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The liver is one of the most essential organs involved in the regulation of energy homeostasis. Hepatic steatosis, a major
manifestation of metabolic syndrome, is associated with imbalance between lipid formation and breakdown, glucose production
and catabolism, and cholesterol synthesis and secretion. Epidemiological studies show sex difference in the prevalence in fatty liver
disease and suggest that sex hormones may play vital roles in regulating hepatic steatosis. In this review, we summarize current
literature and discuss the role of estrogens and androgens and the mechanisms through which estrogen receptors and androgen
receptors regulate lipid and glucose metabolism in the liver. In females, estradiol regulates liver metabolism via estrogen receptors
by decreasing lipogenesis, gluconeogenesis, and fatty acid uptake, while enhancing lipolysis, cholesterol secretion, and glucose
catabolism. In males, testosterone works via androgen receptors to increase insulin receptor expression and glycogen synthesis,
decrease glucose uptake and lipogenesis, and promote cholesterol storage in the liver. These recent integrated concepts suggest that

sex hormone receptors could be potential promising targets for the prevention of hepatic steatosis.

1. Introduction

Obesity rapidly becomes a worldwide epidemic disease with
increased risk of cardiovascular diseases, type 2 diabetes
mellitus, and metabolic syndrome [1]. Metabolic syndrome is
characterized by increased visceral adiposity, hyperlipidemia,
insulin resistance, and hypertension [2]. The liver is the
largest visceral organ for maintaining homeostasis in glucose,
lipid, and protein. Hepatic steatosis is characterized by mas-
sive fat accumulation in the liver and thus is strongly related
to several features of metabolic syndrome, including hyper-
lipidemia and insulin resistance [3]. Indeed, reduction or loss
of insulin action in the liver leads to abnormally increased
hepatic gluconeogenesis, glucose production, and lipogen-
esis, as well as decreased insulin clearance, hepatic glucose
uptake, and lipolysis, consequently resulting in dyslipidemia
(4].

Age and sex are physiologic factors that have strong
association with the prevalence and features of metabolic
syndrome. The state of estrogen deficiency as seen in post-
menopausal women and the state of androgen deficiency

as seen in aging men predispose older population to the
metabolic syndrome and associated diabetes and cardiovas-
cular diseases, indicating that sex hormones play important
roles in regulating energy metabolism [5, 6]. Nonalcoholic
fatty liver disease (NAFLD) disproportionally affects people
with obesity, diabetes with insulin resistance, and dyslipi-
demia [7-9]. The prevalence of NAFLD varies among eth-
nicities, with the highest prevalence in Hispanics, correlated
with the high prevalence of obesity and insulin resistance in
this ethnic group, compared to whites and blacks [10]. Similar
to the incidence of metabolic syndrome, the frequency of
NAFLD varies between genders, with greater prevalence in
men than in women among whites (42% in white men versus
24% in white women) but not in other ethnicities [10]. This
is consistent with another epidemiology study showing that
the rate of NAFLD is a little higher in men than in women
with all ethnicities combined [7]. Interestingly, NAFLD is
twice as common in postmenopausal women as in pre-
menopausal women whose estrogen levels are higher than
postmenopausal women [7, 11], which suggests the protective
role of estrogens in NAFLD [12, 13].
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In general, androgens are considered as hormones of the
male sex due to their masculinizing effects and their roles
in regulating male sexual behavior, whereas estrogens are
considered as hormones of the female sex due to their roles
in regulating female reproductive physiology and behaviors,
although all sex hormones are present in both males and
females, albeit at different levels between these two sexes.
The most important biologically relevant forms of estrogens
and androgens in humans are estradiol (E2) and testosterone,
respectively. Understanding of how estrogens and androgens
regulate energy metabolism via their receptors may shed
light on potential pharmaceutical applications. In the present
review, we discuss the roles of estrogens and androgens in
regulating liver glucose and lipid homeostasis in rodents and
humans. We also deliberate the distinct, important effects of
estrogen receptors (ERs) and androgen receptors (ARs) on
the regulation of liver metabolism.

2. The Role of Estrogens in Regulating Liver
Energy Homeostasis

2.1. Estrogen Signaling. In both males and females, E2 is
derived from the aromatization of testosterone. In pre-
menopausal women, E2 is mainly synthesized from choles-
terol in the ovaries, with E2 concentration being approx-
imately 5 times higher than that in men, while in post-
menopausal women E2 is primarily converted from testos-
terone by aromatase in peripheral tissues, such as adipose
tissue, adrenal glands, bones, vascular endothelium, and
smooth muscle [14], with E2 concentration being similar
compared with men (http://www.hemingways.org/GIDinfo/
hrt_ref htm).

