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Abstract

Proteins secreted to the extracellular environment or to the periphery of the cell envelope, the secretome, play essential
roles in foraging, antagonistic and mutualistic interactions. We hypothesize that arms races, genetic conflicts and varying
selective pressures should lead to the rapid change of sequences and gene repertoires of the secretome. The analysis of 42
bacterial pan-genomes shows that secreted, and especially extracellular proteins, are predominantly encoded in the
accessory genome, i.e. among genes not ubiquitous within the clade. Genes encoding outer membrane proteins might
engage more frequently in intra-chromosomal gene conversion because they are more often in multi-genic families. The
gene sequences encoding the secretome evolve faster than the rest of the genome and in particular at non-synonymous
positions. Cell wall proteins in Firmicutes evolve particularly fast when compared with outer membrane proteins of
Proteobacteria. Virulence factors are over-represented in the secretome, notably in outer membrane proteins, but cell
localization explains more of the variance in substitution rates and gene repertoires than sequence homology to known
virulence factors. Accordingly, the repertoires and sequences of the genes encoding the secretome change fast in the clades
of obligatory and facultative pathogens and also in the clades of mutualists and free-living bacteria. Our study shows that
cell localization shapes genome evolution. In agreement with our hypothesis, the repertoires and the sequences of genes
encoding secreted proteins evolve fast. The particularly rapid change of extracellular proteins suggests that these public
goods are key players in bacterial adaptation.
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Introduction

Prokaryotes secrete effector molecules to the environment and

to exposed regions in the cell envelope to change their niche,

scavenge resources and to interact with other organisms. Some of

such functions require the secretion of proteins across the cell

envelope either to the periphery of the cell, the cell wall in

monoderms and the outer membrane in diderms, or to the

extracellular environment. Secreted proteins perform a variety of

important functions. They provide antibiotic resistance [1], protect

against protozoa [2], antagonize bacterial competitors [3], and

mediate mutualistic associations [4]. Importantly, many secreted

proteins have been described as virulence factors allowing

pathogens to evade immune responses and exploit or kill

eukaryotic cells [5,6]. Indeed, most past work in protein secretion

was motivated by the key role of secreted proteins (the secretome)

in pathogenesis.

The very large size of typical bacterial populations compensates

the reduced impact of a single bacterial cell on its environment.

Thus, most of the environmentally relevant bacterial processes are

social [7–9]. This is particularly true for processes involving

secreted proteins, and especially extracellular proteins, because

they are costly public goods. Protein secretion is costly because of

the complexity of secretion systems, the energy required to

translocate effectors and because secreted proteins are lost for the

cell. For example, in Salmonella enterica Typhymurium the

expression of the type 3 secretion system 1 (T3SS-1) was found

to double the generation time [10]. The production of costly

public goods poses social dilemmas because bacteria not partici-

pating in secretion of the public good outcompete the populations

of producers (cooperative bacteria) by reaping the benefits of

cooperation without paying its costs [11]. The disruption of these

social processes may lead to population extinction (tragedy of the

commons) [12,13].

Horizontal transfer of social traits favors the emergence and

the stabilization of cooperative behaviors [14]. First, transfer of

a social trait by mobile genetic elements increases the frequency

of the trait in the population (infectiousness) [11]. Second, social

traits shared in the community by recent transfer show high

genetic relatedness and are thus favored by kin selection [15].

In both cases, the theoretical prediction is that high transfer

rates of social traits promote cooperative behavior. Hence, we

expect genes involved in social interactions, e.g. exposed

proteins, and especially genes encoding public goods, i.e.

extracellular proteins, to be transferred at high rates. This is
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indeed observed in Escherichia coli, where the density of genes

encoding secreted proteins is strongly related to the genetic

mobility of the loci, i.e. the highest density of genes encoding

secreted proteins is found in the regions of the genome that are

gained and lost at higher rates [14]. Genes encoding secreted

proteins might also be frequently lost for two reasons. First,

mobile elements are often lost. Second, intra- and inter-genomic

genetic conflicts are particularly important for social traits [16].

Such conflicts might precipitate their loss. Hence, within all

gene families in a given clade - its pan-genome [17] - we expect

genes encoding secreted proteins to be more frequent in the

accessory genome (genes present in a subset of strains) than in

the core genome (genes ubiquitous in the clade). Many

examples support this expectation: (i) antibiotic resistance via

secretion of b-lactamases is typically spread by mobile elements

[18]; (ii) colicins are generally encoded in plasmids [19]; (iii)

genes encoding secreted proteins are over-represented in super-

integrons [20].

