

Received 18 December 2014 Accepted 5 January 2015

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; picolinolylhydrazone; intramolecular hydrogen bonding; ruthenium(II) polypyridyl complex.

CCDC reference: 1042209 **Supporting information**: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

Crystal structure of bis(2,2'-bipyridine)[N'-(quinolin-2-ylmethylidene)pyridine-2-carbohydrazide]ruthenium(II) bis(tetrafluoridoborate) dichloromethane trisolvate

Asami Mori,^a Takayoshi Suzuki^a* and Kiyohiko Nakajima^b

^aDepartment of Chemistry, Faculty of Science, Okayama University, Okayama, 700-8530, Japan, and ^bDepartment of Chemistry, Aichi University of Education, Kariya, Aichi 448-8542, Japan. *Correspondence e-mail: suzuki@okayama-u.ac.jp

The title compound, $[Ru(C_{10}H_8N_2)_2(C_{16}H_{12}N_4O)](BF_4)_2\cdot 3CH_2Cl_2$, crystallizes with one complex dication, two BF₄⁻ counter-anions and three dichloromethane solvent molecules in the asymmetric unit. The central Ru^{II} atom adopts a distorted octahedral coordination sphere with two 2,2'-bipyridine (bpy) and one quinoline-2-carbaldehyde (pyridine-2-carbonyl)hydrazone (HL) ligand. The hydrazone ligand has a Z form and coordinates to the Ru^{II} atom *via* the amide-O and imine-N atoms, affording a planar five-membered chelate ring, while its pyridine-N and quinoline-N donor atoms in the substituents are noncoordinating. The hydrazone N—H group forms an intramolecular hydrogen bond with the quinoline-N atom. In the crystal, the quinoline moiety of HL shows the shortest π - π stacking interaction with the pyridine substituent of HL in a neighbouring complex, the centroid-to-centroid distance being 3.793 (3) Å.

1. Chemical context

Aroylhydrazones, ArC(O)NHN=CHR, are easily prepared by the reaction of an aroylhydrazine $[ArC(O)NHNH_2]$ with an aldehvde (RCHO), and they can coordinate to a metal atom via the amide-O and imine-N atoms (Bernhardt et al., 2007; Raveendran & Pal, 2005, 2006). These hydrazones are often obtained as a mixture of E and Z isomers (Su & Aprahamian, 2014), and both isomers are generally weak acids. However, when they coordinate to a metal ion through the imine-N atom, their acidity becomes higher (Chang et al., 2010), and the deprotonated hydrazonato complexes are often isolated (Nonovama, 1974). For example, the reaction of cis- $[RuCl_2(bpy)_2]$ (bpy is 2,2'-bipyridine) and a series of aroylhydrazones in the presence of triethylamine afforded the cationic complexes $[Ru^{II}(bpy)_2(hydrazonato)](ClO_4 \text{ or } PF_6),$ which were unambiguously characterized by X-ray analysis (Duan et al., 1998; Ghosh et al., 2014).

In the current study we utilized a 2-picolinoylhydrazone ($Ar = 2-C_5H_4N$) with a 2-quinolyl substituent on the imine-C atom ($R = 2-C_9H_6N$). This compound (HL) has several possible coordination modes because of the additional pyridine and quinoline ligating groups. In a previous study we investigated the reaction products from [RuCl₂(PPh₃)₃] and (an E/Z mixture of) HL under several reaction conditions, and characterized three geometrical isomers of [RuCl₂(PPh₃)₂{HL- $\kappa O(\text{amide}),\kappa N(\text{imine})}]$ as well as a linkage isomer of *trans*(P)-[RuCl₂(PPh₃)₂{HL- $\kappa N(\text{imine})}]$ (Mori *et al.*, 2014). Here, we have examined the reaction of the Z isomer of

CrossMark

HL and an $Ru^{II}(bpy)_2$ precursor prepared from *cis*-[RuCl₂(bpy)₂] and AgBF₄ (2 eq.) in ethanol. The resulting orange product had the composition $Ru(bpy)_2(HL)(BF_4)_2$, indicating the formation of an Ru^{II} complex with a neutral hydrazone ligand, in contrast to the previous examples of [$Ru^{II}(bpy)_2(hydrazonato)$](ClO₄ or PF₆). Therefore, in order to determine the molecular and crystal structure of the present product, an orange prismatic crystal of the title compound, (I), [$Ru(C_{10}H_8N_2)_2(C_{16}H_{12}N_4O)$](BF₄)₂·3CH₂Cl₂, was analysed by X-ray diffraction.

2. Structural commentary

The asymmetric unit of compound (I) contains one complex dication (Fig. 1), two BF_4^- counter-anions and three dichloromethane solvent molecules. In the cationic complex, the neutral hydrazone is present as its Z isomer and coordinates to the Ru^{II} atom through the amide-O and imine-N atoms, forming a virtually planar five-membered chelate ring [maximum deviation from the least-squares plane = 0.015 (4) Å], as well as two bidentate bpy co-ligands. An intramolecular hydrogen bond between the hydrazone N-H group and the quinoline-N atom is observed (Table 1). The

Figure 1

View of the molecular structure of the cationic complex in the title compound, showing the atom-numbering scheme, with displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms except for the hydrazone N-H group are omitted for clarity.

Table 1Hydrogen-bond geometry (Å, °).

		,		
$D - \mathbf{H} \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
N3-H1···N1	0.76 (6)	1.90 (6)	2.553 (6)	145 (6)

pyridine (py) and quinoline (qn) moieties of HL are noncoordinating, but their mean planes are almost co-planar to the Ru^{II} carboxylic acid hydrazide (CAH: -C(O)NHN=) chelating plane. The dihedral angles between these planes are: py vs CAH = 5.4 (2), qn vs CAH = 3.7 (2) and py vs qn = 2.3 (2)°.

The Ru1–O1(amide) and Ru1–N2(imine) bond lengths in (I) are 2.090 (3) and 2.047 (4) Å, respectively, which are comparable to those in $[Ru(bpy)_2[3-py-C(O)NN=CH-C_6H_4(4-NMe_2)]]ClO_4$ [2.083 (1) and 2.040 (1) Å, respectively; Duan *et al.*, 1998] and $[Ru(bpy)_2[2-C_6H_4(OH)-C(O)NN=CH-2-furyl]]PF_6$ [2.072 (2) and 2.089 (1) Å, respectively; Ghosh *et al.*, 2014]. The bite angle of the hydrazone chelate, O1–Ru–N2, in (I) is 77.8 (1)°, which is also similar to the above-mentioned hydrazonato complexes, 78.0 (1) and 78.6 (1)°, respectively. Thus, the substituent groups on the carbonyl-C and the imine-C atoms of the aroylhydrazones, as well as the protonation (or deprotonation) states of the hydrazone N–H moiety, do not significantly affect the structural parameters of the Ru^{II}–(hydrazone/hydrazonate) coordination bonds.