Estrogens act on ERs, including classic nuclear receptors
ER-«a and ER-f3, and membrane-bound receptors, including
G protein-coupled ER (GPER, also known as GPR 30)
and membrane-associated ER-« and ER-f3 variants [15]. All
these nuclear and membrane ER subtypes are expressed in
the livers of male and female humans and rodents, but at
a lower level compared with reproductive organs such as
uterus, prostate, testis, ovary, and breast [16-18]. ER-f3 is less
abundant in liver cells than ER-« [19, 20] and GPER (unpub-
lished observation).

One study by Lax et al. determines levels of ERs in male
and female rat livers and reports that the levels of nuclear
ERs are not sex dependent but are age dependent, as levels
of ERs are similar between male and female rats and vary
with the course of life in a comparable manner in males and
females [21]. Specifically, levels of ERs in the liver of both male
and female rats are the highest during the perinatal period,
decline till the onset of puberty, and increase to reach post-
pubertal peak. Additionally, levels of ERs are maintained as a
stable level across the estrous cycles of female rats [21]. Con-
sistently, Eisenfeld group has reported that ER concentration
in the rat liver increases evidently at puberty [22]. Ovariec-
tomy (OVX), a procedure that removes ovaries and thus
majority of endogenous estrogens, is a suitable preclinical
model to study postmenopausal diseases. Liver ER-a expres-
sion does not change following OVX; however, it significantly
increases by E2 treatment at a superphysiological level in rats
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with OVX, higher than sham-operated rats with intact ovaries
and normal levels of endogenous estrogens [23]. These
studies indicate that ER-a expression in the liver is similar
between gonad intact males and females and remains stable
in postmenopausal females but could increase following
hormone replacement therapy or during puberty. There is no
available literature showing changes of expression of ER-f3
and GPER during menstrual period or postmenopausal stage,
and these questions remain unknown.

Males also express ERs in the liver, and aromatase metab-
olizes androgens to generate E2 and other estrogen metabo-
lites locally in many target tissues. A growing body of evi-
dence suggests that estrogens also have important metabolic
functions in males. The aromatization of testosterone to E2 is
beneficial for preventing intra-abdominal adiposity in men,
demonstrated by a clinical study showing increased intra-
abdominal fat in men by reduced estrogens due to aromatase
inhibition [24]. The effects of estrogens on male and female
reproductive organs have been extensively studied, but the
beneficial effects of estrogens in nonclassical endocrine tar-
gets including the liver are less appreciated. We will discuss
how hepatic estrogen signaling via ERs regulates metabolism
in male and female animal and human models.

Upon estrogen binding, classic estrogen nuclear receptors
ER-« and ER-f form homo- or heterodimers and bind to
estrogen response element (ERE) in target gene promoters or
to other transcription factors, such as activator protein-1 (AP-
1) and stimulating protein-1 [25], to induce expression of tar-
get genes. The genomic action following E2-ER binding varies
as the level of sex hormone changes. Specifically, the tran-
scriptional activity of ER-« alters during the 4-day estrous
cycle, demonstrated by using ERE-luciferase reporter mice
which have luciferase reporter controlled by activated ERs.
The peak of the transcriptional activity of ER-« in the liver
occurs in proestrus [26], indicating dynamics of ER-« tran-
scriptional activity that is possibly modulated by different
concentration of estrogens [27]. These findings suggest that
liver ER-a could recognize the changes in circulating E2 levels
and response to reproductive cues during transition of differ-
ent stages of the estrous cycles and select appropriate genetic
programs to adapt the hepatic metabolism to the energy
requirements of each stage. Thus, the hepatic ER-« could
serve as a peripheral coordinator of energy homeostasis. ER-
« also exists in the form of membrane-associated receptor.
There are many lines of evidence showing that the full length
ER-« and truncated ER-a¢ may exert actions via nongenomic
signaling which is faster than the classic genomic signaling.
Such nongenomic signaling usually involves activation of
intracellular second messenger systems, such as protein
kinase A (PKA), protein kinase C, and mitogen-activated
protein kinase (MAPK)/extracellular signal-regulated pro-
tein kinase (ERK) [28-30]. GPER is structurally unrelated
to ER-a and ER-f and is a seven-transmembrane domain G
protein-coupled receptor located at the cell membrane and
endoplasmic reticulum membrane. GPER is reported to
rapidly activate different nongenomic estrogen signaling
pathways, including PKA, MAPK/ERK, and phosphoinosi-
tide 3-kinase (PI3K) [31] (Figure 1).
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FIGURE 1: Action of estrogens and androgens via estrogen receptors (ERs) and androgen receptors (ARs) in the liver cells. (a) Genomic effects
of estrogens and androgens via nuclear ERs and ARs. (b) Nongenomic effects of estrogens and androgens via membrane-associated ERs and

ARs.

