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Abstract

A major factor contributing to the etiology of depression is a neurochemical imbalance of the

dopaminergic and serotonergic systems, which is caused by persistently high levels of circu-

lating stress hormones. Here, a computational model is proposed to investigate the interplay

between dopaminergic and serotonergic-kynurenine metabolism under cortisolemia and its

consequences for the onset of depression. The model was formulated as a set of nonlinear

ordinary differential equations represented with power-law functions. Parameter values

were obtained from experimental data reported in the literature, biological databases, and

other general information, and subsequently fine-tuned through optimization. Model simula-

tions predict that changes in the kynurenine pathway, caused by elevated levels of cortisol,

can increase the risk of neurotoxicity and lead to increased levels of 3,4-dihydroxyphenyla-

celtahyde (DOPAL) and 5-hydroxyindoleacetaldehyde (5-HIAL). These aldehydes contrib-

ute to alpha-synuclein aggregation and may cause mitochondrial fragmentation. Further

model analysis demonstrated that the inhibition of both serotonin transport and kynurenine-

3-monooxygenase decreased the levels of DOPAL and 5-HIAL and the neurotoxic risk often

associated with depression. The mathematical model was also able to predict a novel role of

the dopamine and serotonin metabolites DOPAL and 5-HIAL in the ethiology of depression,

which is facilitated through increased cortisol levels. Finally, the model analysis suggests

treatment with a combination of inhibitors of serotonin transport and kynurenine-3-monooxy-

genase as a potentially effective pharmacological strategy to revert the slow-down in mono-

amine neurotransmission that is often triggered by inflammation.

Author summary

According to the World Health Organization, major depressive disorder (MDD) was in

2014 the fourth leading cause of disability in people between the ages of 15 and 44 years.
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MDD is responsible for about 1 million suicides per year and associated with a number of

other medical conditions such as coronary disease, diabetes, and Alzheimer’s disease.

While MDD has been studied for a long time, molecular details of its pathophysiology are

still scarce. Computational models offer a powerful opportunity to assist neuropsychiatric

disorder research, as they permit the representation of large sets of physiological, cellular

and biochemical phenomena through mathematical equations that can be simulated in a

very efficient fashion and have the capacity to provide testable hypotheses. Here, we intro-

duce a computational model of relevant biochemical pathways associated with high levels

of circulating stress hormone, as they are observed in MDD. The model captures known

observations well and demonstrates how increased levels of internally produced toxic

agents, such as various kynurenines, DOPAL and 5-HIAL, can lead to dysregulation of

key enzymes. These insights suggest new hypotheses for model-driven experiments, as

well as novel potential targets for pharmacological intervention.

Introduction

Affective disorders alter the mood of an individual. According to the Diagnostic and Statistical

Manual of Mental Disorders-V, these disorders are typically classified as depressive or bipolar

[1] if they are pathological or intense and persistent. Most common among them is major

depressive disorder (MDD). Its symptoms include depressive mood, anhedonia, reduced

energy, feelings of guilt and/or low self-esteem, sleep problems, changes in appetite, irritability,

lack of concentration and bouts of anxiety [2].

According to the World Health Organization, MDD is responsible for about 1 million sui-

cides per year and expected to be the second leading cause of disability in 2020 and the first in

2040 [2,3]. Research during the past decade has focused on links between depression and the

development of other medical conditions, such as coronary heart disease [4], diabetes [5] and

Alzheimer’s disease [6]. Up to 64% of recovered patients may suffer recurrent episodes of

MDD [7], and only about 30 to 35% of adults treated with antidepressants go into remission

[8]. Despite these disturbing statistics and the considerable impact of MDD on health and soci-

ety, the biological basis for the pathophysiology of MDD is still obscure [9].

Different biochemical theories have suggested that imbalances in the levels of biogenic

amines, such as dopamine (DA) and serotonin (5-HT), are involved in the etiology of psychiat-

ric disorders like schizophrenia, attention-deficit/hyperactivity disorder, and depression [10–

14]. These imbalances in dopaminergic and serotonergic systems are, in turn, likely to affect

the chemical balance within the entire neurotransmitter system [15,16] and, as a consequence,

are presumably not the only causes for depression. Instead, factors beyond changes in the

metabolism of these monoamines likely contribute to the pathogenesis of MDD as well. As a

pertinent example, many studies have shown that the influence of persistent, high levels of cir-

culating stress hormones can be a potent trigger of MDD [17,18]. Cortisol (CORT) in humans,

or corticosterone in rodents, is one of the hormones that have been directly associated with

decreases in dopamine and serotonin levels. The subsequent imbalances in neurotransmission

can have different outcomes, depending on the affected brain regions [19].

Impairments in neurotransmitter metabolism due to changes in CORT have been reported

to play a key role in the prefrontal cortex (PFC) and can lead to the development of MDD [20–

22]. One reason is neuroanatomical: dopaminergic and serotonergic cell bodies are located in

other regions, but their nerve terminals are projected towards the PFC where they interact

with each other. These terminals possess the entire necessary cellular machinery for synthesis,

release, reuptake and degradation of neurotransmitters [23]. As a result, the overlap in
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dopaminergic and serotonergic axon terminals in the PFC and their metabolic autonomy are

important features that suggest a focused investigation of these terminals toward a deeper

understanding of the neurochemical processes that are involved in the onset of MDD.

Another contributor to MDD appears to be the kynurenine (KYN) pathway (KP), which

constitutes a side branch of tryptophan metabolism through which tryptophan can be chan-

neled away from the serotonin pathway. Although KYN was discovered at the end of the 19th

century, long before serotonin, KYN and its metabolites have received increased attention

only during the past decade, particularly due to their links to inflammation, the immune sys-

tem and a variety of neurological conditions [24]. Moreover, it has been reported that KYN

derivatives can impair the metabolism of aldehydes that result from the catabolism of dopa-

mine and serotonin, and furthermore regulate glutamate neurotransmission by affecting the

N-methyl-D-aspartate (NMDA) receptor [25,26].

Over the years, animal models have been used to study the neuropathophysiology of psychi-

atric disorders, such as MDD [14]. In particular, the association between stress and the etiol-

ogy of depression has been investigated with experiments that induce depressive behavior by

increasing the level of CORT in an animal through a stress protocol [27,28]. Unfortunately,

experiments in animal models are expensive, both in terms of direct costs and also in terms of

experimental effort. Additionally, considerations of ethics have become very demanding

regarding the use and restrictions of animal models [29]. These factors suggest a search for

valid alternative or parallel approaches, notwithstanding the undeniable fact the traditional

paradigm of investigation has greatly advanced science and clinical understanding and will be

a mainstay throughout the foreseeable future.