Bacteria are constantly engaging in evolutionary arms races

with their parasites, their hosts and their predators [21,22].

Many of these ecological interactions involve secreted proteins.

Hence, secreted proteins are expected to be under particularly

strong diversifying and/or positive selection. Rapid evolution

caused by direct cell-to-cell interactions should affect especially

the proteins exposed at the cell surface [23–26]. Accordingly,

many secreted proteins are found in mobile genetic elements

such as prophages or genomic islands [27,28]. Hypermutable

regions that allow rapid change of gene expression patterns are

frequent among genes encoding cell envelope proteins [29,30].

A study aiming at identifying bacterial proteins under di-

versifying selection showed that 5 out of 7 cases in

Chlamydiacea and 7 of the 11 cases in Pyrococcus concerned

membrane or secreted proteins [31]. Similarly, another study

showed rapid substitution rates in outer membranes of

Chlamydiacea [32]. In E. coli and B. subtilis, cell envelope

proteins were found to evolve faster than the average protein

after accounting for essentiality and expression levels [33]. In

Pseudomonas aeruginosa extracellular and outer membrane proteins

evolve faster than cytoplasmic proteins [34]. A scan in

Photobacterium profundum SS9 and Shewanella benthica KT99 showed

more frequent positive selection in genes encoding functions

related to motility and transport [35], thus including many cell

envelope-associated proteins. Finally, recombination leading to

genetic diversification was found predominantly in genes

encoding cell envelope proteins in Mycobacterium tuberculosis [36]

and key antigens in Streptococcus pneumoniae [37]. In mammals,

secreted proteins evolve faster and their substitution rates are

correlated with tissue specificity, even when controlling for

expression levels and protein-protein-interaction data [38,39].

The previous examples suggest that protein localization shapes

the rate of change of gene repertoires and sequences in bacteria.

Yet, the pervasiveness of this effect has not been tested. In this

work we do a systematic analysis of genetic diversification of

proteins in function of their cell localization in both monoderms

and diderms. Our dataset includes a large fraction of the most

significant bacterial human pathogens and therefore we analyze

the diversification of virulence factors in the light of their cellular

localization. Thanks to this, we can explicitly link gene repertoires,

sequence plasticity and the evolution of virulence factors in

bacterial pathogens. Our work is aimed at testing the hypothesis

that both key evolutionary processes among prokaryotes, accu-

mulation of substitutions and horizontal gene transfer, drive rapid

evolution of the secretome.

Results

Localization of the Proteins Encoded by the Pan-genome
We retrieved from GenBank all completely sequenced chromo-

somes and plasmids of Firmicutes (monoderms) and Proteobac-

teria (diderms). They include most of the best-studied prokaryotes

in terms of secretion and virulence. We put together the gene

repertoires of chromosomes (but excluding the 2.6% of genes

encoded in plasmids, see below) of closely related taxa within these

phyla to compute their pan-genomes. A widely accepted concept

of species for prokaryotes is lacking [40,41]. Hence, we put

together the genomes with 16S rRNA sequence identity higher

than 98.7%. This is a good compromise with present species

definitions in bacteria [42] (see Methods). This definition allowed

grouping together genomes that have different named species, e.g.

Bacillus cereus and B. anthracis, but that are generally considered

a single species. In order to accommodate the imprecision

associated with measures of divergence based on a single gene

(the 16S), the sequence similarity threshold was lowered to 98% if

and only if the compared genomes had the same species name

[43]. Inversely, when the core genome of a clade produced

a phylogenetic tree with very long branches for some genomes

(genetic distances .0.1) these were excluded. For example, the

phylogenetic tree produced with the core genome of the Salmonella

spp. presented S. bongori with a large terminal branch (.0.1 subst/

nt) and the genome was thus excluded even if it respected the 16S

rRNA similarity criterion. To control for the effect of strain choice,

we re-did all major analyses in this work putting together in clades

only the genomes with the same species name. We found

qualitatively similar results (data not shown). We thus defined 42

groups (clades): 28 of Proteobacteria and 14 of Firmicutes. These

clades contain between 4 and 47 genomes (Tables 1, S1 and S2),

for a total of 421 genomes (36% of the available genomes). The

pan-genomes include 231,096 protein families (see Methods,

Table S3), of which 37% are in the core genomes and 63% in the

accessory genomes. The fraction of the accessory genes in the 42

pan-genomes is highly variable from 85% (E. coli) to below 40%

(e.g. Listeria) (details in Tables S1 and S2).