3. Supramolecular features

In the crystal structure of (I) there are no remarkable hydrogen-bonding interactions between the cationic complex, BF_4^- anions and the solvated dichloromethane molecules. However, each of the planar HL and two bpy ligands in the

View of the crystal packing of the title compound, illustrating three π - π stacking interactions between the complex cations. Colour code: Ru, purple; Cl, green; F, yellow–green; O, red; N, blue; C, black; B, pink; H, grey.

research communications

complex cation shows a π - π stacking interaction with the respective neighbouring complexes (Fig. 2). The quinoline plane (N1/C1-C9) has a stacking interaction with the pyridine plane $(N4^{i}/C12^{i}-C16^{i})$ of HL in a neighbouring complex [symmetry code: (i) -x, -y + 1, -z + 2]; the shortest C···C distance between these rings is $C6 \cdot \cdot \cdot C16^{i} = 3.444$ (8) Å and the centroid-to-centroid distance between the planes C1-C6 and $N4^{i}/C12^{i}$ -C16ⁱ is 3.793 (3) Å. One of the bpy ligands, N5/ C17-C26/N6, is stacked with the same symmetry-related ligand, N5ⁱⁱ/C17ⁱⁱ-C26ⁱⁱ/N6ⁱⁱ, in a neighbouring complex [symmetry code: (ii) -x, -y + 1, -z + 1]; the shortest C···C distance between them is $C20 \cdot \cdot \cdot C25^{i} = 3.373$ (8) Å, and the centroid-to-centroid distance between the N6/C22-C26 and N6ⁱⁱ/C22ⁱⁱ–C26ⁱⁱ planes is 3.864 (3) Å. For the other bpy ligand, N7/C27-C36/N8, a similar interaction is observed, and the shortest C···C distance between them is $C32 \cdot \cdot \cdot C35^{iii} =$ 3.509 (8) Å and the centroid-to-centroid distance between planes N8/C32-C36 and N8ⁱⁱⁱ/C32ⁱⁱⁱ-C36ⁱⁱⁱ is 3.918 (3) Å [symmetry code: (iii) -x, -y, -z + 1]. Considering these stacking interactions, the complex cations are arranged in a three-dimensional extended structure in the crystal.

4. Database survey

Four geometrical and linkage isomers of $[RuCl_2(PPh_3)_2(HL)]$ with the same picolinoylhydrazone ligand, HL, have been reported previously (Mori *et al.*, 2014). There is no record of any $[Ru^{II}(bpy)_2(carbonylhydrazone)]^{2+}$ complexes with its protonated (neutral) hydrazone form in the CSD database (Version 5.35, last update May 2014; Groom & Allen, 2014). The deprotonated (anionic) hydrazonate analogues, $[Ru(bpy)_2[3-py-C(O)NN=CHC_6H_4(4-NMe_2)]]ClO_4$ (Duan *et al.*, 1998) and $[Ru(bpy)_2[2-C_6H_4(OH)-C(O)NN=CH-2-fur$ $yl]]PF_6 as well as the thiophene analogue have been reported$ (Ghosh*et al.*, 2014). The structurally related compound $<math>[Ru^{II}(bpy)_2[C_6H_5C(O)NNC_6H_5]]PF_6$ with a monoanionic (radical) ligand has also been reported (Ehret *et al.*, 2012).

5. Synthesis and crystallization

All reagents and solvents were commercially available and used without further purification. The starting ruthenium(II) complex, cis-[RuCl₂(bpy)₂]·2H₂O (Sullivan et al., 1978), and hydrazone ligand, Z-HL (Mori et al., 2014), were prepared according to literature procedures. A mixture of cis- $[RuCl_2(bpy)_2]$ ·2H₂O (618 mg, 1.19 mmol) and AgBF₄ (463 mg, 2.38 mmol) in ethanol (80 ml) was stirred in the dark at room temperature overnight. The resulting white precipitate (AgCl) was filtered off, and Z-HL (328 mg, 1.19 mmol) was added to the filtrate. The mixture was heated to reflux for 9 h and then cooled to room temperature. The solution was concentrated to ca. 10 ml under reduced pressure, and the resulting microcrystalline powder was collected by filtration and dried in air. Yield: 869 mg (81%). Analysis calculated for C₃₆H₂₈B₂F₈N₈ORu·2H₂O: C 48.08, H 3.59, N 12.46%. Found: C 48.11, H 3.42, N 12.18%. Orange prismatic crystals of (I)

Experimental details.	
Crystal data	
Chemical formula	$[Ru(C_{10}H_8N_2)_2(C_{16}H_{12}N_2)](BF_4)_2 - 3CH_2Cl_2$
M _r	1118.13
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	192
a, b, c (Å)	11.0165 (12), 13.2508 (15), 16.4285 (19)
α, β, γ (°)	77.812 (4), 76.924 (4), 88.367 (4)
$V(\dot{A}^3)$	2282.9 (4)
Z	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.77
Crystal size (mm)	$0.40 \times 0.30 \times 0.25$
Data collection	
Diffractometer	Rigaku R-AXIS RAPID
Absorption correction	Numerical (<i>NUMABS</i> ; Rigaku, 1999)
T_{\min}, T_{\max}	0.658, 0.825
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	22472, 10378, 8147
R _{int}	0.076
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.649
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.069, 0.208, 1.04
No. of reflections	10378
No. of parameters	589
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e} { m \AA}^{-3})$	1.49, -1.02

Computer programs: *RAPID-AUTO* (Rigaku, 2006), *CrystalStructure* (Rigaku, 2010), *SIR2004* (Burla *et al.*, 2005), *SHELXL2013* (Sheldrick, 2008) and *ORTEP-3 for Windows* (Farrugia, 2012).

suitable for X-ray analysis were obtained by diffusion of layered hexane into a dichloromethane solution.

6. Refinement

Table 0

Crystal data, data collection and structure refinement details are summarized in Table 2. The position of the hydrazone (N-)H atom was located in a difference Fourier map and refined with $U_{\rm iso} = 1.2U_{\rm eq}(N)$. All other H atoms were refined using a riding model, with C-H = 0.95 (aromatic) or 0.99 (methylene) Å and $U_{\rm iso} = 1.2U_{\rm eq}(C)$.

