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ABSTRACT

PosMed (http://omicspace.riken.jp/) prioritizes
candidate genes for positional cloning by employing
our original database search engine GRASE, which
uses an inferential process similar to an artificial
neural network comprising documental neurons
(or ‘documentrons’) that represent each document
contained in databases such as MEDLINE and
OMIM. Given a user-specified query, PosMed ini-
tially performs a full-text search of each documen-
tron in the first-layer artificial neurons and then
calculates the statistical significance of the connec-
tions between the hit documentrons and the
second-layer artificial neurons representing each
gene. When a chromosomal interval(s) is specified,
PosMed explores the second-layer and third-layer
artificial neurons representing genes within the
chromosomal interval by evaluating the combined
significance of the connections from the hit
documentrons to the genes. PosMed is, therefore,
a powerful tool that immediately ranks the candi-
date genes by connecting phenotypic keywords
to the genes through connections representing
not only gene–gene interactions but also other bio-
logical interactions (e.g. metabolite–gene, mutant
mouse–gene, drug–gene, disease–gene and pro-
tein–protein interactions) and ortholog data. By uti-
lizing orthologous connections, PosMed facilitates
the ranking of human genes based on evidence
found in other model species such as mouse.
Currently, PosMed, an artificial superbrain that
has learned a vast amount of biological knowledge

ranging from genomes to phenomes (or ‘omic
space’), supports the prioritization of positional can-
didate genes in humans, mouse, rat and Arabidopsis
thaliana.

INTRODUCTION

Linkage analysis is used for identifying genes with a
certain phenotype or genetic defect, and can suggest chro-
mosomal intervals containing several tens to hundreds of
candidate genes for positional cloning. Before performing
further experiments, it is necessary to prioritize the candi-
date genes by using as much biological knowledge as pos-
sible. For this purpose, it is an ambitious challenge to
create an artificial superbrain that has learned a vast
knowledge of omic space (1).
To develop a web-based tool that can immediately sug-

gest genes related to a certain phenotype, we initially
developed a search engine named GRASE (General and
Rapid Association Study Engine), and then defined its
query language named GRASQL (General and Rapid
Association Study Query Language) (2). GRASQL is
a powerful language for expressing the statistical analysis
of data retrievable by the RDF query language SPARQL
(3) in a Semantic Web manner (4). The current implemen-
tation of GRASE is optimized to efficiently calculate
the statistical prioritization of candidate genes based on
more than 17 million medical and biological documents,
and to facilitate quick return of the results within a few
seconds of computational time.
Several software tools that have been developed

for prioritizing positional candidate genes are based on
functional annotation, gene expression patterns, protein–
protein interaction and/or sequence-based features (5–10).
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The evaluation of three of these software tools using their
data set has demonstrated the effectiveness of PosMed,
which showed an accuracy of 88.7%, the highest of the
three tools (11).
The documents searched by PosMed contain references,

genome annotations, phenome information, protein–pro-
tein interactions, co-expressions, orthologous genes, drugs
and metabolite information. Using this biological knowl-
edge, PosMed executes a full-text search of documents
when a query word is input and ranks the genes based
on direct and indirect inference of the hit documents.
Currently, PosMed supports prioritization of candidate
genes for positional cloning in humans, mouse, rat and
Arabidopsis thaliana.

OVERVIEW

A neural network representation of the statistical
algorithm for searching complex Semantic Web data

PosMed network searches are performed by GRASE, a
search engine that retrieves data items over a highly con-
nected network with semantic links by statistical evalua-
tion. First, to identify genes associated with a user’s
keyword, GRASE performs a full-text search using the
keyword and graph pattern matching over the semantic
network containing the semantic link gene!document
between a document and a gene. In other words,
GRASE identifies documents having the keyword and
generates the semantic link keyword!document. Then,
for each gene, a 2� 2 contingency table is generated by
performing graph pattern matching over the semantic
links keyword!document and document!gene (see
‘PosMed RANKING’ section for details). For each con-
tingency table, a P-value is computed using a statistical
test such as Fisher’s exact test. Since this P-value becomes
smaller when the relevance between the keyword and the
gene becomes higher, this value is used for the evaluation
of relevance between genes and keywords.
To identify genes further related to the genes initially

