21.269 4.587 0.464 68.689 0.41 45.964 0.024 625.744 0.294 0.151 0.381 100.475 0.874 23.14

10 0.87 4 15.447 6.692 0.378 233.799 0.242 44.185 0.027 1247.642 0.197 0.042 0.844 817.438 1.98 38.48
11 0.84 5 19.011 5.25 0.412 204.36 0.307 60 0.023 833.043 0.25 0.052 0.771 366.737 1.126 46.95
12 0.81 6 22.576 4.263 0.417 258.224 0.295 90.179 0.025 625.744 0.195 0.046 0.941 344.703 0.759 62.399
13 0.805 4 23.17 4.128 0.412 147.646 0.291 45 0.025 625.744 0.229 0.069 0.395 226.263 1.357 21.177
14 0.8 5 23.764 4 0.412 155.992 0.347 57.696 0.024 625.744 0.279 0.07 0.665 220.058 0.932 39.634
15 0.84 4 19.011 5.25 0.437 53.969 0.471 45 0.019 1247.642 0.252 0.201 0.34 119.523 0.747 28.358
16 0.855 4 17.229 5.897 0.410 89.561 0.433 43.441 0.023 1247.642 0.363 0.108 0.7 261.033 1.26 39.709
17 0.835 4 19.605 5.061 0.464 64.359 0.482 45 0.026 833.043 0.383 0.151 0.669 146.096 1.024 33.934
18 0.875 6 14.852 7 0.327 373.873 0.367 83.298 0.025 1662.241 0.315 0.025 2.342 1636.46 1.782 116.163
19 0.8 4 23.764 4 0.410 254.62 0.146 41.478 0.025 418.445 0.099 0.047 0.212 216.523 1.018 13.812

Raw Material and Extractor Properties

Porosity
-

m
-

min
g

Moisture
%

Ng
g

D
m

L
m

da
kg/m3

dr
kg/m3

dp
m

ao
m−1

ρCO2 std.
kg/m3

0.5 9 130 8.6 118.82 0.037 0.12 1007.555 2015.11 0.001 4048.814 1.98

cu—asymptotic extraction yield at infinite time; n—period corresponding to the end of the first extraction period; Nmg—mass of insoluble solid; xu—concentration of oil in the untreated solid (oil/insoluble solid);
γ—CO2 to solid ratio in the bed; ti—characteristic time of the second extraction period; G—initial fraction of solute in open cells; t’—time at the end of the first extraction period; τe—external material transport
resistance; kfa0—product kf · a0; r—grinding efficiency; ksas—product ks · as; qm—q at the end of the first extraction period; τi—internal material transport resistance; βm—coefficient; qn—q at the end of the
second extraction period; m—number of experimental points; min—cherry seed mass; Ng—total dried mass (oil + insoluble solid); D—reactor diameter; L—reactor length; da—cherry seed apparent density;
dr—cherry seed real density; dp—particle diameter; ao—specific area per unit volume of extraction bed; ρCO2 std—CO2 density at standard conditions.
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3.3. ANN Optimization

The optimization of SFE process parameters leading towards oil recovery is usually
performed with an idea to increase the value of Y. However, recent research mentions
that scale-up from experimental results to industrial level would benefit from the initial
slope maximization [26]. In the usual approach, it could be performed by response surface
methodology [26] or by an ANN calculation [22]. An important parameter which describes
solubility-controlled phase (CER) is the initial slope of the SFE curve. Optimization of this
parameter can later be used in the industrial process. The experimental results were used
to obtain the initial slope, which was later used as an input variable for the ANN modeling.