One potential alternative is computational modeling, whose power has increased enor-

mously in recent years, both due to striking advances in computing and the availability of very

rich molecular datasets. The core of any computational approach is the representation of a bio-

medical system through mathematical equations, often in the format of ordinary differential

equations (ODEs). Once such a mathematical model is assembled, parameterized and coded

in algorithmic software, simulations and other explorations of numerous scenarios are cheap

and fast. Although these types of “experiments” must always be followed up with biological or

clinical validation studies, they often “weed out” erroneous hypotheses, help us explain and

predict an organism’s functioning, and guide the design of targeted experiments that advance

the field and may eventually lead to novel pharmaceutical interventions.

Employing such a modeling approach, our overall goal in the present study is to deepen our

understanding of the interactions within neurotransmitter systems that contribute to the etiol-

ogy of clinical depression. This goal is pursued through computational simulations with a new

mathematical model that elucidates the key components driving the dynamic interactions

among the dopaminergic and serotonergic pathways on the one hand and kynurenine metabo-

lism and the role of CORT on the other. The computational analyses focus on chronic stress

scenarios and are specifically designed to explain the consequences of changes in these interac-

tions for the onset of MDD.

Results

Conceptual model and dynamic model equations

The model is conceptually based on the pathway system in Fig 1. The translation of this dia-

gram into a so-called Generalized Mass Action (GMA) model is technically straightforward

[30,31] and yields the set of equations shown in S1 Supplement (see also Section Methods).

The relative steady-state values for each dependent variable and the values for the independent

variables are shown in the Tables A and B in S3 Supplement, respectively.
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Sensitivity analysis

Sensitivity analysis quantifies how numerical changes in model settings affect the dependent

variables, which here are metabolite concentrations. Specifically, we analyze a special set of

sensitivities, called log gains, that quantify relative changes in the steady-state values of metab-

olites in response to 10% changes in any of the independent variables. We performed this com-

prehensive gain analysis for two reasons. First, moderate gains, with plus or minus signs, are

generally associated with a valid model, because under normal, healthy conditions, most

Fig 1. Conceptual, simplified model of pathways associated with MDD and their interactions in the presynaptic DA and 5-HT terminals. The model accounts for

separate cytosolic and vesicular compartments in the two terminals, which share the same extracellular space. The latter is an important “collective” location for

processes that take place outside the neurons, in particular, in the synaptic cleft or in glial cells. Metabolites are represented with white boxes and participating enzymes

with black ellipses. Metabolites in dashed boxes are important but not necessarily located in the compartment where they are represented. Prefixes s, c, v, e, and p refer

to metabolites in the serum, cytosol, vesicles, extracellular space and pool of proteins, respectively. Cortisol/corticosterone (CORT) is represented by a white diamond.

Serum tyrosine, phenylalanine, tryptophan, enzymes and CORT are independent variables that remain constant during a given experiment. The strongest inhibitory

effects are represented with dotted lines. Abbreviations: 3-HAA, 3-hydroxyanthranilic acid; 3-HK, 3-hydroxykynurenine; 5-HIAA, 5-hydroxyindoleacetic acid; 5-HIAL,

5-hydroxyindoleacetaldehyde; 5-HT, 5-hydroxytryptamine or serotonin; 5-HTP, 5-hydroxytryptophan; AADC, l-amino acid decarboxylase; ALDH, aldehyde

dehydrogenase; COMT, catechol O-methyltransferase; DA, dopamine; DAT, dopamine transporter; DOPAC, 3,4-dihydroxyphenylacetic acid; DOPAL,

3,4-dihydroxyphenylacetaldehyde; HAAO, 3-hydroxyanthranilate 3,4-dioxygenase; HVA, homovanillic acid; IDO, indoleamine 2,3-dioxygenase; KAT, kynurenine

aminotransferase; KMO, kynurenine 3-monooxygenase; KP, kynurenine pathway; KYN, kynurenine; KYNA, kynurenic acid; KYNU, kynureninase; LAT, L-type amino

acid transporter; L-DOPA, l-3,4-hydroxyphenylalanine; MAO, monoamine oxidase; PHE, phenylalanine; QPRT, quinolinate phosphoribosyltransferase; QUIN,

quinolinic acid; SERT, serotonin transporter; TDO, tryptophan-2,3-dioxygenase; TH, tyrosine hydroxylase; TPH2, tryptophan hydroxylase 2; TRP, tryptophan; TYR,

tyrosine; VMAT2, vesicular monoamine transporter 2.

https://doi.org/10.1371/journal.pcbi.1008956.g001
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dependent variables are not expected to vary enormously in response to a small change in any

of the independent variables. Thus, the magnitudes of such responses are of interest in systems

analysis, and small magnitudes typically indicate model robustness, whereas large magnitudes

are often a cause for concern. Expressed differently, the magnitudes provide a qualitative mea-

sure of the reliability of the model. Indeed, all gains in our model are reasonable, as it can be

seen in S4 Supplement, which demonstrates the mathematical consistence of the model.

Data-based model validation

Simulation experiments were performed to compare the model output with experimental data

and clinical findings reported in the literature. Specifically, we considered perturbations in the

key enzymes and transporters, namely monoamine oxidase (MAO), catechol O-methyltrans-

ferase (COMT), dopamine transporter (DAT), serotonine transporter (SERT), and tryptophan

hydroxylase 2 (TPH2). We also investigated their inhibition, as well as the doubling of the

activity of the vesicular monoamine transporter 2 (VMAT2), which is a driver of neurotrans-

mitter dynamics [30,32,33]. For these simulations, the model was set to the control state, i.e.,
the kinetic orders for the variable CORT were set to zero to represent baseline levels of gluco-

corticoids (absence of chronic stress). The main results are summarized in Table 1.

The results in Table 1 demonstrate that the model with its parameterization aligns quite

well with biological and clinical observations. In particular, all predicted model responses,

without exception, correctly point in the observed direction of findings reported in the litera-

ture. In many cases, the magnitudes are captured semi-quantitatively. For larger deviations,

Table 1. Metabolite changes predicted by the model in comparison to corresponding values found in the literature. Abbreviations: 5-HT, serotonin; COMT, catechol

O-methyltransferase; DA, dopamine; DAT, dopamine transporter; DOPAC, 3,4-dihydroxyphenylacetic acid; HVA, homovanillic acid; MAO, monoamine oxidase; SERT,

serotonin transporter; TPH2, tryptophan hydroxylase 2; VMAT2, vesicular monoamine transporter 2.