Acknowledgements

This work was partly supported by a Grant-in-Aid for Scientific Research [Nos. 25410070 (to TS) and 24550076 (to KN)] from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

References

- Bernhardt, P. V., Chin, P., Sharpe, P. C. & Richardson, D. R. (2007). Dalton Trans. pp. 3232–3244.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.

- Chang, M., Horiki, H., Nakajima, K., Kobayashi, A., Chang, H.-C. & Kato, M. (2010). *Bull. Chem. Soc. Jpn*, **83**, 905–910.
- Duan, C.-Y., Lu, Z.-L., Wu, D.-B. & You, X.-Z. (1998). Transition Met. Chem. 23, 631–634.
- Ehret, F., Bubrin, M., Hübner, R., Schweinfurth, D., Hartenbach, I., Záliš, S. & Kaim, W. (2012). *Inorg. Chem.* **51**, 6237–6244.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Ghosh, B., Naskar, S., Naskar, S., Espinosa, A., Hau, S. C. K., Mak, T. C. W., Sekiya, R., Kuroda, R. & Chattopadhyay, S. K. (2014). *Polyhedron*, **72**, 115–121.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.

- Mori, A., Suzuki, T., Sunatsuki, Y., Kobayashi, A., Kato, M. & Nakajima, K. (2014). Eur. J. Inorg. Chem. pp. 186–197.
- Nonoyama, M. (1974). Inorg. Chim. Acta, 10, 133-137.
- Raveendran, R. & Pal, S. (2005). Polyhedron, 24, 57-63.
- Raveendran, R. & Pal, S. (2006). Inorg. Chim. Acta, 359, 3212-3220.
- Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Su, X. & Aprahamian, I. (2014). Chem. Soc. Rev. 43, 1963-1981.
- Sullivan, B. P., Salmon, D. J. & Meyer, T. J. (1978). *Inorg. Chem.* 17, 3334–3341.

supporting information

Acta Cryst. (2015). E71, 142-145 [doi:10.1107/S2056989015000122]

Crystal structure of bis(2,2'-bipyridine)[N'-(quinolin-2-ylmethylidene)pyridine-2-carbohydrazide]ruthenium(II) bis(tetrafluoridoborate) dichloromethane trisolvate

Asami Mori, Takayoshi Suzuki and Kiyohiko Nakajima

Computing details

Data collection: *RAPID-AUTO* (Rigaku, 2006); cell refinement: *RAPID-AUTO* (Rigaku, 2006); data reduction: *CrystalStructure* (Rigaku, 2010); program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *SHELXL2013* (Sheldrick, 2008).

Bis(2,2'-bipyridine)[N'-(quinolin-2-ylmethylidene)pyridine-\ 2-carbohydrazide]ruthenium(II) bis(tetrafluoridoborate) dichloromethane trisolvate

Crystal data	
$[Ru(C_{10}H_8N_2)_2(C_{16}H_{12}N_2)](BF_4)_2 \cdot 3CH_2Cl_2$ $M_r = 1118.13$ Triclinic, $P\overline{1}$ a = 11.0165 (12) Å b = 13.2508 (15) Å c = 16.4285 (19) Å $a = 77.812 (4)^{\circ}$ $\beta = 76.924 (4)^{\circ}$ $\gamma = 88.367 (4)^{\circ}$ $V = 2282.9 (4) \text{ Å}^3$	Z = 2 F(000) = 1120 $D_x = 1.627 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71075 \text{ Å}$ Cell parameters from 15690 reflections $\theta = 3.0-27.6^{\circ}$ $\mu = 0.77 \text{ mm}^{-1}$ T = 192 K Prism, orange $0.40 \times 0.30 \times 0.25 \text{ mm}$
Data collection	
Rigaku R-AXIS RAPID diffractometer Detector resolution: 10.000 pixels mm ⁻¹ ω scans Absorption correction: numerical (<i>NUMABS</i> ; Rigaku, 1999) $T_{min} = 0.658, T_{max} = 0.825$ 22472 measured reflections	10378 independent reflections 8147 reflections with $I > 2\sigma(I)$ $R_{int} = 0.076$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 3.0^{\circ}$ $h = -14 \rightarrow 13$ $k = -16 \rightarrow 17$ $l = -21 \rightarrow 21$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.069$ $wR(F^2) = 0.208$	 589 parameters 0 restraints Primary atom site location: structure-invariant direct methods
S = 1.04	Secondary atom site location: difference Fourier