Depending on high values of R2 (0.995 during the training period) and low values of
SOS (Table S3), the optimal number of hidden neurons was 6 (network MLP 3-6-1) and it
was used to calculate the slope of FSE curve. The ANN model was proven to successfully
predict experimental values of the slope during supercritical extraction in CO2 for the
majority of experimental runs, as presented in Figure 6. The ANN model was complex
(with 31 weights-biases) according to the high nonlinearity of the system. The R2 values
between experimental measurements of the initial slope of the SFE curve and the ANN
model outputs during the training cycle of the ANN calculation was 0.995. The elements
of W1 and B1, W2 and B2 matrices, used for evaluation of the ANN model are presented in
Tables S4 and S5, respectively. The quality of the model fit was verified and the residual
analysis of the created model was proved by an especially high R2 (Table S6).
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The ANN optimization of the CSO during the SFE process was performed using the
initial slope calculated from the experimental data. The initial phase of SFE process is
controlled by solubility phase and can be presented through initial slope obtained from
ANN model calculation. CER period is defined as linear part of the SFE curve, which is
described by the initial slope. Total extraction yield is often determined after long extraction
time, hence the optimization of the SFE process could be bypassed by ANN approach,
according to this factor. Additionally, the extraction period of presented experiments was
set to 240 min, but a number of runs exceeded this period.

The ANN model was employed to fit experimental data and obtain the initial slope of
the extraction curves. Model adequacy can be confirmed by the coefficient of determination
(r2). Remarkably high r2 (0.995) and low error term indicate the suitable fit between initial
slope obtained experimentally and the ANN model. The elevated goodness-of-fit tests SSE
(2.54·10−4) and AARD (0.049) proved the accuracy of the ANN model.
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3.4. Global Sensitivity Analysis—Yoon’s Interpretation Method

This paragraph focuses on studying the impact of pressure, temperature and solvent
flow input variables, identified by the Yoon’s interpretation method and ANN. According to
Figure 7, pressure was the most prestigious parameter with relative importance of +46.01%
making it the most dominant parameter, while supercritical CO2 flow rate impact reached a
relative influence of +40.04%. The influence of temperature was negative, slightly lesser in
absolute value in comparison to other parameters, reaching a level of −13.95%. Increased
pressure causes shorter distance between molecules and the interaction between cherry
seed oil and CO2 becomes intensified. As a consequence, oil becomes more soluble in CO2
and the extraction is improved in CER period [24]. Importance of flow rate is significant
due to the fact that the initial extraction phase relies upon solubility and continuous flow
of the fresh solvent, which causes quicker dissolution of the solute because of the high
concentration gradient. Rise of temperature decreases CO2 density which would overcome
the effect of increased solute’s vapor pressure and decrease extraction rate [52]. Similarly,
pressure and flow rate exhibited a positive influence on initial slope in SFE of coriander
seeds, while temperature had a negative influence [52]. It may be concluded that influence
of the extraction parameters depends on the active compounds being recovered, since
Pavlić et al. [22] have shown that all three aforementioned variables expressed positive
influence in SFE of sage herbal dust.
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Optimal conditions determined using ANN for the obtaining highest value of initial
slope were pressure of 350 bar, temperature of 40 ◦C and flow rate of 0.4 kg/h. According
to the ANN model, the suggested temperature is 40 ◦C, which agrees with the observed
results, due to the negative effect that temperature exhibited on initial slope. Similarly,
optimal values for raspberry seed and coriander seed oil extraction showed that SFE
should be conducted at higher pressure and flow rate, but lower temperature, which can
be advantageous from an economic point of view because it reduces required heating
energy [24,52].