2.2. Estrogens Regulate Lipid Homeostasis in the Liver.
Females, as compared with males, tend to store more energy
in subcutaneous fat instead of in visceral fat. The liver is a
key visceral organ for controlling energy storage, as the liver
has high capacity for lipid transport, de novo lipogenesis,
lipid oxidation, and lipolysis. Liver steatosis, as seen in the
nonalcoholic fatty liver disease (NAFLD), is due to the excess
of triglyceride (TG) accumulation within the hepatocytes.
Incidence of hepatic steatosis is frequently associated with
low levels of high density lipoprotein cholesterol (HDL-C)
and high levels of low density lipoprotein cholesterol (LDL-
C) in the circulation. Epidemiological studies have showed
higher plasma level of LDL-C and lower plasma level of HDL-
C in men and postmenopausal women compared with pre-
menopausal women, suggesting that lower circulating estro-
gen levels may promote fat deposition in the liver [32]. Fur-
ther evidence is supported by using OVX mouse model com-
bined with pair-feeding between sham operation and OVX
groups. Removal of the ovaries and thus the majority of
endogenous estrogens in female mice results in increased fat
proportion in the liver even when they are pair-fed with the
same amount of calories as females with intact ovaries, which
indicates the direct role of estrogens in inhibiting lipogenesis
in the liver, rather than the secondary effects to OVX induced
overfeeding [33]. In another E2-deficient aromatase knockout
(ArKO) mouse model, spontaneous obesity and hepatic
steatosis result from impaired fatty acid $-oxidation and ele-
vated fatty acid synthase (FAS) in the liver in both female and
male mice [34]. These findings are further supported by pre-
vious studies demonstrating that E2 inhibits lipogenic gene
expression and lipid uptake in the liver by decreasing lipopro-
tein lipase activity, as well as promoting lipolysis by increasing
expression of hormone-sensitive lipase and adipose TG lipase
in the liver [35, 36].

ER-« is the predominant ER subtype presented in both
male and female hepatocytes [19, 20]. Estrogen signaling

is important in both males and females in the regulation
of lipogenesis, demonstrated by using animal models and
human studies. Specifically, estrogens regulate the activity
and expression of lipogenic genes to directly inhibit lipo-
genesis in several animal species [37, 38]. Liver enzymes
may also be regulated by circulating estrogen levels. One
study of genome-wide analyses demonstrated that the subtle
oscillations of estrogens occurring during the estrous cycle
are sufficient to influence liver gene expression, and that
ERs are involved in the pulsatile synthesis of fatty acids and
cholesterol in the liver [27]. Thus this study demonstrated the
importance of the maintenance of estrogen oscillation to limit
fat deposition in the hepatic tissues in females [27]. Addi-
tionally, treatment of the specific ER-« agonist PPT decreases
weight, fat mass, and TG in the liver in both wild-type mice
and obese ob/ob mice [39, 40]. Thus, the metabolically protec-
tive effect of estrogen may be attributed to estrogen signaling
via ER-« [41].

This is further demonstrated by investigation of estrogen
and estrogen signaling using knockout or transgenic animal
models. Male and female ER-a knockout mice exhibit hepatic
steatosis by increasing gene expression of lipogenic transcrip-
tion factors such as sterol regulatory element binding protein
1c (SREBP-1c) and decreasing lipid transport genes [42, 43].
Mice with liver-specific ER-a knockout [44, 45] or liver-
specific GPER knockout [46] show increases in fat accumula-
tion in the liver and develop disturbed insulin signaling under
high-fat diet (HFD) feeding. Thus, hepatic steatosis has been
observed in both of the above genetic models, one with liver-
specific ER-a knockout with functional GPER and the other
with liver-specific GPER knockout with functional ER-a.
Thus, although it is widely recognized that estrogens regulate
liver lipid metabolism and reduce triglyceride accumulation
in the liver mainly via ER-« [47, 48], both ER-a« and GPER
are required to be present in the liver to maintain lipid
homeostasis. Estrogen is produced in males by aromatization



of testosterone. Male but not female mice in which the aro-
matase gene has been deleted (ArKO) develop hepatic steato-
sis that can be normalized by estrogen treatment [49]. Thus,
E2 treatment reduces fatty acid synthesis and lipid accumu-
lation and prevented NAFLD in castrated male rats [50].