map

10378 reflections

Hydrogen site location: inferred from	$w = 1/[\sigma^2(F_o^2) + (0.1064P)^2 + 2.2063P]$
neighbouring sites	where $P = (F_o^2 + 2F_c^2)/3$
H atoms treated by a mixture of independent	$(\Delta/\sigma)_{\rm max} = 0.001$
and constrained refinement	$\Delta \rho_{\rm max} = 1.49 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -1.02 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. ¹H NMR (600 MHz, 22 °C, CD₃CN): $\delta = 9.08$ (d, J = 4.5 Hz, 1H), 8.84 (d, J = 5.6 Hz, 1H), 8.61 (d, J = 5.6 Hz, 1H), 8.58 (d, J = 8.2 Hz, 2H), 8.56 (d, J = 8.7 Hz, 1H), 8.52 (d, J = 8.1 Hz, 1H), 8.48 (d, J = 7.8 Hz, 1H), 8.48 (d, J = 7.8 Hz, 1H), 8.48 (d, J = 7.8 Hz, 1H), 8.49 (td, J = 5.4, 7.6 Hz, 2H), 8.13 (d, J = 7.8 Hz, 1H), 8.08–8.04 (m, 4H), 8.01 (td, J = 5.3, 1.3 Hz, 1H), 7.83 (t, J = 7.6 Hz, 1H), 7.79–7.77 (m, 2H), 7.74 (d, J = 6.4 Hz, 1H), 7.65 (ddd, J = 5.0, 3.9, 1.4 Hz, 1H), 7.60 (ddd, J = 5.0, 3.9, 1.4 Hz, 1H), 7.58 (d, J = 8.7 Hz, 1H), 7.46 (s, azomethine-H, 1H), 7.39 (ddd, J = 5.0, 4.0, 1.3 Hz, 1H), 7.33 (ddd, J = 4.5, 3.9, 1.5 Hz, 1H) p.p.m. UV-vis (in CH₃CN) { $\lambda_{max}/mm (\varepsilon_{max} M^{-1} cm^{-1})$ }: 488 (16600), 332 (18000), 287 (62200), 237 (36700). Cyclic voltammetry (CH₃CN with 0.1 M Bu₄NClO₄) { $E_{1/2}/V$ vs. Fc⁺/Fc ($\Delta E/mV$) assignment}: 0.79 (80) Ru^{III}/Ru^{II}, -1.04 (72) bpy/bpy⁻, -1.64 (69) bpy/bpy⁻.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Ru1	0.13367 (3)	0.24405 (3)	0.60979 (2)	0.03128 (14)
C11	0.3771 (2)	0.4243 (2)	0.9729 (2)	0.1164 (9)
C12	0.4195 (2)	0.28556 (19)	0.85446 (17)	0.1000 (7)
C13	-0.0761 (3)	0.5854 (4)	0.8926 (3)	0.1842 (19)
Cl4	0.1269 (3)	0.4703 (3)	0.8292 (2)	0.1411 (12)
C15	0.3573 (4)	0.3917 (3)	0.2711 (2)	0.1552 (15)
C16	0.3391 (3)	0.2153 (3)	0.1932 (3)	0.1427 (12)
F1	0.5184 (4)	0.2510 (4)	0.6277 (3)	0.0938 (14)
F2	0.6920 (4)	0.2642 (3)	0.6752 (3)	0.0857 (13)
F3	0.6154 (4)	0.1074 (3)	0.6818 (3)	0.0758 (11)
F4	0.7026 (4)	0.2090 (3)	0.5556 (2)	0.0735 (10)
F5	0.7015 (4)	0.2350 (3)	0.1999 (3)	0.0807 (12)
F6	0.7975 (6)	0.2465 (3)	0.3049 (3)	0.0990 (16)
F7	0.7015 (3)	0.0997 (3)	0.3094 (2)	0.0667 (9)
F8	0.8746 (4)	0.1479 (5)	0.2093 (3)	0.1044 (17)
O1	-0.0113 (3)	0.2934 (2)	0.69791 (18)	0.0355 (6)
N1	0.1994 (4)	0.0784 (3)	0.8936 (2)	0.0405 (9)
N2	0.1737 (4)	0.1702 (3)	0.7231 (2)	0.0346 (8)
N3	0.0834 (4)	0.1913 (3)	0.7909 (2)	0.0391 (9)
N4	-0.0749 (4)	0.2339 (3)	0.9244 (3)	0.0455 (9)
N5	0.2334 (3)	0.3775 (3)	0.5961 (2)	0.0339 (8)
N6	0.0848 (3)	0.3335 (3)	0.5041 (2)	0.0334 (7)
N7	0.2688 (3)	0.1771 (3)	0.5329 (2)	0.0341 (8)
N8	0.0439 (3)	0.1104 (3)	0.6106 (2)	0.0317 (7)
C1	0.2168 (5)	0.0357 (4)	0.9730 (3)	0.0412 (10)
C2	0.1309 (5)	0.0572 (4)	1.0445 (3)	0.0499 (12)
H2	0.0612	0.0990	1.0369	0.060*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C3	0.1478 (6)	0.0181 (5)	1.1250 (3)	0.0555 (14)
H3	0.0900	0.0328	1.1733	0.067*
C4	0.2513 (6)	-0.0441 (5)	1.1362 (3)	0.0542 (13)
H4	0.2632	-0.0701	1.1923	0.065*
C5	0.3334 (5)	-0.0673 (4)	1.0690 (3)	0.0464 (11)
Н5	0.4007	-0.1114	1.0783	0.056*
C6	0.3207 (5)	-0.0268 (4)	0.9845 (3)	0.0419 (10)
C7	0.4028 (5)	-0.0460 (4)	0.9110 (3)	0.0445 (11)
H7	0.4717	-0.0896	0.9164	0.053*
C8	0.3847 (5)	-0.0026 (4)	0.8321 (3)	0.0420 (10)
H8	0.4413	-0.0143	0.7822	0.050*
C9	0.2804 (4)	0.0601 (4)	0.8257 (3)	0.0380 (9)
C10	0.2615 (4)	0.1096 (3)	0.7413 (3)	0.0363 (9)
H10	0.3216	0.0952	0.6939	0.044*
C11	-0.0066 (4)	0.2541 (4)	0.7732 (3)	0.0362 (9)
C12	-0.0996 (4)	0.2757 (4)	0.8476 (3)	0.0383 (10)
C13	-0.2028 (5)	0.3326 (4)	0.8370 (3)	0.0449 (11)
H13	-0.2171	0.3587	0.7815	0.054*
C14	-0.2851 (5)	0.3510 (5)	0.9086 (4)	0.0523 (12)
H14	-0.3570	0.3911	0.9039	0.063*
C15	-0.2605 (5)	0.3099 (5)	0.9873 (4)	0.0546 (13)
H15	-0.3157	0.3214	1.0378	0.066*
C16	-0.1564 (5)	0.2522 (4)	0.9926 (3)	0.0508 (12)
H16	-0.1416	0.2240	1.0476	0.061*
C17	0.3043 (5)	0.3965 (4)	0.6477 (3)	0.0462 (11)
H17	0.3087	0.3453	0.6970	0.055*
C18	0.3708 (6)	0.4873 (5)	0.6321 (4)	0.0636 (16)
H18	0.4204	0.4983	0.6699	0.076*
C19	0.3650 (6)	0.5618 (5)	0.5616 (4)	0.0606 (15)
H19	0.4093	0.6255	0.5506	0.073*
C20	0.2942 (5)	0.5436 (4)	0.5065 (4)	0.0505 (12)
H20	0.2909	0.5940	0.4565	0.061*
C21	0.2283 (4)	0.4512 (4)	0.5250 (3)	0.0383 (9)
C22	0.1449 (4)	0.4264 (3)	0.4740 (3)	0.0364 (9)
C23	0.1209 (5)	0.4921 (4)	0.4014 (3)	0.0464 (11)
H23	0.1620	0.5577	0.3810	0.056*
C24	0.0392 (5)	0.4629 (4)	0.3597 (3)	0.0494 (12)
H24	0.0254	0.5066	0.3089	0.059*
C25	-0.0240(5)	0.3690 (4)	0.3916 (3)	0.0472 (12)
H25	-0.0830	0.3478	0.3641	0.057*
C26	0.0011 (5)	0.3071 (4)	0.4642 (3)	0.0405 (10)
H26	-0.0428	0.2430	0.4870	0.049*
C27	0.3784 (4)	0.2201 (4)	0.4883 (3)	0.0418 (10)
H27	0.3987	0.2876	0.4929	0.050*
C28	0.4621 (5)	0.1703 (4)	0.4364 (4)	0.0495 (12)
H28	0.5392	0.2032	0.4054	0.059*
C29	0.4349 (5)	0.0727 (4)	0.4290 (3)	0.0464 (11)
H29	0.4916	0.0380	0.3919	0.056*