Experiment Metabolite Model Literature

MAO-A/B-/- Extracellular DA "34.4% "3.2–11.6% [34]

Total DA "133% "12 − 200% [35,36]

Extracellular DOPAC #88% #21–78.1% [34]

Total DOPAC #70.7% #17 − 62% [36]

HVA #64.1% #30 − 48% [36]

Total 5-HT "34.8% "209–700% [35,37]

Total 5-HIAA #97% #81.8% [38]

COMT-/- Extracellular DA "10.6% "8.6–52% [39,40]

Total DA "39.1% "40% [41]

Extracellular DOPAC "646% "233–628% [39,40]

Total DOPAC "318% "387% [39]

HVA #67% #100% [39]

DAT-/- Extracellular DA "119% "393% [42]

Total DA #71.5% #96% [42]

Total 5-HT "3.7% "3.1% [37]

SERT-/- Extracellular 5-HT "369% "450–900% [43–45]

Total 5-HT #27.4% #53.8–76.7% [44,45]

Total 5-HIAA #74.8% #44.4–55.6% [44,45]

TPH2+/- Extracellular 5-HT #15% #66.2% [46]

Total 5-HT #33.7% #78.5% [46]

Total 5-HIAA #54.3% #72.2% [46]

Two-fold VMAT2 Extracellular DA "26.3% "44% [32]

Total DA "102% "21% [32]

https://doi.org/10.1371/journal.pcbi.1008956.t001
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the magnitudes are not always captured accurately, which is to be expected from a model that

is naturally based on approximations and simplifications. Overall, hallmark perturbations

such as SERT inhibition, which is widely used to increase extracellular 5-HT, validate our

model, at least in a semi-quantitative manner.

Model experiments with elevated CORT

To simulate chronic stress in our experiments, we increased the level of CORT to 150% of its

baseline value and computed the new steady-state metabolite concentrations in comparison to

their steady-state levels when CORT is operating under physiological conditions (baseline of

100%). Fig 2 displays a profile of the most interesting model components for the case of

chronic stress. We also included in this analysis the neurotoxic ratios defined by the relation-

ship between quinilinic acid (QUIN) and kynurenic acid (KYNA), and between KYNA and

3-hydroxykynurenine (3-HK).

The results in Fig 2 are very interesting. First, Badawy & Morgan [26] observed in liver that

KYNA, 3-HK and 3-hydroxyanthranilic acid (3-HAA) inhibit the activity of aldehyde dehy-

drogenase (ALDH), and one might reasonably expect the same to be true in the brain; the cor-

responding model results are displayed in Table 2. According to Fig 2, CORT stress increases

the levels of KYNA ("44%), 3-HK ("81%) and 3-HAA ("112%), which in the model leads to

inhibition of the activity of ALDH. This model prediction is supported by the elevated levels of

the cytosolic aldehydes 5-hydroxyindoleacetaldehyde (5-HIAL) ("160%) and 3,4-dihydroxy-

phenylacetaldehyde (DOPAL) ("29%), which are substrates of ALDH. Second, the model with

settings for stress conditions predicts significant increases in KYN ("61%) and in the neuro-

toxic ratio QUIN/KYNA ("65%), as well as a decrease in the ratio KYNA/3-HK (#21%).

Finally, the model allows us to test interventions that could become potential therapeutic

strategies, such as: increase VMAT2 activity (Fig 3A); inhibit SERT (Fig 3B); inhibit kynure-

nine 3-monooxygenase (KMO) (Fig 3C); and combine inhibition of SERT and KMO (Fig 3D).

In addition, Table 2 summarizes the effects of the various simulated “treatments” on key

metabolite levels under high levels of CORT. The differences between treated and untreated

cases in Table 2 are used in the following discussion.

Fig 2. New steady-state values of dependent variables in response to a 50% increase in CORT. The percent changes were calculated in comparison to the

corresponding values under control conditions (CORT at baseline of 100%). Also shown are the ratios QUIN/KYNA and KYNA/3-HK, which reflect the balance

between levels of key metabolites.

https://doi.org/10.1371/journal.pcbi.1008956.g002
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Table 2. Summary of general assumptions made during model design.

Assumption Comments

The blood-brain barrier (BBB) has just one layer. The BBB is mainly composed of endothelial cells, which

are connected to each other through tight junctions. The

only way to cross the BBB is through specific transporters

located in the luminal and abluminal membranes (double

layer) of the brain capillary endothelia [86,87]. For

simplicity, a single layer and one generic type of

transporter were considered.

The BBB is the only way for molecules to reach the

brain cells.

Since the surface of BBB is more than 1,000 times that of

the choroid plexus [88], the BBB area is taken as the

exclusive means for a given molecule to access the brain

[89].

The L-type amino acid transporter (LAT) is the only

one in along the BBB.

Large neutral amino acids (LNAAs), such as tyrosine

(TYR), phenylalanine (PHE) and tryptophan (TRP)

compete for the same type of transporter, called the L-type

amino acid transporter (LAT) [90]. Although different

subfamilies of LAT transporters are known, LAT-1 is here

assumed to be the sole bidirectional, sodium-independent,

high-affinity obligatory exchanger that works for

facilitated diffusion.

Only TYR, PHE and TRP cross LAT-1. In reality, LAT-1 is used not only for passage of TYR, PHE

and TRP, but also for transporting brain- chained amino

acids (BCAA) [91]. This fact appears to be of secondary

importance, and the inhibitory competition of these BCAA

in the uptake of TYR, PHE and TRP was not taken into

account.

The transport of LNAA occurs directly from the blood

serum to the neuronal cytosolic space.

In actuality, LNAAs reach the brain neurons by entering

an astrocyte or moving through the extracellular space to a

neuron. In the model, these steps are simplified to a single

transport step across the BBB through LAT-1, directly to

the neuron, as was proposed in the literature [48,49].

Only TYR and PHE affect the dopaminergic pathway,

while TRP acts only in the serotonergic pathway.

Uptake of TYR, PHE and TRP can lead into both

dopaminergic and serotonergic neurons through

intersection points in the two pathways [92–94]. For

simplicity, we assume that only TYR and PHE enter

dopaminergic neurons, while TRP only enters serotonergic

neurons.

The intracellular volume of a nerve terminal is Vi =

1.13x10-10 μl
Volume estimates are necessary for scaling the results.

Direct information is unavailable and the estimates are

quite coarse, but appear to be sufficient, as the relative

sizes to each other are more important. If such a terminal

is taken as a single synaptosome and approximated by a

sphere with radius Ri = 300 nm, the corresponding

intracellular volume is Vi = 1.13x10-10 μl (notice that this is

not the cytosolic volume, but the cell volume as a whole).