To study the evolutionary patterns of the secretome we

identified the cell localization of the proteins encoded by the

pan-genomes with PsortB [44,45]. This software uses several

complementary approaches to achieve ,98% accuracy for

positive predictions. Unreliably classed proteins, i.e. negative

predictions, were removed from the analysis leaving a dataset of

146,300 families, i.e. 63% of the total. Non-localized proteins

included a large majority of unknown function genes. Around

81% of non-localized proteins were encoded in the accessory

genome. Accordingly, the fraction of proteins for which we could

predict protein cell localization was 2.6 times higher for the core

than for the accessory genomes (p,0.0001 for every clade, x2 tests
on contingency tables after Bonferroni correction). The number of

localized proteins per clade varied proportionally with the clade’s

average genome size (R2 = 0.77, p,0.0001). The slope of the

regression of genome size and the number of identified proteins

size was not significantly different from 1 (slope = 1.104, p.0.05, t-

student). Hence, the fraction of genes that cannot be classed is

higher in the accessory genome but is not affected by genome size.

The results of PsortB suggest that most proteins are localized in

the cytoplasm or in the inner membrane (resp. 60 and 33%). In

Firmicutes, cell wall and extracellular proteins account resp. for

1.8% and 3.3% of all localized proteins, whereas in Proteobacteria

the outer membrane and extracellular proteins account for resp.

2.5% and 1.8%. Genome size varies widely between and within

the clades of our dataset. Larger genomes have higher rates of

Rapid Evolution of the Secretome
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horizontal gene transfer [46]. Hence, if larger genomes have

disproportionally more secreted proteins the over-representation

of the secretome in the accessory genome could result trivially

from the effect of genome size. We find that the fraction of the

genome encoding the secretome is not significantly correlated with

genome size (Spearman rho= 0.076, p = 0.63). This is true also for

all the three locations, i.e. extracellular, cell wall and outer

membrane, when taken separately (all p.0.05 after Bonferroni

correction for multiple tests) (Figure 1). These results have three

main implications: (i) the majority of proteins are not public goods,

i.e. they are intracellular; (ii) the fraction of the genome taken by

the secretome is not significantly affected by genome size; (iii)

which suggests an important role for secreted proteins in all these

prokaryotic clades. Interestingly, this is not the case of other

ecologically relevant functions, such as regulatory or sensory

proteins, that are highly under-represented in smaller genomes

[47].

Outer-membrane Multi-gene Families are More
Abundant
To assess the possible role of intra-chromosomal recombination

in the evolution of secreted proteins we identified the multi-gene

families in the pan-genomes (see Methods). We found an average

of 5.7% multi-genic protein families. These families were unevenly

distributed in terms of cell localization (p,0.0001, x2 test on

a contingency table) (Table S4). The inner membrane (5.3%)

shows the lowest and the outer membrane (8.65%) the highest

fraction of multi-gene families. These results suggest that outer

membrane proteins are slightly more likely to diversify by

intrachromosomal homologous recombination because they are

more likely to have homologs in the same genome [48,49]. This is

consistent with the predominance of outer membrane proteins

among those subject to variation by homologous recombination

[50] and phase variation [51]. To assess how many of these

homologs are sufficiently similar to engage in intrachromosomal

gene conversion we computed the average protein similarity

Table 1. Dataset statistics.

Phylum
Clades
(genomes) Localized Proteins Pangenome (no. genes)a

Multigene
families a,b Homologs of VF a

Core a Accessorya

Proteobacteria 28 (289) 100,613 47,765 52,848 5,752 (6%) 15,856

Firmicutes 14 (141) 45,687 20,962 24,725 2,535 (5%) 5,158

Total 42 (421) 146,300 68,727 77,573 8,287 (6%) 21,014

See Tables S1, S2 and S3 for more details.
arestricted to proteins with prediction of localization; b (%) of the localized proteins.
doi:10.1371/journal.pone.0049403.t001

Figure 1. Linear regressions of the number of protein families per cell location in function of the average number of genes in
a clade. Data points were removed for clarity. The absolute, but not the relative, frequency of proteins in each localization increases with the number
of genes in genomes. Only the percentage of periplasmic proteins (indicated with an *) shows a significant correlation with genome size (Spearman’s
rho p,0.001, after Bonferroni correction for multiple tests). The slope of the increase in the number of proteins with a given localization was not
significantly different from the average trend for the other cell localizations (p.0.05, same test). Abbreviations of cell localizations: cytoplasm (Cyt),
inner membrane (IM), periplasm (Per, Proteobacteria), cell wall (CW, Firmicutes), outer membrane (OM, Proteobacteria) and extracellular (Extr).
doi:10.1371/journal.pone.0049403.g001
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between orthologs of E. coli and E. fergusonii. At this genetic

distance (average 96.6% protein similarity) the genes are becoming

too divergent to engage in homologous recombination [52]. Only

a fourth (24.8%) of the multi-gene families in the pan-genomes

include pairs of proteins with similarity above this threshold. The

cell localization with highest fraction of such multi-gene families is

still the outer membrane, but this only concerns 1.9% of all the

proteins with this localization. Overall, the fraction of multi-gene

families is small suggesting that only a small subset of proteins can

evolve rapidly by intra-chromosomal gene conversion.