C30	0.3234 (5)	0.0257 (4)	0.4765 (3)	0.0415 (10)	
H30	0.3037	-0.0428	0.4741	0.050*	
C31	0.2414 (4)	0.0790 (3)	0.5273 (3)	0.0329 (9)	
C32	0.1175 (4)	0.0400 (3)	0.5761 (3)	0.0337 (9)	
C33	0.0747 (5)	-0.0597 (4)	0.5847 (3)	0.0415 (10)	
H33	0.1283	-0.1095	0.5622	0.050*	
C34	-0.0470 (5)	-0.0855 (4)	0.6263 (3)	0.0437 (11)	
H34	-0.0774	-0.1542	0.6348	0.052*	
C35	-0.1245 (4)	-0.0112 (4)	0.6554 (3)	0.0410 (10)	
H35	-0.2102	-0.0267	0.6805	0.049*	
C36	-0.0763 (4)	0.0853 (4)	0.6478 (3)	0.0370 (9)	
H36	-0.1293	0.1360	0.6693	0.044*	
C37	0.3274 (11)	0.3094 (8)	0.9504 (7)	0.106 (3)	
H37A	0.3329	0.2505	0.9978	0.127*	
H37B	0.2392	0.3155	0.9460	0.127*	
C38	0.0773 (10)	0.5757 (8)	0.8701 (6)	0.104 (3)	
H38A	0.1078	0.5725	0.9228	0.125*	
H38B	0.1143	0.6386	0.8284	0.125*	
C39	0.4343 (9)	0.3132 (9)	0.2089 (7)	0.115 (3)	
H39A	0.5017	0.2796	0.2351	0.138*	
H39B	0.4738	0.3558	0.1524	0.138*	
B1	0.6282 (6)	0.2076 (5)	0.6370 (4)	0.0492 (13)	
B2	0.7686 (6)	0.1829 (5)	0.2559 (4)	0.0522 (14)	
H1	0.093 (5)	0.165 (4)	0.835 (4)	0.043*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ru1	0.0285 (2)	0.0341 (2)	0.03044 (19)	-0.00236 (14)	-0.00396 (14)	-0.00737 (14)
C11	0.0815 (15)	0.1179 (19)	0.158 (2)	-0.0026 (13)	-0.0007 (15)	-0.0754 (18)
Cl2	0.1014 (16)	0.0982 (15)	0.1238 (18)	0.0138 (13)	-0.0511 (15)	-0.0491 (13)
C13	0.098 (2)	0.242 (5)	0.222 (5)	0.018 (3)	-0.008 (3)	-0.103 (4)
Cl4	0.144 (3)	0.151 (3)	0.171 (3)	0.030 (2)	-0.078(2)	-0.087 (2)
C15	0.161 (3)	0.189 (3)	0.132 (2)	0.082 (3)	-0.038 (2)	-0.073 (2)
C16	0.128 (2)	0.119 (2)	0.162 (3)	-0.0202 (19)	-0.008(2)	-0.010 (2)
F1	0.058 (2)	0.112 (4)	0.116 (4)	0.025 (2)	-0.033 (3)	-0.021 (3)
F2	0.095 (3)	0.091 (3)	0.088 (3)	-0.012 (2)	-0.041 (3)	-0.034 (2)
F3	0.078 (3)	0.057 (2)	0.073 (2)	-0.0024 (19)	0.007 (2)	0.0039 (18)
F4	0.089 (3)	0.057 (2)	0.062 (2)	-0.0085 (19)	0.0078 (19)	-0.0097 (16)
F5	0.083 (3)	0.091 (3)	0.073 (2)	0.005 (2)	-0.037 (2)	-0.007 (2)
F6	0.151 (5)	0.073 (3)	0.086 (3)	-0.035 (3)	-0.056 (3)	-0.010 (2)
F7	0.063 (2)	0.070 (2)	0.059 (2)	-0.0186 (18)	0.0040 (17)	-0.0126 (17)
F8	0.053 (2)	0.157 (5)	0.080 (3)	0.013 (3)	0.012 (2)	-0.005 (3)
01	0.0318 (15)	0.0429 (17)	0.0311 (14)	-0.0014 (13)	-0.0034 (12)	-0.0099 (12)
N1	0.036 (2)	0.049 (2)	0.0353 (18)	0.0017 (17)	-0.0058 (16)	-0.0083 (16)
N2	0.0312 (18)	0.039 (2)	0.0313 (17)	-0.0015 (15)	-0.0015 (15)	-0.0081 (15)
N3	0.036 (2)	0.048 (2)	0.0317 (18)	0.0078 (17)	-0.0050 (16)	-0.0075 (17)
N4	0.045 (2)	0.052 (2)	0.039 (2)	0.0017 (19)	-0.0054 (18)	-0.0112 (18)