The intracellular vesicular volume in a nerve terminal

is Vv = 6.7x10-12 μl
Each terminal contains approximately 200–500 vesicles of

approximately 40 nm in diameter [95–97]. Taking every

vesicle as a sphere with radius Rv = 20 nm and multiplying

its volume by 200 results in a total vesicular volume Vv =

6.7x10-12 μl.
The cytosolic volume in a nerve terminal is Vc =

1.06x10-10 μl
Taking Vi and Vv as above described, the cytosolic volume

is, consequently, Vc = Vi−Vv = 1.06x10-10 μl.
The extracellular volume surrounding one nerve

terminal is Ve = 1.78x10-11 μl
The extracellular space surrounding the nerve terminal is

assumed to be a 15 nm-thick layer [98]. With the above

settings, the extracellular space in the immediate vicinity of

a terminal, if expressed as a sphere, has the volume Ve =

1.78x10-11 μl. Considering that there are two terminals, the

total shared extracellular volume is 2Ve.

(Continued)
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Table 2. (Continued)

Assumption Comments

Conversion factor from grams of tissue to volume of

water: fc = 0.7 ml/g
Units of metabolite concentrations and enzyme kinetic

parameters must be consistent to calculate the kinetic

orders for power-law approximation. Fluxes and affinities

are usually given in molar concentration per unit of time

(mol/l/h) and molar concentration (mol/l), respectively, or

in fractions of these units. We used a conversion factor fc =

0.7 ml/g to switch between mol/g and mol/l [99,100], when

necessary.

Every component in the model is assumed to be

homogeneously spread throughout the same

compartment.

The consideration of spatial heterogeneity would increase

the complexity of the model manyfold.

The CORT concentration is assumed to vary

proportionally and homogeneously regardless of the

compartment.

Since CORT if a lipophilic molecule with low weight, it can

cross the BBB by diffusion and quickly disperse toward the

concentration equilibrium [101]. It has been shown that

changes in CORT levels are easily detected in saliva and

urine and that these measurements correlate well with free

serum CORT concentrations [102,103]. Thus, absolute

values and changes for CORT concentrations taken from

saliva, urine or serum are assumed to represent alterations

inside the brain cells [104].

Kynurenine metabolites are assumed to vary

proportionally and homogeneously regardless of the

compartment.

Information regarding KYN-associated metabolite

concentrations in dopaminergic and serotonergic neurons

is scarce. However, it is fair to assume that these levels are

in the nanomolar (nm) range within tissues and in the

extracellular space. The concentrations of the KYN

metabolites of interest are considered uniformly

distributed over brain cells and compartments.

Transcriptional and post- translational regulation

mechanisms are not considered, so that protein

expression is assumed to be directly proportional to

gene expression.

Experiments with homozygote and heterozygote mutants

in animals do not necessarily result in a 100% and a 50%

reduction in protein expression or activity, respectively.

However, for simplicity, transcriptional and post-

translational mechanisms are ignored, and it is assumed

that there is a linear correlation between gene and protein

expression [105,106].

Proteins are represented as a fraction of the total

amount of protein content in the control situation.

All variables of a mathematical model that in a simulation

do not change over time can be explicitly represented as

independent variables and defined as constants. Here, this

is the case for the proteins involved in enzymatic reactions.

Enzyme concentrations vary to the same degree

regardless of the compartment in which they are active.

Although the enzyme concentrations may vary according

to the compartment where they are located, it is assumed

that their levels change proportionally everywhere,

according to the protocol of the experiment, in which

proteins are independent variables with values set before

each simulation.

Chronic stress is positively correlated to inflammation. A large body of research has demonstrated an association

between social stressors and inflammation. These studies

provide evidence of the correlation among stress,

depression and the immune system at the levels of

proteins, signaling processes and the genome [107].

Chronic stress is positively correlated to cortisolemia. Chronic stress leads to a reduction in the negative

feedback affecting the HPA axis, thereby elevating the

levels of CORT over time. In addition, immune cells

become less sensitive to the anti-inflammatory effects of

CORT, which leads to the so-called “glucocorticoid

insensitivity” [108].

Aspects of comorbidities accompanying depression

were not taken into account.

MDD usually manifests with other disorders, such as

anxiety and post-traumatic stress disorder [109], whereas

our model is based on findings concerning depressed

patients and animal models of depression.

(Continued)
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A two-fold increase in the activity of VMAT2 elevates the levels of monoamines (vesicular,

extracellular and total), which is desirable. However, the level of the cytosolic 5-HIAL remains

too high (Fig 3A), with a difference of only #10% in comparison to the untreated situation.

Also, no significant changes in the levels of kynurenine metabolites were observed, especially

in 3-HK and QUIN, which are neurotoxic.

By contrast, the inhibition of SERT leads to a strong increase in extracellular 5-HT ("360%)

and a decrease in the level of the cytosolic aldehyde 5-HIAL (#93%), but not the levels of cyto-

solic DOPAL, which is actually slightly increased ("6%) in comparison to the untreated system

(Fig 3B). No relevant changes were observed in the kynurenine metabolites.

Since 3-HK is also neurotoxic and serves as an early precursor for the production of QUIN,

it is important to find the right balance between the levels of KYNA, 3-HK and QUIN. Along

these lines, a simulation with our model demonstrates that inhibition of KMO by 50% reduces

the increase in the ratio of QUIN/KYNA (#31%) and increases KYNA/3-HK ("86%). More-

over, this strategy causes a small decrease in the level of cytosolic DOPAL (#8%). Unfortu-

nately, the level of the cytosolic aldehyde 5-HIAL remains high (Fig 3C), even with a decrease

of 16%. Notice also that there is no increase in the levels of the extracellular monoamines.

According to the model, the combined inhibition of SERT and KMO not only increases the

levels of extracellular 5-HT ("353%), but also of extracellular DA ("30%) in comparison to the

untreated CORT state (Fig 3D). Although the change in cytosolic DOPAL is relatively low

(#3%), cytosolic 5-HIAL declined 94%. Besides decreasing the levels of aldehydes, this inter-

vention also decreases the neurotoxic ratio, QUIN/KYNA (#31%), and increases the KYNA/

3-HK ratio ("86%).

Discussion

We have developed and parameterized a dynamic model to test the impact of elevated cortisol/

corticosterone levels and their consequences on serotonin, dopamine and kynurenine path-

ways, which are known to be associated with the etiology of MDD. Previous models have

investigated the interplay of dopaminergic and serotonergic pathways in different contexts,

such as the influence of firing and the roles of autoreceptors [47–50]. However, to the best of

our knowledge, this is the first mathematical model integrating all pertinent biochemical path-

ways into a model of depression. Altering parameters in key components of these metabolic

pathways generated model predictions that were confirmed by available experimental data;

these predictions are therefore acceptable for testing in increased glucocorticoid conditions.