The High Genetic Mobility of the Secretome
We tested the hypothesis that the secretome is preferably

encoded in the accessory genome by first pooling together all

clades of Firmicutes and all of Proteobacteria. Indeed, the

distributions of protein localizations differed in the core and in

the accessory parts of the pan-genomes of both phyla (both

p,0.00001, x2 on contingency tables). Genes encoding proteins

localized in the cell wall and outer membrane, and especially

extracellular proteins, are highly over-represented in the accessory

genome relative to the core genome (p,0.0001, x2 test on

contingency tables, Table S5). In fact, close to 75% (Proteobac-

teria) and 82% (Firmicutes) of the genes encoding extracellular

proteins are in the accessory genome (p,0.0001, binomial tests)

(Figure 2). We then made the same analysis for each clade

separately. This confirmed different distributions of protein

localizations in terms of accessory and core genomes in 40 out

of the 42 clades (p,0.01, same tests). The exceptions were

Methylobacterium and Acinetobacter (resp. p = 0.052 and p= 0.32,

same tests). Extracellular proteins were the most over-represented

class in the accessory genome in 75% of the clades, followed by

outer-membrane (Proteobacteria) and cell wall proteins (Firmi-

cutes) (Figure 2). These results show very clearly that accessory

genomes are highly enriched in genes encoding secreted proteins.

The accessory part of pan-genomes is predominantly composed

of proteins encoding genes present in a very small number of

strains (as low frequency genes) or in a very large number of strains

(as high frequency genes) (see graphs and data in Table S3) [53].

Low frequency genes correspond mostly to recently acquired genes

whereas high frequency genes correspond mostly to ancestral

genes [54]. To test that the secretome is over-represented in the

low frequency genes, we divided the accessory genome in two

classes: one with genes present in less than half of the genomes (low

frequency genes) and the other with the genes present in half or

more of the genomes (high frequency genes). As expected, genes

encoding secreted proteins were much more frequent among the

low frequency genes (Figure S1). Variations in the value separating

low and high frequency genes are expected to have little impact in

the analysis because gene frequency distributions in pan-genomes

are strongly U-shaped [54]. Indeed, the analysis using only strain

specific genes and genes present in all but one strain showed

similar trends (p,0.0001, Pearson test). Thus the secretome is

predominantly encoded in the most mobile part of the accessory

genome.

As mentioned above, we only used chromosomal genes to build

the pan-genomes. The exclusion of the few plasmid genes (2.6% of

the total) was due to a number of reasons. (i) Cultivation and

sequencing procedures often exclude plasmids from complete

genomes. For example, all Shigella flexneri have the virulence

plasmid [55] that is missing in half the genomes in GenBank.

Inclusion of plasmids might thus bias the definition of the core

genome. (ii) The identification of positional orthologs between

plasmids is less reliable than for chromosomes because of their

modularity, plasmid fusion/fission and rapid evolution [56].

Reliable identification of positional orthologs is very important

to avoid inclusion of hidden paralogs in the analysis of substitution

rates. (iii) Plasmids are often in higher copy number than the

chromosome [57]. This is associated with inter-replicon re-

combination and may affect substitution rates. (iv) Plasmids show

higher substitution rates than chromosomal genes [58]. This might

inflate the substitution rates of elements encoded in plasmids.

Mobile elements integrated in the chromosome are much less

affected by these problems. Plasmids are expected to over-

represent the accessory genome and evolve fast. Furthermore,

they were shown in E. coli to over-represented secreted proteins

[14]. To verify that plasmids genes show trends similar to

chromosomal accessory genes we analyzed the 24 clades with

more than 50 localized protein families in plasmids. We compared

the fraction of the secretome in plasmids, accessory genes and core

Figure 2. Over-representation of the secretome in the accessory genome. Left/center. Percentage of genes in the accessory genome of
Proteobacteria/Firmicutes for each category of protein localization in the cell. Vertical bars indicate the limits of the 95% intervals of confidence. The
percentage of each localization in the core genome is just 100 minus this value in the accessory genome, e.g. less than 20% of extracellular proteins
in Firmicutes are in the core genome. Right. Distribution of the protein localizations with highest relative frequency in the accessory genome relative
to the core for each clade of Proteobacteria and Firmicutes. Localizations are abbreviated as in Figure 1.
doi:10.1371/journal.pone.0049403.g002
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genes (Figure 3). The frequencies of secreted proteins encoded in