Hepatic TG and diacylglyceride increase in the livers of
ER-a knockout male mice under HFD feeding, explained
by dysregulation of insulin-stimulated ACC phosphorylation
and DGAT1/2 protein levels [44]. Interestingly, a recent
study using specific plasma membrane ER-a knockout has
demonstrated that it is the membrane-localized ER-«, but not
nuclear ER-«, that is responsible for protection from hyper-
lipidemia by decreasing expressions of many hepatic genes
involved in lipid synthesis, at least in female mice with OVX
[51]. Although ER-« is antilipogenic in the liver, the role of
ER- in the liver is not consistent in the literature. ER- defi-
cient mice have higher body weight but lower liver weight due
to increased insulin sensitivity and decreased TG accumula-
tion in the liver [52], indicating that ER- 3 might be lipogenic
and diabetogenic in the liver. Opposite finding has been
reported where, different from treatment of E2 or ER-« ago-
nists that decrease hepatic PPARy expression, treatment of
ER-f3 agonist 8 3-VE2 comparably elevates PPARy expression
to the same mRNA level as non-drug treated group in the
liver of HFD-fed female rats with OVX [53]. Interestingly, all
treatments of E2, ER-« agonist, or ER-f3 agonist are capable
of reducing TG accumulation in the liver of HFD-fed rats
with OVX [53]. Thus, the mechanism for reduced hepatic
lipid accumulation in both suppressed ER- 5 signaling as seen
in ER-p knockout mice [52] and activated ER-f3 signaling
as seen in ER-f agonist-treated rats [53] is awaiting further
elucidation. Hepatic steatosis is also found in GPER deficient
female mice fed with HFD rather than male mice [46].
Although both 6-month-old female and male GPER KO mice
display increased body weight, only female mice had glucose
intolerance, while male mice developed glucose intolerance
at the age of 18 months [54]. Furthermore, GPER agonist G-1
decreases fatty acid synthesis and TG accumulation in both
human and rodent pancreatic 3 cells [55], but the effect of
G-1 treatment on lipid metabolism in the liver is not clear.
Both liver GPER and membrane-associated ER-« are critical
for liver lipid metabolism. However, it is possible that GPER
has greater impacts on male lipid regulation [54], whereas
membrane-associated ER-o variant [51] may have greater
impacts on female lipid regulation, as female livers have
markedly higher expression of all three membrane-associated
ER-« variants compared with male livers [56].

2.3. Estrogens Regulate Glucose Homeostasis in the Liver.
Hepatic glucose homeostasis is determined by glucose uptake
and glucose production. The major glucose transporter
(GLUT) in the liver is GLUT2 that bidirectionally transports
glucose across liver cell plasma membrane, efflux of glucose
formed from gluconeogenesis or glycogenolysis out of liver
cells, and uptake of circulating glucose into liver cells.
Hepatic GLUT? is upregulated by glucose, FAS, and insulin
[57]. Since estrogen treatment has been shown to increase
insulin synthesis and release [58], estrogens might indirectly
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increase GLUT?2 expression in the liver, which has not been
demonstrated yet. A recent study demonstrates that it is
estriol, instead of E2, that downregulates GLUT2 in pregnant
women during late stages of pregnancy whose peak post-
prandial glucose levels are much lower than glucose levels of
healthy nonpregnant women [59]. Estrogens are also impor-
tant in hepatic insulin clearance. Several lines of evidence
show that intravenous conjugated estrogen treatment or low
dose of oral contraceptive does not significantly alter insulin
sensitivity but slightly increases hepatic insulin clearance in
postmenopausal women [60, 61]. Estrogens reduce gluconeo-
genesis and increase glycogen synthesis and storage in the
liver, lowering circulating glucose level [43, 62]. Additional
observations using rodents with OVX that lacks majority
of endogenous estrogens support the notion that estrogens
lower glucose levels [63, 64]. A recent study reports increased
glucagon signaling due to increased amount of glucagon
receptor that accounts for enhanced glucose production,
accompanied with increased gluconeogenic enzymes in rats
with OVX [65]. Interestingly, such changes cannot be pre-
vented by E2 replacement, which indicates that disrupted
liver glucose homeostasis following OVX is not merely
caused by deficiency of endogenous E2 [65] but could be
caused by deficiency of other ovarian hormones such as pro-
gesterone. Although classic nuclear progesterone receptor has
not been found in the liver [22, 66], progestins can either bind
to membrane-bound progesterone receptors [67] or bind to
ARs [22] in human liver and carry metabolic effects. On the
other hand, estrogens are also found to facilitate epinephrine’s
action via $2-adrenergic receptor in regulating glycogenoly-
sis and gluconeogenesis in the rat liver to increase circulating
glucose level [68].

Estrogen signaling is important in both males and females
in the regulation of glucose homeostasis, improving glucose
tolerance and insulin sensitivity, demonstrated by using
animal models and human studies [69-71]. Additionally,
although estrogens do not affect hepatic glucose metabolism
in vivo, estrogens increase insulin receptor to enhance glucose
metabolism in vitro [72, 73].