High glucocorticoid conditions lead to a detrimental decrease in serotonin production, which

is typical of MDD, and were damaging to the activation of the KP. Most importantly, our

model predicts significant increases in the cytosolic aldehydes DOPAL and 5-HIAL, in addi-

tion to imbalances in the QUIN/KYNA and KYNA/3-HK ratios, which are directly related to

neurotoxicity. Therefore, our model suggests the hypothesis that increased levels of DA and

5-HT catabolism, DOPAL and 5HIAL may be important contributors to chronic depression,

as they lead to the activation of neurotoxic effects.

Table 2. (Continued)

Assumption Comments

Neuronal firing was not taken into account. Although neuronal firing activity plays a key role in

neurotransmission and, consequently, in the levels of

metabolites, our model focuses only on the biochemical

reactions that regulate the monoamine systems.

https://doi.org/10.1371/journal.pcbi.1008956.t002
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According to our model, increased levels of CORT are associated with significant increases

in the concentrations of KYNA, 3-HK, and 3-HAA. The increased levels of DOPAL and

5-HIAL reflect evidence of an inhibited ALDH, which in turn is connected to an increased

activity of MAO, which becomes evident in the decay of the overall levels of monoamines in

our simulation. It is known that these aldehydes are extremely reactive and toxic for the neu-

ron, and rodent studies have demonstrated that DOPAL and 5-HIAL lead to the oligomeriza-

tion of α-synuclein (αS) [51,52]. Interestingly, recent findings indicate increased levels of αS in

the serum of patients with MDD [53], as well as increased amounts of αS-DOPAL oligomers

that impair the function of synaptic vesicles, induce DA leakage and further reduce neuro-

transmission [54].

Studies in humans as well as animal models suggest that αS oligomers lead to mitochondrial

dysfunction, and this impairment has been shown to be mediated by the innate immune sys-

tem and is related to the pathophysiology of MDD [55]. More specifically, fusion or fission

processes seem to be especially affected by αS, causing mitochondrial fragmentation [56].

Intriguingly, ALDH is a protein associated with mitochondria, which supports the speculation

that its impaired function possibly leads to neurotoxicity that often accompanies cortisolemia.

This conclusion is in agreement with a recent study showing that chronic stress does not seem

to change the expression of ALDH but can damage the signaling pathway involved with the

function of this enzyme in the HPC and PFC [57].

Oxidative stress is the initial step of lipid peroxidation. Here, it yields aldehydes that reduce

the level of 3,4-dihydroxyphenylacetic acid (DOPAC) and elevate DOPAL to abnormal levels

by inhibiting ALDH activity [58,59]. Evidence of pro-inflammatory cytokines triggering oxi-

dative stress have led to the suggestion of the so-called “oxido-neuroinflammation hypothesis”

for the pathogenesis of MDD [60]. The increases in aldehydes and in neurotoxic kynurenine

metabolites with high levels of corticosteroids shown by our model support this hypothesis.

It is well known that glutamate can induce neurotoxicity and neuronal death through its

agonistic activity on the NMDA receptor. Furthermore, depending on its concentration,

KYNA can act on the glycine and/or glutamate modulatory binding sites of the NMDA recep-

tor playing a neuroprotective role by inhibiting the NMDA receptor activity. Conversely, sev-

eral studies have demonstrated that QUIN stimulates the NMDA receptor, acting as its agonist

[25,61], and inhibits its uptake by glial cells, which augments the availability of glutamate [62]

and neurotoxicity. Our model does not explicitly include astrocytes and their interactions with

the monoaminergic systems, but it could be interesting to explore how glial cells might expand

insights gained here.

Elevated levels of these neurotoxic metabolites and of circulating CORT have been corre-

lated with a reduction in HPC volume and dendritic atrophy of its nerve terminals, as observed

in MDD patients [63–66]. It has specifically been shown that the increased concentration of

3-HK is associated with neuronal apoptosis in the HPC [67] and that excess extracellular gluta-

mate is related to reduction in dendritic growth [68]. In addition, since HPC is known for hav-

ing the highest glucocorticoid binding activity of any brain structure [69], the hippocampal

control over the hypothalamic-pituitary-adrenal axis is mediated by CORT [70]. These find-

ings are consistent with the widely reported neuropsychological deficits due to hippocampal

impairments and volume loss that were observed in untreated MDD patients [71–73].

Fig 3. Notable changes in key dependent variables in response to cortisolemia and treatment. (A) Two-fold increase in

the activity of VMAT2. (B) 95% Inhibition of the transporter SERT. (C) 50% Inhibition of the activity of enzyme KMO. (D)

Combined inhibition of SERT (#95%) and KMO (#50%). Time courses are shown on the left and percent changes after

treatment on the right of each panel. CORT is increased by 50% at day 8 and “treatment” starts at day 25 (black triangles).

https://doi.org/10.1371/journal.pcbi.1008956.g003
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Our results point to the accumulation of 3-HK and toxic imbalance in the ratio QUIN/

KYNA under cortisolemia, besides the increased levels of DOPAL and 5-HIAL. Such dysfunc-

tions are due to changes caused by cortisol in the activity of enzymes in the KP and the mono-

aminergic system, such as MAO, indoleamine 2,3-dioxygenase (IDO), tryptophan-

2,3-dioxygenase (TDO), kynurenine aminotransferase (KAT), and 3-hydroxyanthranilate

3,4-dioxygenase (HAAO). Hence, we propose that all these mechanisms can cause the neuro-

nal death or atrophy in the HPC and PFC as they are observed in depressed patients.

In terms of possible therapeutic targets, our model suggests that overactivating VMAT2

expression twice, a strategy proposed as a therapeutic intervention to re-establish the physio-

logical levels of DA in patients with Parkinson’s diseased or bipolar disorder [32], does not

seem to be an efficient approach in comparison to the untreated system, at least with regard to

higher levels of glucocorticoids. Also, we observed that the levels of aldehydes and kynurenine

metabolites did not change to a meaningful degree, therefore maintaining neurotoxicity.

The model was able to mimic the effect of inhibiting SERT, which leads to a consistent

increase in extracellular levels of 5-HT and decreased levels of cytosolic 5-HIAL. By using

three classes of pharmacological approaches, two of them interacting with norepinephrine,

one of them a SSRI, Martı́n-Hernández et al. (2019) demonstrated an increase in QUIN/

KYNA ratio in the frontal cortex of rats under mild chronic stress and a return to the baseline

situation after treatment with antidepressants [74]. However, they found a decrease in the

expression of HAAO, although not in all KAT isoforms, which implies that antidepressant

treatment can reduce the neurotoxic risk ratio, but at the cost of increasing the levels of

KYNA, whose levels are positively correlated to cognitive impairment found in patients with

schizophrenia [75]. Moreover, higher levels of 3-HK increase the neuronal vulnerability in

patients with Huntington’s disease [76]. Since 3-HK is also neurotoxic and is an early precur-

sor in the production of QUIN, it is essential to find a proper balance between the levels of

KYNA and 3-HK and QUIN.