plasmids and in the accessory genome were not significantly

different (p = 0.4, Wilcoxon signed-rank test), and were higher

than in the core genome (both p,0.001, Wilcoxon signed-rank

test). Hence, plasmids strongly over-represent genes encoding

secreted proteins. Furthermore, the over-representation of genes

encoding the secretome in plasmids is statistically indistinguishable

from the accessory genome. The exclusion of plasmids from our

dataset decreases the size of the accessory genome, but should

have no significant effect in the analysis of the genetic mobility of

the secretome. We will analyze plasmid data in a subsequent work

with a different approach.

Genes Encoding Secreted Proteins Evolve Faster
We studied the association between substitution rates and cell

localization to test the hypothesis that genes encoding secreted

proteins evolve faster. To avoid the effects of hidden paralogy and

gene conversion we excluded from the analysis of substitution rates

the few (6%) multi-gene families and the 2.6% of genes encoded in

plasmids. Nine clades had too little genetic diversity, i.e. more than

half of the genes had zero synonymous (dS) and/or non-

synonymous (dN) substitution rates even when comparing the

most distant taxa. At this level of divergence the analysis of

substitution rates on a per-gene basis is not meaningful and these

clades were excluded. One clade had either too closely related

genomes or too divergent genomes. It was also rejected to avoid

the problem of saturation of synonymous substitutions (see

Methods). Hence, we used for this analysis 32 of the 42 clades

and a total of 51,193 pairs of orthologs. We computed the

synonymous (dS) and non-synonymous (dN) substitution rates, as

well as their ratio (dN/dS) and the rate of nucleotide substitutions

per codon (t) [59,60]. We first tested if substitution rates per codon

were independent of protein localization (Figure 4). This test was

rejected for 16 of the 22 Proteobacteria and for all 10 Firmicutes

(p,0.05, but typically p,,0.01, Kruskal-Wallis test, Table S6).

Non-synonymous changes have important effects in protein

function and their abundance relative to synonymous changes is

strong indication of the effect of natural selection in populations

[59]. The test of independence of the ratio dN/dS on protein

localization was rejected in 19 Proteobacteria and in all 10

Firmicutes (p,0.05, but typically p,,0.01, same test, Table S6).

To check whether higher substitution rates in integrated mobile

elements affects our conclusions; we made the same analysis using

only genes in the core genome. In spite of a smaller sample,

especially among secreted proteins that are rare in core genomes,

we obtained similar qualitative results. In particular, we found

different substitution rates and dN/dS ratios in terms of protein

localization in respectively 21 and 24 clades (same tests). This

shows that the substitution rates are not independent of cell

localization.

In the clades showing statistically significant association between

substitution rates and cell localization the extracellular proteins

show higher substitution rates than the cytoplasmic proteins

(Figure 4). Similar results were observed in the analysis restricted

to the core genomes. In this case extracellular proteins were

among the Tukey-Kramer HSD [61] class with higher substitution

rates (resp. higher dN/dS) in 16 (resp. 19) clades and cell wall or

outer membrane proteins in 14 (resp. 16) clades. As a comparison,

cytoplasmic proteins were never in the class with highest

substitution rate or highest dN/dS. In Proteobacteria, the

substitution rates were highest among extracellular proteins.

Intriguingly, the majority of Firmicutes showed even higher

substitution rates in genes encoding cell wall proteins (both for

nucleotide substitution per codon rates and dN/dS, p,0.001,

binomial tests, Figure 4). The difference between Firmicutes and

Proteobacteria is difficult to interpret because the compartments

between phyla are not equivalent. Biophysical constraints acting

upon cell wall proteins might be closer to those of periplasmic cell

wall associated proteins of Proteobacteria. Unfortunately, current

computational methods do not allow identifying the cell wall

associated proteins of the periplasm of Proteobacteria to make

rigorous comparisons between the two phyla. On the other hand,

from an ecological point of view, the cell wall of Firmicutes is

analogous to the outer membrane proteins of Proteobacteria in

that it is directly exposed to the environment. Outer membrane

proteins of Proteobacteria are indeed also evolving faster than the

average protein, albeit at a lesser degree than extracellular

proteins. These results pinpoint an important difference between

Firmicutes and Proteobacteria relating to the rate of evolution of

exposed proteins. They also show a critical commonality: in both

phyla the secreted proteins show higher substitution rates and

accumulate a higher fraction of non-synonymous substitutions,

even when they are part of the core genome.