ER-« deficient mice exhibit significantly impaired glucose
tolerance and hepatic insulin resistance, while ER-f3 deficient
mice exhibit normal glucose tolerance, suggesting that ER-
« instead of ER-f plays an important role in the regulation
of hepatic glucose homeostasis [43]. The importance of ER-
« in the regulation of hepatic glucose tolerance is further
supported by inadequate suppression of hepatic glucose
production during hyperinsulinemic clamp study in ER-«
deficient mice [74]. Although impaired glucose tolerance is
seen in GPERI knockout mice, GLUT2 and glucokinase are
not affected [1], and glucose production in liver has not
been measured yet. Hepatic PPARy expression rises markedly
following OVX in HFD-fed rats [53]. The rats treated with E2
or ER-« agonist have reduced PPARYy expression in the liver,
whereas the rats treated with ER-8 agonist maintain a simi-
larly high mRNA level of PPARy as non-drug treated HFD-
fed rats with OVX. The sustained hepatic PPARy gene expres-
sion correlates with increased glucose uptake into the liver
of rats with OVX [53].
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2.4. Estrogens Regulate Cholesterol Homeostasis in the Liver.
Dyslipidemia is determined by decreased HDL but increased
LDL and TG in the blood. The liver is the principal organ
for cholesterol de novo biosynthesis, which is catalyzed by
the rate limiting enzyme 3-hydroxy-3-methyl-glutaryl-CoA
reductase (HMGR). The SREBP-I1c is the master regulator of
cholesterol by stimulating transcription of LDL and HMGR
[75]. Postmenopausal women have elevated LDL and VLDL
and lower HDL [76].

A previous in vitro study points out that HMGR promoter
is induced by estrogen treatment in the breast cancer cell
line MCF-7 but not in any hepatic cell line [77], indicating
differential regulation of HMGR by estrogens among differ-
ent tissues. Estrogen treatment does not increase cholesterol
synthesis in liver cells in vitro. In an in vivo study using
castrated male rats, DHT, but not E2, treatment increases
phosphorylation of HMGR to decrease cholesterol synthesis
in the liver [50]. Thus, at least in castrated male rats, andro-
gen action is associated with downregulation of cholesterol
biosynthesis in the liver.

Estrogens also decrease LDL level and increase HDL to
promote cholesterol secretion into bile in postmenopausal
women [78]. Total cholesterol and LDL are elevated in ArKO
mice with E2 deficiency [79]. Increased hepatic HMGR
activity and subsequently increased levels of cholesterol and
LDL are seen in rats with OVX with reduced level of endoge-
nous estrogens [65]. Estrogen replacement in both ArKO
mice and rats with OVX normalizes the levels of LDL and
cholesterol. The above mentioned cell, animal, and human
studies collectively indicate important roles of estrogens in
reducing LDL and increasing HDL.

ER-a is able to protect the liver from hypercholes-
terolemia [47, 48]. To support this, lack of ER-« (whole body)
is associated with increased expression of genes involved in
lipid biosynthesis and lipid metabolism [43]. A male patient
without functional ER-« has been reported with dyslipidemia
[80], supporting the importance of ER-« in regulating choles-
terol homeostasis. Consistently, the expressions of ER-« (and
AR) and phosphorylated HMGR are significantly reduced in
the human liver samples from male severe steatotic NAFLD
patients compared with the liver samples from subnormal
men [50].

Aromatase deficient mice without endogenous estrogen
production exhibit obesity [79] and dyslipidemia [81] and
mice with liver-specific ER-a knockout accumulate liver
triglycerides and diacylglycerides [42, 43]. In contrast, ER-
o agonist PPT increases the expression of genes involved
in lipid oxidation and metabolism [82]. Additionally, ER-«
deficient mice and ER-a« and ER-f double knockout mice
display increased body fat and serum cholesterol level, but
these changes are not found in ER- 3 deficient mice [83].

In GPER KO mice, LDL levels increase approximately
by 200%, but HDL levels do not show any significant
differences from WT, which indicates that GPER mainly
regulates the LDL metabolism instead of HDL [54]. A recent
study shows that human individuals with hypofunctional
P16L genetic variant of GPER have increased plasma LDL [84,
85]. In contrast, GPER activation upregulates LDL receptor
expression in the liver via downregulation of proprotein

convertase subtilisin kexin type 9 to enhance LDL metab-
olism [85]. Interestingly, animals with estrogen deficiency
do not increase cholesterol synthesis; instead they decrease
cholesterol catabolism by reducing activity of 7a-hydrox-
ylase, the enzyme that catalyzes the initial step in cholesterol
catabolism and bile acid synthesis in calcium supplemen-
tation-induced hypercholesterolemia [86]. This study fur-
ther demonstrates that estrogen treatment protects against
increase in circulating level of cholesterol by activating of
GPER [86].