Our current model focuses on DA and 5-HT but by and large ignores the roles of other

neurotransmitter systems, such as the role of norepinephrine metabolism in MDD [77]. It

could therefore be interesting to expand the current model toward an inclusion of this pathway

and explore the so-far ill-characterized molecular mechanisms involved in the interactions

between the monoamine system, antidepressants and KP. Such an expansion is currently not

feasible, due to many gaps in information, but could be intriguing once experimental studies

provide additional data.

Although it seems to be intuitive and straightforward to propose a treatment based on the

inhibition of IDO to slow down the KP, it has been shown that such an approach is related to

pro-carcinogenic side effects [78]. Also, our gain analysis did not identify a significant impact

of IDO on 3-HK, 3-HAA and QUIN. Nonetheless, along these lines, we propose the inhibition

of KMO as a possible adjuvant intervention. The corresponding simulation with our model

demonstrates that inhibition of KMO is able to reduce QUIN/KYNA while increasing KYNA/

3-HK, which is in agreement with other findings in the literature [79]. Interestingly, it has

been shown that some KMO inhibitors are more effective in reducing QUIN and 3-HK in situ-

ations of strong immune activity [80]. According to our model, the combined strategy of

inhibiting SERT and KMO seems to be promising. Hence, we propose the further exploration

of KMO inhibitors, in combination with SERT inhibitors, for controlling the production of

neurotoxic kynurenine metabolites that is due to the well-known shift in tryptophan metabo-

lism under chronic stress.

In conclusion, our model is the first to suggest that high corticoids trigger an increase in the

levels of neurotoxic aldehydes DOPAL and 5-HIAL, which are directly derived from DA and

5-HT catabolism, and that this increase may contribute to chronic depression. This hypothesis

PLOS COMPUTATIONAL BIOLOGY Modeling depression etiological factors

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008956 May 10, 2021 12 / 27

https://doi.org/10.1371/journal.pcbi.1008956


implies that the interaction between KP and the dopaminergic and serotonergic catabolic

pathways might be an important therapeutic target in MDD. The neurotoxic risk ratio QUIN/

KYNA is increased when the level of CORT is elevated, probably leading to glutamate excitoxi-

city by activation of NMDA receptors. This chain of events may be a key component of PFC

neuronal atrophy observed in patients with MDD. To counteract these effects, the computa-

tional simulations using classical inhibitors for serotonin and kynurenine pathways suggest

that a therapeutic strategy combining SERT and KMO inhibitors would be more effective than

SERT inihibition alone. More generally, the recognition of the systemic nature of multiple

interacting factors that are involved in MDD and lead to prolonged symptoms and possible

brain damage is a fundamental step forward in the development of more efficacious therapeu-

tic approaches.

Methods

Pathway structure

The unusual cellular architecture of the PFC includes dopaminergic and serotonergic termi-

nals, even though the cell bodies are located elsewhere. It is therefore reasonable to model the

metabolic pathways of dopamine and serotonine-kynurenine in the axon terminals of PFC

neurons. The essential details to be included in the model were identified based on literature

information, with emphasis on the most relevant metabolic pathways governing DA, 5-HT

and KYN within the PFC. Many kinetic features of the reactions were taken from biological

databases, such as BRENDA [81], KEGG [82] and MetaCyc [83]. In addition, a few terrific

models of some of the pathways of pertinence are available, sometimes in the form of detailed

differential equation models. For instance, models are available for the dopamine system [76–

77] and the role of levodopa [80], as well as the serotonin pathway [78, 81] and tryptophan and

kynurenine metabolism [79]. These models contain much information, some of which we

were able to adapt for our purposes. Furthermore, since 5-HT and KYN have tryptophan as a

common precursor, KYN metabolism was modeled inside the serotonergic terminal, although

most evidence places KYN within the microglia and astrocytes [84,85]. This simplifying

assumption seemed reasonable considering that a scientific model is always an abstraction of a

complex phenomenon and that we are not concerned about spatial features in this analysis.

An overview of the map of reactions and key features within their compartments is shown in

Fig 1.

General and specific assumptions

For purposes of unit conversions, formulation and simulations, some quantitative and qualita-

tive assumptions were made in order to facilitate the understanding of the processes and to

render the chemical and physical quantities coherent. General assumptions and their biologi-

cal rationale are summarized in Table 2.

A few additional assumptions are particular to each pathway, depending on the specifics of

the metabolites involved in the reactions and the compartments where these reactions take

place. The central assumptions and inferences taken from the literature regarding the dopami-

nergic and the serotonergic-kynurenine pathways are presented in Table 3. Concentration val-

ues for dependent variables at the steady state are listed in Table A in S3 Supplement, while

explanations of other values are presented in the following subsections.

One additional assumption made in this work is important and should be discussed in

some detail. Namely, some pro-inflammatory cytokines enhance the activity of the enzyme

IDO, when high levels of CORT stimulate TDO [133,134], thereby shifting tryptophan from

the biosynthesis of 5-HT to the production of kynurenine [135]. Also, it has been shown that
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Table 3. Summary of the specific assumptions used during model design.

Assumption Comments

TYR, PHE and TRP inhibit each other. Since these LNAA compete for the transport through the

BBB, they reduce their competitors’ net fluxes through

LAT-1.

TYR and PHE have just two fates: protein synthesis or

synthesis of L-DOPA.

About 90% of the TYR and PHE are used for protein

synthesis and 10% for the synthesis of L-DOPA [110].

Furthermore, 90% of the production of LDOPA uses TYR

as substrate, since TYR is the preferred substrate of TH.

It is assumed that about 80% of L-DOPA is committed

to the synthesis of DA and the remaining 20% is

methylated by COMT.

This assumption is reasonable because the majority of

L-DOPA is decarboxylated to DA.

At steady state, the concentration of L-DOPA is 10% of

the level of cytosolic DA.

Exact proportions are unknown, but similar assumptions

were made for other models in the literature [33,48].

Vesicular DA and 5-HT correspond to 98% of the

intracellular DA and 5-HT, while the remaining 2% is

in the cytosol.

It is generally assumed, and implemented in other models,

that most of the intracellular DA is located in the vesicles

of dopaminergic neurons [33,48]. The same assumption is

made here for serotonergic neurons.

Homovanillic acid (HVA) is considered to exist only

in the extracellular space.

The proposed model does not include astrocytes and other

glial cells that are involved with the dynamics of HVA.

However, COMT is active in the DAergic neurons, so that

HVA can also be directly influenced by cytosolic DOPAC.

TRP is assumed to have only three fates: protein

synthesis, synthesis of 5- HTP or kynurenine.