found, GRASE performs an inference search between
gene1 and gene2. In this search, a 2� 2 contingency table is
generated for each gene by performing graph pattern
matching over the semantic link document!gene (see
‘PosMed RANKING’ section for details), and a P-value
is computed. This P-value also becomes smaller when the
relevance between the two genes becomes higher based on
the number of documents co-cited. This value is used for
the evaluation of relevance between two genes for a gene–
gene inference. A total P-value is computed by combining
these two P-values (see ‘PosMed RANKING’ section for
details), which is used to indicate statistical significance
between the keyword and gene2 via gene1. A P-value is
also computed to show the significance between the key-
word and the genes in the first search step. Finally,
GRASE generates a list of genes ranked using the com-
puted P-values.
Although the search algorithm can be described using

the above-mentioned GRASQL, a graphical representa-
tion of the search algorithm is also helpful in understand-
ing the power of the system. Analogous to a network of

neurons receiving signals from other neurons through con-
nections, each document is regarded as a neuron (or ‘doc-
umentron’) that fires a signal when a keyword matches the
document contents (Figure 1, Input). The signal fired from
each documentron is statistically evaluated at the neurons
in the next layer by calculating the significance of the asso-
ciations between the keyword and the genes cited in the hit
documents (Figure 1, Concept). Only the neurons (genes)
showing P-values < 1% (default) fire signals to the next
neural layer, according to the strength of the gene–gene
relationships or co-citations (Figure 1, Association),
wherein various relationships such as protein–protein
interactions, co-expressions and ortholog genes are poten-
tial additional associations. Only significant genes located
within the user-specified genome interval are then displayed
together with the most appropriate documents containing
the supporting evidence (Figure 1, Output). The keywords
are highlighted in the documents (Figure 1, Display).

General usage of PosMed

PosMed is a simple and user-friendly system for prioritiz-
ing positional candidate genes. To use this system, users
need to input species, a keyword and genome version and
additionally select the genomic interval. For example,
a search using the keyword ‘diabetes OR insulin’ in
the 90–140M bp genome interval on chromosome 1 in
mouse retrieves 114 candidate genes ordered by their sta-
tistical significance (Figure 2). Users can download these
genes together with the relevant gene annotation informa-
tion using the ‘download rank list’ button (Figure 2D).
Users can also select the ‘expert mode’ in the ‘All Hits’
tab to enable detailed retrieval. With this expert mode,
users can check all the direct and inferential paths of
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Figure 1. Neural network model for the PosMed gene search algo-
rithm. As an example, the user’s keyword ‘diabetes’ can be found in
several documents, including MEDLINE (Input). These documents are
mapped to genes that are supported by manual curation (Concept).
Using biological knowledge (e.g. protein–protein interaction, co-expres-
sion and co-citation of document sets), PosMed can also suggest genes
that do not have the user’s keyword ‘diabetes’ in their associated docu-
ments (Association). PosMed then returns the candidate genes that are
located within the user’s specified genomic interval (Output).
Thereafter, the user’s keyword will be highlighted in the documents
(Display).
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Figure 2. Output display on PosMed Search. Example search result for mouse genes against the keyword ‘diabetes OR insulin’ between 90M and
140Mbp on Chr 1 in the NCBIm 36 genome. Users can apply their queries at the top of the output display (A). To select genomic interval visually,
PosMed cooperates with the Flash-based genomic browser OmicBrowse (12). The tab labeled ‘All Hits’ (B) shows a list of selectable document sets to
be included in the search. As a default parameter, PosMed sets ‘Associate the keyword with entities co-cited within the same sentences’. If the total
number of the candidate genes is below 20, PosMed will automatically change this parameter to ‘Associate the keyword with entities co-cited within
the same document’ to show more candidates (B). PosMed search results are ranked in (C). Users can download at most 300 candidate genes and
their annotations from (D).
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Figure 3. Detail page showing supporting documents of the inference-type search. Adipor1 related genes are listed in (A). The supporting documents
for Adipor1 and Adipoq are ranked in (B).

W150 Nucleic Acids Research, 2009, Vol. 37,Web Server issue



the PosMed search as well as the number of hit genes.
Moreover, users can change the threshold of the P-value
to increase or decrease the number of genes shown.