3. The Role of Androgens in Regulating Liver
Energy Homeostasis

3.1. Androgen Signaling. The major circulating androgens
include dehydroepiandrosterone, androstenedione, testos-
terone, and dihydrotestosterone (DHT), in descending order
of circulating concentrations. Only testosterone and DHT
bind to the AR whereas the rest are considered as proan-
drogens. Within target cells, testosterone can be converted to
active androgen DHT via 5a-reductase or converted to E2 by
aromatase.

ARs are expressed in the liver of male and female humans
and rodents, and AR expression in the liver is sex dependent.
In adult rats, basal AR expression in the liver of male rats
is about 20 times higher than that in the liver of female rats
[87]. AR expression is also age dependent in the liver of either
sex, which is very low, almost undetectable, before puberty,
increases in postpubertal life, and gradually declines during
aging, reaching an almost nondetectable level after about 22—
24 months of age in rats [88]. The sex- and age-dependent AR
expression in the liver is programed by a regulatory element
in the AR gene promoter [89].

There are isoforms of ARs which are AR-A with N-
terminal truncated that resulted from proteolysis and AR-B
with full length [90, 91]; among these two AR isoforms, the
AR-B with full length is more potent than AR-A [92]. It is not
clear, however, which isoform of AR is dominant in the liver.
Androgens, like estrogens, work on both nuclear and nonnu-
clear receptors. The genomic effect of androgens is achieved
through activation of nuclear receptor, followed by binding
to specific DNA known as androgen response element (ARE)
motifs in its target gene [93]. AR can recruit other transcrip-
tion factors such as AP-1, nuclear factor-«B, sex-determining
region Y, and the E26 transformation-specific family of tran-
scription factors and bind to DNA regions other than ARE,
to participate in transcription activation of many other genes
[94]. The nonnuclear receptor of androgens function is inde-
pendent of DNA interaction and is more rapid by interact-
ing with cytoplasmic signal transduction pathways, includ-
ing PKA and MAPK/ERK [95] (Figure1). The AR knock-
out animals are well developed, but the membrane-only
AR knockout animals are not established yet, and that is why
the exact role of membrane AR in liver metabolism is unclear.

3.2. Androgens Regulate Lipid Homeostasis in the Liver. Many
studies have shown that androgens and androgen signaling
suppress the development of hepatic steatosis [96, 97]. One
population-based cross-sectional study has reported a close



association between low serum testosterone level and hepatic
steatosis in men [98]. Mice with 5a-reductase knockout
do not covert testosterone to DHT. These mice upregulate
expression for the genes involved in lipid storage and down-
regulate genes for fatty acid oxidation and accumulate lipid in
their livers when they are fed with HFD [99]. An inhibitor of
5a-reductase induces liver steatosis in male obese Zucker rats
[100]. Therefore, normal level of active androgen is critical to
prevent liver steatosis.

Besides androgen level, ARs are also critical in maintain-
ing lipid metabolism in the liver. Testicular feminized (Tfm)
mice with nonfunctional AR and very low serum testosterone
levels greatly increase HFD feeding-induced hepatic lipid
deposition compared with control male mice with functional
AR and normal circulating levels of testosterone. Replace-
ment of testosterone reduces lipid deposition in the liver of
Tfm mice to a similar level to control males [101]. Moreover,
Kelly et al. [101] found that the expressions of key regulatory
enzymes for fatty acid synthesis, including acetyl-CoA car-
boxylase (ACC) and FAS, are elevated in placebo-treated Tfm
mice comparing with placebo-treated wild-type littermates
and Tfm mice receiving testosterone treatment, indicating
that the action of androgens on lipid deposition is indepen-
dent of AR and at least partially via affecting key regulatory
lipogenic enzymes to protect against hepatic steatosis [101].
Male but not female hepatic ArKO mice fed with a normal
chow diet developed liver steatosis at 10 months with reduced
fatty acid oxidation and increased de novo fatty acid synthesis
[102]. Thus, males with either functional AR or normal
circulating testosterone level would maintain normal level of
fatty acid synthesis and avoid increased lipid deposition in the
liver.

Although many studies have shown that androgens pro-
tect against NAFLD [50, 103], other studies have reported an
opposite finding that androgens promote NAFLD develop-
ment and progression [104, 105]. The inconsistencies might
be due to different animal models employed and different
treatments utilized in various studies. The findings reported
by Miinzker et al. indicate that the testosterone/DHT ratio
is more important for NAFLD development and progression
than concentrations of testosterone and/or DHT [106]. In
contrast, the role of AR in hepatic steatosis is less controver-
sial. The total AR knockout mice develop liver steatosis and
insulin resistance in both male and female mice [107]. Hepatic
AR knockout mice with HFD feeding also show hepatic
steatosis and insulin resistance, via upregulation of hepatic
expression of SREBP-1c, ACC, and PPARy to increase lipid
synthesis and downregulation of PPAR« to decrease fatty acid
oxidation; interestingly, such effects are evident in males but
absent in females [102, 108]. Thus, hepatic AR plays more
critical roles in maintaining liver lipid metabolism in males
than in females.