It is assumed that about 10% of TRP is used to protein

synthesis, whereas 35% is committed to the synthesis of

5-HTP and the remaining 55% is used in the synthesis of

kynurenine [79].

It is assumed that about 80% of 5-HTP are committed

toward the synthesis of serotonin.

Although 5-HTP plays several peripheral roles, the vast

majority is used for the biosynthesis of 5-HT [111].

At the steady state, the concentration of 5-HTP is 10%

of the cytosolic serotonin.

A similar assumption is made for DA and L-DOPA.

eDA/e5HT = 1 According to the literature, the ratio of eDA/e5HT is

between 0.71 and 2, with a tendency toward the lower level

[112–115].

iDA/i5HT = 0.5 According to the literature, 0.5 < iDA/i5HT < 0.8, with a

tendency toward the lower level [27,116–118].

i5HT/e5HT = 850 This value was taken from Adell et al. [119].

e5HIAA/e5HT = 800 The extracellular concentration of 5-HIAA is much higher

than the extracellular concentration of 5-HT [120].

i5HIAA/e5HIAA = 0.5 This value was taken from Adell et al. [119]. Note that

i5HIAA is the tissue concentration of 5-HIAA and had to

be converted to cytosolic concentration.

iDOPAC/eDOPAC = 0.5 A similar assumption was made for the serotonergic

metabolites, intra- and extracellular 5-HIAA. Note, again,

that iDOPAC is the tissue concentration of DOPAC and

had to be converted to cytosolic concentration, since

DOPAC is not present in the vesicle compartment.

cDOPAL/cDOPAC = 200 DOPAL has been quantified as the precursor aldehyde of

DOPAC in the substantia nigra of human brains [121]. We

adopted the same ratio for the extracellular compartment

(eDOPAL/eDOPAC = 200).

Cytosolic DA and 5-HT inhibit their own synthesis. DA inhibits its own synthesis by competing with the

cofactor tetrahydrobiopterin (BH4) for the binding site of

the enzyme TH [122,123]. We assumed that 5-HT inhibitis

its own synthesis by means of a similar competing

mechanism.

D2 is the only auto-receptor whose activity was taken

into account; extracellular DA modulates TH activity

through D2.

No other receptors that modulate DA synthesis and release

were taken into account, since our study focuses on the

presynaptic dopaminergic nerve terminal, where D2 is

most prevalent.

(Continued)
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the expression of TPH2 is inhibited by methylation in rat brains under stress [136]. Taken

together, these observations imply that during an inflammatory response and increased levels

of CORT due to chronic stress, not only are the levels of tryptophan available for 5-HT synthe-

sis diminished, but there is also a genetic regulatory mechanism that decreases the expression

of the rate- limiting enzyme TPH2. Although cytokines are not necessarily acting simulta-

neously, since their levels change over time [137], it was assumed for simplicity that, under

chronic stress, the levels of CORT and the levels of proinflammatory cytokines are positively

correlated [8,107,108]. To implement this assumption, the variable CORT acts directly on the

activity of TDO and indirectly represents the influence of cytokines on the activity of IDO and

TPH2, thereby shifting tryptophan from 5-HT to KYN synthesis.

Modeling framework

The choice of the best possible modeling framework is a challenging task, and a lot has been

written about it (e.g., [31,138]). Biochemical Systems Theory (BST; [139,140]) was chosen here

as the modeling framework, because it is arguably the least biased dynamic approach and

requires very few assumptions (e.g., [31]). It is furthermore rigorously based on Taylor’s

approximation theory of numerical analysis [30,141,142]. Other advantages of power-law

models in BST over traditional models include the following.

1. Traditional representations, such as Michaelis-Menten functions, suffer from the well-

known problem that they are approximations of mass-action kinetics, which in turn assume

operation in a well-mixed, homogeneous medium (see [143]), which of course is not the

case in living cells. Thus, the foundation of these wide-spread rate laws is not really present

in vivo. It may be sufficient, but that is unknown and may differ from case to case. The situ-

ation is particularly dire in crowded environments as they exist in living cells [144–146].

2. BRENDA [81] and other databases [82,83] contain ample kinetic information, but the true

KM (let alone Vmax) values for a specific situation like ours (i.e., cell terminals in a specific

brain section, possibly diseased) are very rarely known. The situation is worse for inhibition

Table 3. (Continued)

Assumption Comments

5-HT1B is the only autoreceptor whose activity was

taken into account; extracellular 5-HT modulates

TPH2 activity through 5-HT1B.

No other receptors that modulate 5-HT synthesis and

release were taken into account, since our work focuses on

the presynaptic serotonergic nerve terminal, where 5-HT1B

is most prevalent.

Extracellular DA competes with extracellular 5-HT for

SERT

Although all biogenic monoamine transporters are

promiscuous, only the competition of DA for SERT was

considered, since the affinity of 5-HT for DAT is much

lower than DA for SERT [124–126].

TPH2, AADC and VMAT2 have a functional and

physical coupling similar to TH, AADC and VMAT2

It has been shown that TH, AADC and VMAT2 have a

functional and physicial coupling, so that DA is directly

transported into vesicles as soon as it is synthetized

[127,128]. We assume that TPH2, AADC and VMAT2

behave in the same way.

KYNA, 3-HK and 3-HAA inhibit the activity of ALDH

in the brain.

Even at low concentrations, these kynurenine metabolites

can reduce the ALDH activity by 40% or more in the liver

[26]. Although ALDH is not the only enzyme involved in

the catalysis of DOPAL and 5-HIAL, these aldehydes are

mainly oxidized by ALDH [129].

IDO-TDO, MAO, KAT, and HAAO activities are

increased under chronic stress.

A substantial body of research supports these assumptions

[74,130–132].

https://doi.org/10.1371/journal.pcbi.1008956.t003
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and other modulator constants. Furthermore, to formulate a traditional model, the type of

mechanism for every inhibition or activation signal needs to be known a priori, and if it

happens to be allosteric, it is unclear how to represent it mechanistically.

3. Power-law functions may at first appear to be unnecessarily complex and require some get-

ting used to. However, they offer tremendous advantages. First, it is an automatic process to

convert a pathway diagram into symbolic power-law equations (e.g., [31]). Namely, every

process in every differential equation is represented with a product of power-law terms con-

sisting of a non-negative rate constant and of every variable affecting the process, raised to a

real-valued power. Second, in contrast to traditional functions, this representation is mathe-

matically guaranteed (by Taylor’s theory of numerical analysis) to be correct close to the

normal operating point of the cell or organism if the parameter values are chosen correctly.

Third, power-laws contain fewer (or at most as many) parameters than most traditional

functions: There is one kinetic order per variable affecting a given process and one rate con-

stants. Compare this parsimony with the traditional rate law of a bi-substrate-bi-product

reaction with inhibition, which can demand a dozen or more parameter values [147].