Effects of the Association between Protein Localization
and Virulence Factors
Many virulence factors are secreted, evolve rapidly and are

horizontally transferred [27,62,63]. Hence, fast genetic diversifi-

cation of the secretome could be interpreted as a by-product of the

over-representation virulence factors among secreted proteins. To

test that secreted virulence factors are not the only cause of the

overall rapid evolution of the secretome we used a publicly

available database of experimentally verified 2,295 protein

Figure 3. Comparison of the fraction of genes encoding the
secretome in plasmids relative to the fraction of genes
encoding the secretome in the core and in the accessory
genomes. Lower panel. We only analyzed clade encoding more than
50 plasmid genes with predicted protein cell localization. For each
clade, we computed the fraction of the secretome (extracellular, cell
wall, outer membrane) encoded in plasmids (secplasmids) and divided
this by the sum of the fraction encoded in the plasmids and the core
(black, seccore) or the accessory genome (white, secaccessory). The precise
formulae are secplasmids/(seccore+ secplasmids) and secplasmids/(secaccessory+
secplasmids). If there are no significant differences between sets then the
value should be close to 0.5. Values higher that 0.5 indicate over-
representation among plasmids relative to the other set. The graph
represents the two histograms. Upper panel. Boxplots of the two
distributions represented in the lower panel. Edges of boxplots are the
extremes of the distribution, the box represents the 25% and 75%
quantiles, the inner line represents the median. Diamonds represent the
mean and its 95% interval of confidence.
doi:10.1371/journal.pone.0049403.g003
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virulence factors [64] (see Methods). Homologs of virulence factors

are not randomly distributed in terms of protein localization

(p,0.0001, x2 test on a contingency table) and are highly over-

represented among outer membrane proteins (Figure 5). As

a result, we found significant homology to known virulence factors

in 25% of the proteins in the secretome and in only 14% of the

remaining proteins with predicted cell localization (p,0.0001,

same test). Somewhat surprisingly, virulence factors are slightly

over-represented in the core genome (7% more than expected,

p,0.0001, same test). This small effect might be caused by the

presence in our dataset of obligatory pathogens, since the largest

over-representation of virulence factors in the core genome is

observed in the clades of Rickettsia and Coxiella. For these bacteria

many virulence factors correspond to core functions because

pathogenicity is a core trait of the clade. Since virulence factors are

not over-represented in the accessory genome, the association

between virulence factors and secreted proteins is not causing the

over-representation of the secretome in the accessory genome.

Many secreted proteins are known virulence factors, and these

are often under positive selection in bacteria [65,66]. Hence, it

could be assumed that high substitution rates in the secretome are

caused by the secreted virulence factors. However, on a clade-per-

clade analysis we found no evidence that genes encoding secreted

virulence factors have higher substitution rates than the rest of the

genes encoding secreted proteins. As this could result from lack of

statistical power caused by the small number of virulence factors,

we pooled together the data on virulence factors and on protein

localization from all clades. We made one linear model with t and

one other with dN/dS as the dependent variable and as predictors

the variables ‘‘clade’’, ‘‘cell localization’’ and ‘‘homology to

virulence factors’’. The model for the nucleotide substitution rate

per codon (t) explained a large fraction of the variance

(R2= 0.5663, p,0.0001, F test). Genes encoding virulence factors

and genes encoding secreted proteins evolve faster than the other

genes (both p,0.0001, t-test). The model for dN/dS explained

a smaller fraction of the variance (R2= 0.14813, p,0.0001, F test).

Genes encoding virulence factors and genes encoding secreted

proteins were associated with higher dN/dS (both p,0.001, t-test).

While statistically significant, the effects of removing the variable

‘‘homology to virulence factors’’ from the explanatory variables in

the linear models were very small (less than 1% of the R2).

Furthermore, they were 3 to 30 times smaller than the effects of

removing the variable ‘‘protein localization’’. Hence, the former

variable has a much lower explanatory value than the latter. This

suggests that the association between secreted proteins and

virulence factors is not the major cause of the high substitution

rates of the secretome.