				/	/	
N5	0.0287 (18)	0.0363 (19)	0.0356 (18)	0.0000 (15)	-0.0026 (15)	-0.0098 (15)
N6	0.0325 (19)	0.0349 (19)	0.0321 (17)	-0.0021 (15)	-0.0044 (15)	-0.0081 (14)
N7	0.0290 (18)	0.040 (2)	0.0335 (17)	-0.0039 (15)	-0.0030 (15)	-0.0107 (15)
N8	0.0304 (18)	0.0337 (18)	0.0292 (16)	0.0000 (14)	-0.0049 (14)	-0.0042 (14)
C1	0.038 (2)	0.043 (3)	0.039 (2)	-0.003 (2)	-0.008 (2)	-0.0024 (19)
C2	0.045 (3)	0.059 (3)	0.040 (2)	0.003 (2)	-0.005 (2)	-0.005 (2)
C3	0.055 (3)	0.068 (4)	0.040 (3)	-0.002 (3)	-0.006 (2)	-0.009 (2)
C4	0.055 (3)	0.069 (4)	0.036 (2)	-0.008 (3)	-0.015 (2)	0.001 (2)
C5	0.046 (3)	0.049 (3)	0.045 (3)	-0.003 (2)	-0.019 (2)	-0.002 (2)
C6	0.037 (2)	0.045 (3)	0.044 (2)	-0.007 (2)	-0.012 (2)	-0.004 (2)
C7	0.037 (2)	0.046 (3)	0.052 (3)	0.003 (2)	-0.014 (2)	-0.009 (2)
C8	0.037 (2)	0.048 (3)	0.039 (2)	0.001 (2)	-0.006 (2)	-0.009 (2)
C9	0.035 (2)	0.039 (2)	0.038 (2)	-0.0033 (19)	-0.0049 (19)	-0.0068 (18)
C10	0.030(2)	0.041 (2)	0.036 (2)	-0.0007 (18)	-0.0043 (18)	-0.0088 (18)
C11	0.032 (2)	0.039 (2)	0.037 (2)	-0.0015 (18)	-0.0025 (18)	-0.0122 (18)
C12	0.034 (2)	0.043 (2)	0.037 (2)	-0.0055 (19)	-0.0028 (19)	-0.0114 (19)
C13	0.038 (3)	0.050 (3)	0.044 (2)	0.005 (2)	-0.004 (2)	-0.009 (2)
C14	0.042 (3)	0.061 (3)	0.053 (3)	0.008 (2)	-0.004 (2)	-0.018 (3)
C15	0.047 (3)	0.064 (3)	0.049 (3)	0.003 (3)	0.005 (2)	-0.021 (3)
C16	0.053 (3)	0.061 (3)	0.036 (2)	-0.002 (3)	-0.003 (2)	-0.014 (2)
C17	0.042 (3)	0.050 (3)	0.049 (3)	-0.004 (2)	-0.011 (2)	-0.014 (2)
C18	0.056 (3)	0.066 (4)	0.079 (4)	-0.017 (3)	-0.023 (3)	-0.025 (3)
C19	0.052 (3)	0.052 (3)	0.079 (4)	-0.019(3)	-0.012(3)	-0.016 (3)
C20	0.041 (3)	0.044 (3)	0.060 (3)	-0.010(2)	-0.003(2)	-0.003(2)
C21	0.031 (2)	0.038 (2)	0.043 (2)	-0.0027 (18)	-0.0013 (19)	-0.0098 (19)
C22	0.033 (2)	0.036 (2)	0.036 (2)	0.0003 (18)	0.0014 (18)	-0.0081 (18)
C23	0.055 (3)	0.038 (2)	0.041 (2)	-0.002(2)	-0.003(2)	-0.0031 (19)
C24	0.055 (3)	0.046 (3)	0.043 (3)	0.005 (2)	-0.011(2)	-0.002(2)
C25	0.051 (3)	0.050 (3)	0.047 (3)	0.005 (2)	-0.020(2)	-0.014(2)
C26	0.041 (3)	0.041 (2)	0.040 (2)	-0.002(2)	-0.010(2)	-0.0094 (19)
C27	0.030 (2)	0.048 (3)	0.046 (2)	-0.006(2)	-0.0010(19)	-0.013(2)
C28	0.032 (2)	0.058 (3)	0.055 (3)	-0.007(2)	0.002 (2)	-0.016 (2)
C29	0.036 (2)	0.058 (3)	0.047 (3)	0.003 (2)	-0.002(2)	-0.023(2)
C30	0.038 (2)	0.044 (3)	0.045 (2)	0.001 (2)	-0.009(2)	-0.015(2)
C31	0.032 (2)	0.036 (2)	0.033 (2)	0.0001 (17)	-0.0099(17)	-0.0092(17)
C32	0.032 (2)	0.035 (2)	0.034 (2)	-0.0029(18)	-0.0084 (17)	-0.0051 (16)
C33	0.042(3)	0.040(2)	0.044(2)	0.000 (2)	-0.009(2)	-0.0115(19)
C34	0.045(3)	0.038(2)	0.045 (2)	-0.011(2)	-0.007(2)	-0.0057(19)
C35	0.033(2)	0.046(3)	0.041(2)	-0.009(2)	-0.0024(19)	-0.006(2)
C36	0.030(2)	0.043(2)	0.035(2)	-0.0026(19)	-0.0031(18)	-0.0073(18)
C37	0.111 (8)	0.100(7)	0.106 (7)	-0.020(6)	-0.017 (6)	-0.026(5)
C38	0.105 (7)	0.101 (6)	0.095 (6)	-0.039(6)	0.006 (5)	-0.022(5)
C39	0.070 (6)	0.151 (9)	0.121 (8)	0.012 (6)	0.004 (5)	-0.051(7)
B1	0.043(3)	0.054 (3)	0.050(3)	-0.003(3)	-0.009(3)	-0.011(3)
B2	0.045(3)	0.059 (4)	0.050(3)	-0.004(3)	-0.011(3)	-0.008(3)
				0.001(0)	0.011 (0)	0.000 (3)

Geometric parameters (Å, °)

Ru1—N7	2.036 (4)	C9—C10	1.461 (6)
Ru1—N2	2.047 (4)	C10—H10	0.9500
Ru1—N8	2.049 (4)	C11—C12	1.480 (6)
Ru1—N5	2.054 (4)	C12—C13	1.370 (7)
Ru1—N6	2.056 (4)	C13—C14	1.376 (7)
Ru1—O1	2.090 (3)	C13—H13	0.9500
Cl1—C37	1.770 (9)	C14—C15	1.377 (8)
Cl2—C37	1.755 (10)	C14—H14	0.9500
Cl3—C38	1.654 (11)	C15—C16	1.369 (8)
Cl4—C38	1.700 (10)	C15—H15	0.9500
Cl5—C39	1.688 (10)	C16—H16	0.9500
Cl6—C39	1.786 (11)	C17—C18	1.374 (8)
F1—B1	1.351 (8)	C17—H17	0.9500
F2—B1	1.371 (7)	C18—C19	1.365 (9)
F3—B1	1.369 (8)	C18—H18	0.9500
F4—B1	1.399 (7)	C19—C20	1.382 (8)
F5—B2	1.372 (7)	C19—H19	0.9500
F6—B2	1.371 (8)	C20—C21	1.383 (7)
F7—B2	1.370 (7)	C20—H20	0.9500
F8—B2	1.370 (8)	C21—C22	1.460 (6)
01—C11	1.248 (5)	C22—C23	1.394 (7)
N1—C9	1.322 (6)	C23—C24	1.358 (8)
N1-C1	1.362 (6)	C23—H23	0.9500
N2-C10	1.287 (6)	C24—C25	1.385 (8)
N2—N3	1.386 (5)	C24—H24	0.9500
N3—C11	1.321 (6)	C25—C26	1.377 (7)
N3—H1	0.76 (6)	C25—H25	0.9500
N4—C16	1.330 (7)	C26—H26	0.9500
N4—C12	1.350 (6)	C27—C28	1.364 (7)
N5-C17	1.338 (6)	C27—H27	0.9500
N5-C21	1.367 (6)	C28—C29	1.373 (7)
N6-C26	1.337 (6)	C28—H28	0.9500
N6-C22	1.356 (6)	C29—C30	1.382 (7)
N7—C27	1.335 (6)	C29—H29	0.9500
N7—C31	1.368 (5)	C30—C31	1.372 (6)
N8—C36	1.345 (6)	C30—H30	0.9500
N8—C32	1.351 (6)	C31—C32	1.464 (6)
C1—C2	1.407 (7)	C32—C33	1.383 (6)
C1—C6	1.417 (7)	C33—C34	1.376 (7)
С2—С3	1.367 (7)	С33—Н33	0.9500
С2—Н2	0.9500	C34—C35	1.375 (7)
C3—C4	1.412 (8)	C34—H34	0.9500
С3—Н3	0.9500	C35—C36	1.368 (6)
C4—C5	1.344 (8)	С35—Н35	0.9500
C4—H4	0.9500	С36—Н36	0.9500
C5—C6	1.416 (6)	С37—Н37А	0.9900