Fourth, the kinetic orders in power-law models almost always have values within small

ranges (Chapter 5 of [30]) which makes it easy to assign default values if true values are

unknown. These default values allow the modeler at least to get started. Sensitivity analysis

subsequently shows how important the value of this kinetic order is.

4. Careful side-by-side comparisons of large metabolic models, represented either with tradi-

tional functions or with power-laws have demonstrated very little difference in results (e.g.,
[148–150]), except for crowded media, where power-laws are clearly superior [144–146].

Of course, the power-law formulation is no panacea and has its germane disadvantages.

First, a single term does not model saturation, although steady states are represented well by the

equations. Second, the model is by its nature an approximation and usually becomes less accu-

rate as simulations deviate far from a chosen operating point, such as the normal steady state.

BST offers several variants [151], among which we decided for the GMA format, because it

reflects the stoichiometric relationships within a metabolic pathway system most intuitively.

Specifically, all GMA equations have the following form [31,147]:

dXi

dt
¼ _Xi ¼

X

j

�gij �
Y

k

Xfijk
k ð1Þ

Here, the change of each dependent variable i over time (dXi/dt) is described as a sum or

difference of j power-law terms, each of which is composed of a positive rate constant γij and

of k variables that directly affect the particular process. Each equation may have different num-

bers of terms and each power-law may have different variables, so that both indices, j and k,

typically vary throughout the system of ODEs. Each variable Xi is raised to a power fijk, called a

kinetic order, which are usually in the range of -1 (miminum inhibitory influence) and 1 (max-

imum activating influence). If a variable is raised to the power fijk = 0 the resulting power-law

term is 1, and the variable does not affect the term. Like, dependent variables, which may

change over time according to the dynamics of the system and have their own differential

equation, independent variables, such as enzyme concentrations, are included in each perti-

nent term. These variables typically do not change during a given computational experiment

or simulation, and they are under the control of the experimenter [33,152,153]. Although the

notation in Eq 1 looks restrictive, it is worth noting that the overall model structure is enor-

mously rich and can represent any nonlinearities [151].
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The equations of our model can be found in S1 Supplement.

Once the structure of the pathway system is known, it is immediately possible to translate

this structure with all details into symbolic power-law equations. This “automatic” formula-

tion is a tremendous advantage over other approaches, and the remaining challenge is the

task of determining numerical values of all parameters from data or literature information.

An intriguing, multi-decade experience is the fact that BST models are so robust that even

relatively substantial variations in kinetic orders, of maybe 30%, usually do not compromise

the meaning of a model response, as long as the structure of the biological system is cor-

rectly represented and all the relevant connections and metabolites are taken into account

[33].

Parameter identification

While the design of a symbolic BST model is straightforward, the estimation of parameter val-

ues is a challenge, as it is for all other model types. Where available, quantitative and qualitative

experimental or clinical information was converted into parameter values, with methods that

have been demonstrated many times (e.g., [30,31,154]). Information embedded in other types

of models was directly converted with purely mathematical means [148–150]. Nonetheless, as

is to be expected, not all pertinent information was available, which required us to use default

values (see [30,33]) and computational adaptations so that qualitative results matched

observations.

Specifically, the model was fit in two phases: the “control state” and the “CORT state”. The

control state was defined as a vector of model variables for the value of CORT at its baseline.

In a mammalian model under physiological conditions, some of the variables refer to the basal

levels of circulating corticosterone. This corticosterone oscillates during the day, but it is gen-

erally assumed that the level does not significantly affect the steady states of neurotransmitter

metabolites. For calibrating the model at the control state, the variable CORT was fixed as a

constant, and data taken from animal experiments found in the literature were used to adjust

the default values of kinetic orders in some reactions to fit additional experimental data (see

Table C in S2 Supplement).

It is important to note that the minimal effect of corticosterone on neurotransmitters under

normal conditions does not hold for chronic stress situations. Thus, in the second phase of

model calibration, the CORT state was analyzed. Specifically, to estimate the parameter values

related to corticosterone, all kinetic orders determined for the control state were fixed and

only the kinetic orders for CORT (increased by a factor greater than 1, i.e.,> 100%) were

adjusted based on data from experiments on chronic stress in animal models (see Table C in

S2 Supplement). Finally, the rate constants were calculated for the final set of power-law equa-

tions according to the methodology described in [30] and based on the flux partitioning ratios

taken from other models in the literature [33,47–50,79,155].

In both situations, an additional constrained optimization was performed to achieve an

ensenmble of well-fitting models. Initially, several sets of random kinetic orders were gener-

ated using Latin Hypercube Sampling (LHS) of 100 d-size [156], where d is the number of

parameters to be optimized. Every set of the Latin hypercube values was tested and the residual

mean squared error (MSE) for each parameter combination was calculated. At the end, 5% of

the results with the lowest MSE were selected as initial values for a follow-up local search opti-

mization, using the Nelder-Mead algorithm [157]. Among the optimized sets of parameters, a

value was chosen that appeared to be clinically most suitable. The equations of our model can

be found in S1 Supplement and the final sets of kinetic orders and rate constants are shown in

Tables A and B in S2 Supplement, respectively.
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Model validation

Two approaches were used to assess the reasonableness of the model: one strictly mathemati-

cal, the other based on data.

The first approach to validating the parameterized model was a typical sensitivity analysis,

which allowed us to judge the adequacy and robustness of the mathematical formulation of the

system (for different variants of this type of analysis, see [30]). Specifically, we focused on “log-

arithmic (log) gains”, each of which quantifies the relative (percent) change in the steady-state

concentration of a metabolite (dependent variable) in response to a small-percent change in

an independent variable, such as an enzyme activity or hormone level. We performed this

analysis for 1% and 10% variations.

The second approach used the comparison of predicted results against data not used to cali-

brate the model. Specifically, if experimental data are too scarce to allow rigorous parameter

estimation and model validation, other strategies must be found to validate the model. In our

case, for example, the complexity of the brain is so enormous that there is no guarantee that

neuronal metabolism in the substantia nigra or the striatum is the same, or even similar, in the

PFC [158]. In particular, there are only a few datasets reporting metabolic measurements in

the PFC of animals under chronic stress, and other information to verify the behavior of the

model variables does not exist. Thus, the best that can be done is a qualitative or semi-quantita-

tive comparison between the results obtained from our model in specific scenarios and the

corresponding results from experiments (in situ, ex vivo, in vitro or computational) that are in

some sense similar although not exactly equivalent.

Simulation framework

The parameterized model was implemented in the free platform Python, version 3.8, and run

on a MacBook, dual-core processor Intel Core i7, 1.7 GHz, 8 GB RAM, and 64 bits of operating

system.
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