4. Conclusions

Cherry seeds stand for an underused by-product of fruit processing, thus, their val-
orization in order to recover bioactive compounds and latter application in food, cosmetics
and pharmaceutical products may have economic significance in industry. In this work,
influence of independent SFE parameters (pressure, temperature, flow rate and particle
size) was evaluated after a series of performed experiments using expanded Box-Behnken
design. The SFE conditions of 350 bar, 50 ◦C and 0.4 kg CO2 were used to obtain the highest
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extract yield. In order to fit kinetic curves, five frequently used empirical models and three
mass-transfer models were applied. Among the selected models, the mass-transfer model
(Model VI) proved to accordingly fit the experimental results and it was shown that the
most influential parameters were pressure and flow rate, which had a positive effect on
Y, while temperature had a rather negative impact. In addition, ANN were applied to
calculate initial mass transfer rate, since it exemplifies the initial phase of the extraction
process. In future perspective, cherry seed SFE extracts could be compared with extracts
recovered by conventional and other modern extraction techniques regarding yield and
chemical profile responsible for the bioactive value of this food by-product.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/foods10071513/s1, Table S1. Statistical parameters used for determination of fitting quality
(SSE, AARD and R2) between experimental results and applied models (I–V), Table S2. Statistical
parameters used for determination of fitting quality (SSE, AARD and R2) between experimental
results and applied models (VI–VIII), Table S3. ANN model summary (performance and errors), for
training, testing and validation cycles, Table S4. Elements of matrix W1 and vector B1 (presented
in the bias column), Table S5. Elements of matrix W2 and vector B2 (presented in the bias column),
Table S6. The “goodness of fit” tests for the developed ANN model, Nomenclature.
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47. Kitryte, V.; Laurinavičiene, A.; Syrpas, M.; Pukalskas, A.; Venskutonis, P.R. Modeling and optimization of supercritical carbon

dioxide extraction for isolation of valuable lipophilic constituents from elderberry (Sambucus nigra L.) pomace. J. CO2 Util. 2020,
35, 225–235. [CrossRef]
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Innovative and conventional valorizations of grape seeds from winery by-products as sustainable source of lipophilic antioxidants.
Antioxidants 2020, 9, 568. [CrossRef] [PubMed]

59. Cavalcanti, R.N.; Albuquerque, C.L.C.; Meireles, M.A.A. Supercritical CO2 extraction of cupuassu butter from defatted seed
residue: Experimental data, mathematical modeling and cost of manufacturing. Food Bioprod. Process. 2016, 97, 48–62. [CrossRef]

http://doi.org/10.2298/HEMIND120529082P
http://doi.org/10.1016/j.meatsci.2010.08.014
http://doi.org/10.1016/j.meatsci.2009.09.011
http://www.ncbi.nlm.nih.gov/pubmed/20374805
http://doi.org/10.1016/j.enbuild.2010.10.020
http://doi.org/10.1057/jors.1993.6
http://doi.org/10.1007/s11947-009-0263-2
http://doi.org/10.1016/j.supflu.2017.02.013
http://doi.org/10.1016/j.jcou.2019.09.020
http://doi.org/10.1016/j.supflu.2015.10.025
http://doi.org/10.1016/j.foodchem.2019.126072
http://www.ncbi.nlm.nih.gov/pubmed/31893552
http://doi.org/10.1016/j.supflu.2015.07.007
http://doi.org/10.1016/j.supflu.2014.04.007
http://doi.org/10.1016/j.supflu.2017.02.006
http://doi.org/10.1016/j.supflu.2015.10.006
http://doi.org/10.1016/j.supflu.2014.12.021
http://doi.org/10.1016/j.trac.2015.11.013
http://doi.org/10.1016/j.supflu.2020.104755
http://doi.org/10.1155/2018/6046074
http://doi.org/10.3390/antiox9070568
http://www.ncbi.nlm.nih.gov/pubmed/32630185
http://doi.org/10.1016/j.fbp.2015.10.004

	Introduction 
	Materials and Methods 
	Plant Material and Chemicals 
	Supercritical Fluid Extraction (SFE) 
	Mathematical Modeling of Kinetic Curves 
	Empirical Models 
	Mass-Transfer Models 

	Artificial Neural Network (ANN) Optimization 
	Global Sensitivity Analysis 
	Statistical Analysis 

	Results and Discussion 
	Influence of SFE Parameters 
	SFE Kinetics Modeling 
	ANN Optimization 
	Global Sensitivity Analysis—Yoon’s Interpretation Method 

	Conclusions 
	References