С5—Н5	0.9500	С37—Н37В	0.9900
C6—C7	1.400 (7)	C38—H38A	0.9900
С7—С8	1.359 (7)	C38—H38B	0.9900
С7—Н7	0.9500	С39—Н39А	0.9900
C8—C9	1.409 (7)	С39—Н39В	0.9900
С8—Н8	0.9500		
N7—Ru1—N2	96.41 (15)	C19—C18—C17	119.4 (5)
N7—Ru1—N8	79.11 (14)	C19—C18—H18	120.3
N2—Ru1—N8	87.08 (14)	C17—C18—H18	120.3
N7—Ru1—N5	95.80 (14)	C18—C19—C20	119.4 (5)
N2—Ru1—N5	96.69 (14)	C18—C19—H19	120.3
N8—Ru1—N5	174.01 (13)	С20—С19—Н19	120.3
N7—Ru1—N6	90.26 (15)	C19—C20—C21	119.2 (5)
N2—Ru1—N6	172.50 (14)	C19—C20—H20	120.4
N8—Ru1—N6	97.59 (14)	C21—C20—H20	120.4
N5—Ru1—N6	79.15 (14)	N5—C21—C20	121.0 (4)
N7—Ru1—O1	172.56 (13)	N5—C21—C22	115.1 (4)
N2—Ru1—O1	78.77 (13)	C20—C21—C22	123.8 (5)
N8—Ru1—O1	94.89 (13)	N6—C22—C23	120.0 (4)
N5—Ru1—O1	90.42 (13)	N6-C22-C21	115.2 (4)
N6—Ru1—O1	94.92 (13)	C23—C22—C21	124.8 (4)
C11—O1—Ru1	111.9 (3)	C24—C23—C22	120.3 (5)
C9—N1—C1	119.3 (4)	С24—С23—Н23	119.9
C10—N2—N3	117.3 (4)	С22—С23—Н23	119.9
C10—N2—Ru1	132.9 (3)	C23—C24—C25	119.6 (5)
N3—N2—Ru1	109.9 (3)	C23—C24—H24	120.2
C11—N3—N2	117.9 (4)	C25—C24—H24	120.2
C11—N3—H1	128 (4)	C26—C25—C24	118.2 (5)
N2—N3—H1	114 (4)	C26—C25—H25	120.9
C16—N4—C12	116.4 (5)	C24—C25—H25	120.9
C17—N5—C21	118.5 (4)	N6-C26-C25	122.7 (5)
C17—N5—Ru1	126.5 (3)	N6—C26—H26	118.6
C21—N5—Ru1	114.9 (3)	С25—С26—Н26	118.6
C26—N6—C22	119.2 (4)	N7—C27—C28	122.1 (4)
C26—N6—Ru1	125.6 (3)	N7—C27—H27	118.9
C22—N6—Ru1	115.2 (3)	С28—С27—Н27	118.9
C27—N7—C31	118.5 (4)	C27—C28—C29	119.9 (5)
C27—N7—Ru1	126.1 (3)	С27—С28—Н28	120.0
C31—N7—Ru1	115.3 (3)	C29—C28—H28	120.0
C36—N8—C32	119.0 (4)	C28—C29—C30	118.8 (5)
C36—N8—Ru1	125.9 (3)	С28—С29—Н29	120.6
C32—N8—Ru1	114.9 (3)	С30—С29—Н29	120.6
N1—C1—C2	118.6 (5)	C31—C30—C29	119.3 (4)
N1—C1—C6	121.4 (4)	C31—C30—H30	120.4
C2—C1—C6	120.0 (4)	С29—С30—Н30	120.4
C3—C2—C1	120.0 (5)	N7—C31—C30	121.3 (4)
С3—С2—Н2	120.0	N7—C31—C32	114.4 (4)

С1—С2—Н2	120.0	C30—C31—C32	124.2 (4)
C2—C3—C4	119.8 (5)	N8—C32—C33	121.2 (4)
С2—С3—Н3	120.1	N8—C32—C31	114.8 (4)
С4—С3—Н3	120.1	C33—C32—C31	124.0 (4)
C5—C4—C3	121.2 (5)	C34—C33—C32	118.9 (5)
C5—C4—H4	119.4	С34—С33—Н33	120.6
C3—C4—H4	119.4	С32—С33—Н33	120.6
C4—C5—C6	120.7 (5)	C35—C34—C33	119.6 (4)
С4—С5—Н5	119.6	С35—С34—Н34	120.2
С6—С5—Н5	119.6	С33—С34—Н34	120.2
C7—C6—C5	124.4 (5)	C36—C35—C34	119.0 (4)
C7—C6—C1	117.5 (4)	С36—С35—Н35	120.5
C5—C6—C1	118.1 (5)	C34—C35—H35	120.5
C8—C7—C6	120.5 (5)	N8-C36-C35	122.0 (4)
C8—C7—H7	119.7	N8—C36—H36	119.0
С6—С7—Н7	119.7	C35—C36—H36	119.0
C7-C8-C9	118 8 (4)	C12 - C37 - C11	111.0 (6)
C7—C8—H8	120.6	C12 - C37 - H37A	109.4
C9-C8-H8	120.6	C11 - C37 - H37A	109.1
N1 - C9 - C8	122.5 (4)	C12 - C37 - H37B	109.4
N1-C9-C10	118 1 (4)	C11 - C37 - H37B	109.4
C8-C9-C10	119.4 (4)	H37A—C37—H37B	108.0
N2-C10-C9	128.1 (4)	Cl3—C38—Cl4	113.1 (6)
N2-C10-H10	115.9	Cl3—C38—H38A	109.0
C9-C10-H10	115.9	Cl4—C38—H38A	109.0
01—C11—N3	121.4 (4)	Cl3—C38—H38B	109.0
01-011-012	122.6 (4)	Cl4—C38—H38B	109.0
N3-C11-C12	116.0 (4)	H38A—C38—H38B	107.8
N4—C12—C13	124.1 (4)	Cl5—C39—Cl6	114.6 (6)
N4—C12—C11	114.9 (4)	C15—C39—H39A	108.6
C13—C12—C11	121.0 (4)	C16—C39—H39A	108.6
C12—C13—C14	118.3 (5)	C15—C39—H39B	108.6
С12—С13—Н13	120.9	C16—C39—H39B	108.6
C14—C13—H13	120.9	H39A—C39—H39B	107.6
C13—C14—C15	118.3 (5)	F1—B1—F3	113.2 (5)
C13—C14—H14	120.9	F1—B1—F2	111.3 (5)
C15—C14—H14	120.9	F3—B1—F2	109.4 (5)
C16—C15—C14	119.9 (5)	F1—B1—F4	108.2 (5)
С16—С15—Н15	120.1	F3—B1—F4	108.2 (5)
C14—C15—H15	120.1	F2—B1—F4	106.3 (5)
N4—C16—C15	123.0 (5)	F8—B2—F7	108.7 (6)
N4—C16—H16	118.5	F8—B2—F6	110.9 (6)
C15—C16—H16	118.5	F7—B2—F6	108.2 (5)
N5—C17—C18	122.5 (5)	F8—B2—F5	108.1 (5)
N5—C17—H17	118.8	F7—B2—F5	110.7 (5)
C18—C17—H17	118.8	F6—B2—F5	110.3 (6)
			~ /
C10—N2—N3—C11	179.3 (4)	C17—N5—C21—C20	-0.2 (7)