Figure 4. Analysis of substitution rates of genes encoding proteins with different cell localizations. The four graphs correspond to the
results of the following analyses (from left to right). (i) The 32 tests, one per clade, that substitution rates are the same for genes encoding proteins
with different cell localizations (Wilcoxon test, p,0.05). For the cases where the previous hypothesis was rejected we depict: (ii) the fraction of clades
where the average rates in genes encoding extracellular proteins exceed those of genes encoding cytoplasmic proteins, (iii) the protein localization
whose genes have highest average values for Proteobacteria and (iv) the same for Firmicutes. In all bars the deviation of the distribution from random
is highly significant (p,0.01, binomial or multinomial tests). Localizations are abbreviated as in Figure 1. The labels ‘‘t’’ and ‘‘dN/dS’’ represent the
substitution rate per codon and the ratio of non-synonymous over synonymous substitutions.
doi:10.1371/journal.pone.0049403.g004

Figure 5. Fraction of homologs of virulence factors in different
classes of protein cell localization (see legend of Figure 1). The
lines correspond to the genes in the core (grey) and in the accessory
genome (black).
doi:10.1371/journal.pone.0049403.g005
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Higher substitution rates in secreted proteins relative to

virulence factors, could result from the over-representation of

the former in the accessory genome (which evolves faster [67]). We

therefore made an additional analysis where we compared the

substitution rates only of the core genome in terms of protein

localization and virulence. We found that results remained

qualitatively unchanged when the analysis is restricted to the core

genome: we find less than 2% variations in the R2 of the linear

models when removing the variable ‘‘homology to virulence

factors’’, which has a smaller impact on the R2 than the variable

‘‘protein localization’’. Hence, the gene sequences of virulence

factors show higher substitution rates per codon, but the effect of

this variable is weaker than the effect of the variable protein

localization. Interestingly, while the core genes encoding the

secretome exhibit higher than expected dN/dS ratios, this is not

the case for the genes encoding virulence factors (median dN/

dS=0.055 versus 0.060 for the rest of the core genome,

p,0.0001, Wilcoxon test). This reinforces the previous conclusion

that higher rates of substitution per codon and higher dN/dS in

the genes encoding the secretome are not trivial consequences of

the over-representation of virulence factors in these localizations.

Discussion

We confirmed the hypothesis that bacterial gene repertoires and

sequences encoding secreted proteins evolve fast. Yet, there are

a few points that will require further work. Firstly, we excluded the

few plasmid genes and thus under-estimated the accessory

genomes. In this work we show that plasmid over-represent genes

encoding secreted proteins relative to the core genome. Further-

more, the extent of this over-representation is not statistically

distinguishable from the one of chromosomal accessory genes.

Secondly, we focused our study on proteins and ignored small

metabolites. It is easier to identify and study secreted proteins than

secondary metabolites, which are sometimes not public goods, just

by-products of the cell metabolism. Secreted proteins are more

expensive than secondary metabolites and they should thus cause

more acute social dilemmas and clearer evolutionary patterns. Yet,

since both secreted proteins and secreted metabolites face similar

challenges as public goods (social exploitation) and as traits

constantly adapting to environmental changes, they are both likely

to evolve fast. Thirdly, we showed that genes encoding secreted

proteins are over-represented in the accessory genome, evolve fast

and show an excess of non-synonymous substitutions, but we have

not studied their selection patterns. Notably we have not tried to

disentangle in these trends the effects of weaker purifying selection

from the effects of positive or diversifying selection. These analyses

are very complex at this scale and are ongoing. Fourthly, we have

ignored all proteins for which we could not reliably identify cell

localization. This left out of the analysis a large fraction of the

accessory genome. Nevertheless, substitution rates are higher in

the genes encoding secreted proteins even among the core

genome, suggesting this should not affect our conclusions.

Within membrane-associated proteins, outer membrane pro-

teins are more frequent in the accessory genome and show higher

substitution rates than inner membrane proteins. Within the other

localizations, extracellular proteins show the highest frequency in

the accessory genome and the highest substitution rates. Thus,

association to the membrane, which affects protein evolution [68],

is not enough to explain the observed rapid evolution of the

secretome. Secreted proteins are thought to endure strong

selection for lower cost amino acids [14,69]. This effect should

slow down, not accelerate, their substitution rates. Recently

acquired genes tend to be shorter, of unknown function, have

atypical sequence composition, lack homologs in the databanks

and evolve faster [67,70,71]. To control for this effect, we showed

higher substitution rates also among core-genome encoded

secreted proteins. Extracellular and exposed proteins have key

roles in ecological interactions of bacteria and are over-represent-

ed in studies of positive and diversifying selection [23,25,26].

Hence, the high substitution rates of the secretome and the over-

representation of these genes in the accessory genome are likely to

be adaptive.