Testosterone is either converted to E2 binding to ERs or
converted to DHT binding to ARs. From the above studies,
ARs are vital in regulating liver lipid homeostasis in both
males and females [107], although hepatic ARs have greater
impact in males than in females [102, 108]. In order to test the
role of androgen-AR signaling in female metabolic process,
Kanaya et al. replace DHT in female mice with OVX and
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find that those mice accumulate greater amount of fat in the
liver and develop other symptoms and signs of metabolic
dysfunction when these mice are fed with either a standard
chow diet or HED [109]. Therefore, androgen action has great
impact on lipid metabolism in female livers.

Women have lower basal levels of androgens compared
with males, and increased androgen level can affect metab-
olism in women. The role of androgens in females is not well
established, but many lines of evidence indicate that hyper-
androgenism in women with polycystic ovary syndrome
(PCOS) increases risk of developing NAFLD. NAFLD is fre-
quently present in PCOS women with excessive production
of androgens by the ovaries and thus elevated circulating level
of androgens, suggesting that abnormally high level of andro-
gens in women may contribute to increased fat storage in the
liver. It is noteworthy that the risk for NAFLD in women with
PCOS is independent of obesity or insulin resistance but is
triggered directly by the hepatotoxic, destructive effect in the
liver, indicated by elevated level of alanine aminotransferase
[110]. To summarize, normal level and signaling of androgens
prevent hepatic lipid accumulation in males, while androgen
deficiency in males is associated with fatty liver. Abnormally
high level of androgens increases lipid deposition in the liver
in females. Androgens therefore have differential effects in
men and women.

3.3. Androgens Regulate Glucose Homeostasis in the Liver.
Testosterone levels are lower in diabetic men than nondia-
betic men [111]. Androgen deprivation therapy for prostate
cancer patients lowers their circulating testosterone level and
increases their risk of diabetes [112, 113] and not only increases
circulating level of glucose but also diminishes pancreatic
cell function [114]. Testosterone treatment markedly reduces
circulating levels of glucose and TG in men [115].

GLUT?2 directionally transports glucose across liver cell
plasma membrane to maintain glucose homeostasis, as men-
tioned above in Section 2.3. Upregulation of GLUT2 plays a
more critical role in regulating glucose export out of, rather
than regulating glucose import into, the liver. It has been
reported that blood glucose level, along with the mRNA and
protein levels of GLUT2 in the liver, significantly increases
following castration in male rats with deficiency of endoge-
nous androgens [116]. Supplementation of testosterone or
a combination of testosterone with E2 normalizes GLUT2
mRNA and protein levels in the livers of castrated rats,
whereas treatment of E2 alone does not have any effect [116].
These findings suggest that testosterone maintains glucose
homeostasis by regulating hepatic glucose output, and testos-
terone deprivation due to castration increases hepatic glucose
output, induces hyperglycemia, and develops symptoms seen
in type 2 diabetes and metabolic syndrome. Testosterone
replacement restores GLUT2 mRNA and protein levels sug-
gesting that testosterone may have a direct effect on GLUT2
transcription and translation of mRNA. Although the pres-
ence of ARE has not been identified in the promoter region
of GLUT2, AR could function as a ligand-activated transcrip-
tion factor by itself [117] or bind to some other coactivators
[118, 119] to increase GLUT?2 expression.
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In contrast, estrogens have little effect on hepatic GLUT4
and insulin receptor in male rats, but estrogens increase
level of insulin receptor in HepG2, a liver cancer cell line
[72]. Interestingly, insulin receptor mRNA level as well as
insulin sensitivity is increased in a human liver cell line when
being treated with testosterone [73]. Similarly, replacement
of testosterone in castrated male mice also increases insulin
receptor mRNA and protein levels in the liver and normal-
izes castration-induced glucose metabolic impairment [120].
Treatment of testosterone induces glycogen synthesis in both
intact and castrated male rats [108, 121].

High testosterone level is associated with a low risk of
diabetes in men, whereas it is associated with a high risk
of diabetes in women [111, 122-124]. Excess androgen in
women with PCOS impairs hepatic glucose metabolism by
decreasing insulin-stimulated glucose uptake and glycogen
synthesis and predisposes women with PCOS to insulin
resistance [125, 126]. Metformin, the most commonly used
first-line drug to treat diabetes, is found to be effective to treat
NAFLD and also suppresses the serum androgen concentra-
tion in PCOS patients [127, 128]. Increased androgen activity
in postmenopausal women correlates with impaired glucose
tolerance [129, 130].