Ru1—N2—N3—C11	-1.9 (5)	Ru1—N5—C21—C20	-178.0 (4)
C9—N1—C1—C2	179.0 (5)	C17—N5—C21—C22	-177.6 (4)
C9—N1—C1—C6	0.8 (7)	Ru1—N5—C21—C22	4.7 (5)
N1—C1—C2—C3	-178.0 (5)	C19—C20—C21—N5	-0.8 (8)
C6—C1—C2—C3	0.2 (8)	C19—C20—C21—C22	176.3 (5)
C1—C2—C3—C4	-0.2 (9)	C26—N6—C22—C23	-1.2 (7)
C2—C3—C4—C5	-1.0 (9)	Ru1—N6—C22—C23	178.5 (4)
C3—C4—C5—C6	2.2 (8)	C26—N6—C22—C21	176.1 (4)
C4—C5—C6—C7	179.1 (5)	Ru1—N6—C22—C21	-4.2 (5)
C4—C5—C6—C1	-2.2 (7)	N5-C21-C22-N6	-0.3 (6)
N1—C1—C6—C7	-2.1 (7)	C20-C21-C22-N6	-177.6 (5)
C2-C1-C6-C7	179.8 (5)	N5-C21-C22-C23	176.8 (4)
N1—C1—C6—C5	179.1 (4)	C20—C21—C22—C23	-0.4 (8)
C2-C1-C6-C5	1.0 (7)	N6-C22-C23-C24	-1.2(7)
C5—C6—C7—C8	-178.9 (5)	C21—C22—C23—C24	-178.2 (5)
C1—C6—C7—C8	2.3 (7)	C22—C23—C24—C25	2.5 (8)
C6—C7—C8—C9	-1.4 (7)	C23—C24—C25—C26	-1.5 (8)
C1—N1—C9—C8	0.3 (7)	C22—N6—C26—C25	2.3 (7)
C1—N1—C9—C10	-178.1 (4)	Ru1—N6—C26—C25	-177.4 (4)
C7—C8—C9—N1	0.0 (7)	C24—C25—C26—N6	-0.9 (8)
C7—C8—C9—C10	178.3 (4)	C31—N7—C27—C28	1.3 (7)
N3—N2—C10—C9	-1.0 (7)	Ru1—N7—C27—C28	-178.1 (4)
Ru1—N2—C10—C9	-179.4 (3)	N7—C27—C28—C29	-0.2 (8)
N1-C9-C10-N2	-0.4 (7)	C27—C28—C29—C30	-1.6 (8)
C8—C9—C10—N2	-178.8 (5)	C28—C29—C30—C31	2.3 (7)
Ru1—O1—C11—N3	1.5 (5)	C27—N7—C31—C30	-0.7 (6)
Ru1—O1—C11—C12	-179.3 (3)	Ru1—N7—C31—C30	178.8 (3)
N2—N3—C11—O1	0.3 (7)	C27—N7—C31—C32	-178.0 (4)
N2—N3—C11—C12	-179.0 (4)	Ru1—N7—C31—C32	1.6 (5)
C16—N4—C12—C13	-1.3 (7)	C29—C30—C31—N7	-1.1 (7)
C16—N4—C12—C11	179.7 (4)	C29—C30—C31—C32	175.9 (4)
O1-C11-C12-N4	-174.6 (4)	C36—N8—C32—C33	-5.6 (6)
N3—C11—C12—N4	4.6 (6)	Ru1—N8—C32—C33	169.3 (3)
O1—C11—C12—C13	6.4 (7)	C36—N8—C32—C31	172.1 (4)
N3—C11—C12—C13	-174.4 (5)	Ru1—N8—C32—C31	-12.9 (4)
N4—C12—C13—C14	1.8 (8)	N7—C31—C32—N8	7.5 (5)
C11—C12—C13—C14	-179.3 (5)	C30—C31—C32—N8	-169.7 (4)
C12—C13—C14—C15	-1.0 (8)	N7—C31—C32—C33	-174.8 (4)
C13—C14—C15—C16	-0.1 (9)	C30—C31—C32—C33	8.0 (7)
C12—N4—C16—C15	0.1 (8)	N8—C32—C33—C34	2.7 (7)
C14—C15—C16—N4	0.6 (9)	C31—C32—C33—C34	-174.8 (4)
C21—N5—C17—C18	0.6 (8)	C32—C33—C34—C35	2.4 (7)
Ru1—N5—C17—C18	178.0 (4)	C33—C34—C35—C36	-4.6 (7)
N5-C17-C18-C19	0.2 (9)	C32—N8—C36—C35	3.4 (6)
C17—C18—C19—C20	-1.2 (10)	Ru1—N8—C36—C35	-170.9 (3)
C18—C19—C20—C21	1.5 (9)	C34—C35—C36—N8	1.7 (7)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	D····A	D—H…A
N3—H1…N1	0.76 (6)	1.90 (6)	2.553 (6)	145 (6)