Clicking on the gene name reveals supporting evidence
for each candidate gene. As an example, the supporting
documents for the sixth gene (Adipor1) presented in
Figure 2 are shown in Figure 3. Typically, two genes are
connected based on co-citations in a document, protein–
protein interaction, or co-expression. The bar chart in
Figure 3 shows the number of references in MEDLINE.
It is important to make correct connections between each
gene and references to ensure the accuracy of PosMed.
This is, however, very costly to perform manually and
thus we applied logical operations with synonyms and
functionally important words of genes. For example,
to detect all MEDLINE documents for the AT1G03880
gene in A. thaliana, we applied the following logical
operation: (‘AT1G03880’ OR ‘CRU2’ OR ‘CRB’ OR
‘CRUCIFERIN 20 OR ‘CRUCIFERIN B’) AND
(‘Arabidopsis’) NOT (‘chloroplast RNA binding’).
Curators refine the logical operations in mouse and
A. thaliana. For human and rat genes, we use mouse cura-
tion results via ortholog genes.

More advanced usage of PosMed is explained in the
PosMed tutorial available at: http://omicspace.riken.jp/
tutorial/HowToUseGPS_Eng.pdf

DATA SOURCES

Currently, PosMed uses more than 17 million documents.
For inference-type searches, we employ document sets
including MEDLINE (title, abstract and MeSH term),
genome annotation, phenome information, protein–pro-
tein interaction, co-expression, drugs and metabolite
records (Table 1).

PosMed RANKING

In order to prioritize the positional candidate genes,
PosMed first calculates the statistical significance between
the user’s keyword and each gene. Then, a 2� 2
contingency table

h
a b
c d

i
is generated and this consists

of the following:

(a) the number of documents that match with both the
keyword and the gene;

(b) the number of documents that match the keyword
but not the gene;

(c) the number of documents that match the gene but
not the keyword;

(d) the number of documents that match neither the
keyword nor the gene.

The P-value is then computed using Fisher’s exact test.
For an inference search, we statistically evaluate the

relevance between gene1 and gene2 using the above-men-
tioned Fisher’s exact test. Thereafter, we compute the total
P-value as P=1�(1�Ps)(1�Pr), where Ps is the P-value
of the first association search between the user’s keyword
and each gene, and Pr is the P-value of the gene–gene
relationship applied in the second association search.
To treat biological data such as protein–protein inter-

action using this method, all biological data are described
as sentences (e.g. protein A interacts with protein B) and
they are stored as document sets in PosMed.

EXAMPLE RESULTS

In RIKEN’s large-scale mouse ENU mutagenesis project,
PosMed was used to prioritize genes and has contributed
to the successful identification of more than 65 responsible
genes (14). PosMed is also used by researchers world-
wide and has successfully narrowed down the candidate
genes responsible for a specific function after QTL analy-
sis (15,16).

FURTHER USAGE

In this manuscript, we introduced PosMed as a web tool
for assisting in the prioritization of candidate genes for
positional cloning. Using the search engine GRASE, we
also implemented inference-type full text search functions
for metabolites, drugs, mutants, diseases, researchers, doc-
ument sets and databases. For cross-searching, users can
select ‘any’ for the search items at the top right of the
PosMed web page. Since this system can search various
omics data, we named it OmicScan. In addition to
English, GRASE accepts Japanese and French language
in the query.

IMPLEMENTATION

PosMed was developed as a web-oriented tool using Java
Servlet, and web browser plug-in need not be installed.
However, we recommend using Microsoft Internet
Explorer7 or later or Firefox2 or later for Windows, and
Safari2 or later or Firefox2 or later for Macintosh.

Table 1. Document sets implemented in PosMed

Document Display name
on PosMed

No of
documents

Reference

MEDLINE MEDLINE 17 132 801 (17)
BRMM mouse mutant 12 911 Original dataa

OMIM OMIM 19 891 (18)
HsPPIb HsPPI 35 731 (19)
AtPID AtPID 44 082 (20)
ATTED-II At co-expression 24 418 (21)
REACTOME REACTOME 10 761 (22)
MouseGeneRecord mouse gene record 58 768 (23)
RatGeneRecord rat gene record 36 634 (24)
HumanGeneRecord human gene record 31 459 (25)
ArabidopsisGeneRecord arabidopsis

gene record
32 041 (26)

MetaboliteRecord metabolite record 18 045 (27)
DrugRecord drug record 1015 Original dataa

DiseaseRecord disease record 1911 Original dataa

RIKENResearcherRecord researcher record 6852 Original dataa

Total 17 467 320

aOur original data was created from several data sources. The main
data sources are listed at http://omicspace.riken.jp/acknwldgmnt.htm
bHsPPI data is derived from the Genome Network Platform (http://
genomenetwork.nig.ac.jp/public/sys/gnppub/).
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