To summarize, testosterone in males favors hepatic glu-
cose metabolism, whereas testosterone in females impairs it.
Thus, androgens in males and females differentially regulate
glucose homeostasis.

3.4. Androgens Regulate Cholesterol Homeostasis in the Liver.
Old men have increased risks of developing dyslipidemia with
increased serum cholesterol and LDL levels, and decreased
HDL level, and testosterone replacement reverses such dys-
lipidemia [108]. Hepatic scavenger receptor class B member
1 (SR-1B) is important in regulating cholesterol uptake from
circulating HDL. DHT treatment in castrated obese mice
increases SR-1B compared with vehicle-treated castrated
mice. At the same time, LDL secretion is decreased by DHT
treatment. Cholesterol 7«-hydroxylase, a key enzyme in bile
formation and cholesterol removal, is also decreased after
DHT treatment. All these above results provide a comprehen-
sive explanation for how chronic androgen replacement can
decrease serum levels of cholesterol and LDL via enhanc-
ing liver cholesterol uptake and via suppressing cholesterol
removal, which in turn increases liver cholesterol accumula-
tion [120]. A clinical study, however, shows that a single dose
of testosterone treatment increases the serum cholesterol
level after two days by increasing the expression of HMGR,
the rate limiting enzyme for cholesterol de novo biosynthesis
in the liver, but 15 days after the testosterone administration
the cholesterol levels in the volunteers were back to baseline
levels [131]. The mechanisms for the androgen induced upreg-
ulation of HMGCR transcription as well as the physiological
consequences have not been investigated and need to be
turther elucidated.

4. Summary and Future Directions

The metabolic syndrome and its related diseases, such as
obesity and diabetes, increase the health problems worldwide.
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FIGURE 2: Metabolic effects of estrogens and androgens on regula-
tion of lipid, glucose, and cholesterol in the liver.

The liver is the largest organ in the body that regulates
lipid, glucose, and cholesterol homeostasis. Hepatic steatosis
is one of the major manifestations of metabolic syndrome.
Several lines of epidemiological data have suggested that sex
hormones are associated in fatty different types of receptors.
Estrogens seem to play protective roles against hepatic fat
accumulation via suppressing lipogenesis and gluconeogen-
esis and promoting lipolysis and glycogen storage. Interest-
ingly, estrogens increase both cholesterol synthesis and secre-
tion. ER-a and its membrane form are more important in
regulating energy homeostasis than ER-3. GPER and its roles
in energy homeostasis are currently under intensive investi-
gation; however, there is less evidence about the role of GPER
in the liver compared with classic nuclear estrogen receptors.
Since the GPER specific agonist and antagonist have been
developed, further studies should apply these new chemicals
to examine the role of GPER in liver energy homeostasis, yet
the underlying molecular mechanisms are still unclear and
longing for further investigation.

We review and discuss the roles played by estrogens,
androgens, and their receptors in regulating liver energy
homeostasis (Figure 2). The action mechanisms of estrogens
are complicated in the body, as they work through multiple
different subtypes of estrogen receptors. Estrogens promote
liver glucose storage via increasing glucose transporters and
glycogen synthesis and suppress liver glucose production
via decreasing gluconeogenesis. Estrogens also actively par-
ticipate in maintaining lipid and cholesterol balance and
play protective roles against hepatic lipid accumulation, via
suppressing lipogenesis, lipid uptake, and cholesterol synthe-
sis and promoting lipolysis and cholesterol removal. Inter-
estingly, estrogens increase both cholesterol synthesis and
secretion. Classic nuclear ER-« and its membrane form are
more important in regulating energy homeostasis than ER- 3.
GPER and its roles in energy homeostasis are currently
under intensive investigation; however, there is less evidence
about the roles of GPER in the liver compared with classic
nuclear ERs. Since the GPER specific agonist and antagonist
have been developed, further studies should apply these new
chemical compounds to examine the role of GPER in liver
energy homeostasis.

Androgens and nuclear AR have been shown to increase
insulin receptor, decrease lipogenesis, and promote choles-
terol storage in the liver. The membrane AR, however, is not



well studied, which is also a potential research area to explore.
It must be emphasized that the integration of nongenomic
effects via membrane receptor signaling and genomic effects
via nuclear receptor signaling of sex hormones is critical to
produce the final sex hormone cellular outcomes.

Further investigation about differential androgen action
in males and females is needed. Androgen deficiency, or
excessive androgens as seen in women with PCOS, the
most common endocrine disorder and cause of infertility
among women of reproductive age, is closely associated with
disturbed lipid and glucose metabolism in the liver.
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