Our work shows that virulence factors do not diversify as fast as

other secreted proteins: they have lower substitution rates, lower

dN/dS and are less frequent in the accessory genome. Naturally,

our conclusions are dependent on the quality of the data from

VFDB, which previous works indicate as the most accurate

available databank on virulence factors [63]. Importantly, our

results show rapidly evolving secretomes in bacteria that are not

pathogenic, notably the mutualists Rhizobium and Cupriavidus

tawanensis, and the free-living Geobacillus and Shewanella. Hence,

rapid evolution of the secretome does not depend strictly on

pathogenicity. Mechanisms of pathogenesis have naturally been

subject to extensive scrutiny by the scientific community, but in

many respects they are like many other processes that allow

bacteria to scavenge their environment for nutrients [72].

Interestingly, among virulence factors, the effectors of type 3

and type 4 secretion systems are over-represented in mobile

elements and genomic islands [28,63,73]. Hence, secreted

virulence factors, but not necessarily all virulence factors, are

genetically mobile. This is a trait they share with the remaining

secreted proteins, even the ones not involved in virulence. The

interactions of bacteria with multicellular eukaryotes, grazing

protozoa and phages lead to very fast molecular recognition arms

races that are expected to lead to positive and/or balancing

selection in exposed and in extracellular proteins [74,75]. Social

dilemmas caused by the cooperative production of public goods

are also expected to lead to rapid evolution of the secretome [14].

Our results are in agreement with the hypothesis that these

different factors lead to the rapid evolution of secreted proteins.

Methods

Data on Genomes, Virulence Factors and Protein
Localization
Complete genome sequences and their annotations were

retrieved from GenBank RefSeq (ftp://ftp.ncbi.nih.gov/). We

excluded pseudogenes. The 16S rDNA sequences were retrieved

from the genomes using their annotations and their precise limits

manually corrected when needed. Data on 2295 virulence factors

was retrieved from VFDB [64]. Genes homologous to virulence

factors were identified using Fasta (v36, [76]) selecting for hits with

an e-value,1025, and more than 50% protein similarity along at

least 70% of the size of the smallest protein. We discarded hits

when one of the proteins was less than half the size of the other. A

more permissive definition of homology (only e-value ,1025)

provided qualitatively similar results (data not shown). Protein

localization of the representative of each protein family was

computed with PsortB 3.1 [45], using the gram-positive predictor

for Firmicutes and the gram-negative predictor for Proteobacteria.

We discarded the proteins without a reliable prediction score and

the very few proteins with predicted multiple locations. The

secretome is defined as the set of outer membrane and

extracellular proteins in Proteobacteria and extracellular and cell

wall proteins in Firmicutes.
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Definition of Core and Pan Genomes
A preliminary set of orthologs was defined by identifying unique

pairwise reciprocal best hits, with at least 60% similarity in amino

acid sequence and less than 20% of difference in protein length.

We refined this list using the distribution of similarity of these

putative orthologs and gene order conservation (as in [77]). The

analysis of orthology was made for every pair of genomes in each

clade. The primary core genome of a clade was defined as the

intersection of the pairwise lists of positional orthologs and was

used to build the phylogenetic tree (see below). The pan-genome

was defined as the repertoire of gene families found in at least one

strain of a given clade. We merged together in a single family of

the pan-genomes the families of positional orthologs sharing more

than 60% similarity and less than 20% of difference in length.

Hence, the pan-genome families can have more than one gene per

genome, which allows putting together very closely related

homologs that in general have similar functions and cell

localizations. The final core gene set was defined from the pan-

genomes as the set of gene families with at least one representative

per genome. The sizes and compositions of the primary and final

core genomes are very similar (R2= 0.99, p,0.0001).

Phylogenetic Analysis
We computed a multiple alignment for each protein family of

the core genome using muscle v3.6 (default parameters) [78] and

back-translated alignments to DNA. The orthologous proteins

encoded by closely related genomes are typically more than 95%

identical and there is no need to manually correct these

alignments. The distance matrix between taxa was computed

from the concatenated alignments of the core genome with Tree-

puzzle 5.2 [79] (ML model HKY+C(8)+I). The tree of the core

genome was built from the distance matrix using BioNJ [80]. All

trees were visually inspected. Taxa showing large genetic distances

with the main group of genomes were excluded (terminal branches

with .0.1 subst/nt).

Analysis of Substitution Rates
Substitution rates between pairs of orthologs were computed

using PAML 4 [81]. Since the sample size is very large and we

were only interested in pairwise rates we used the method

implemented in the program yn00 with default parameters [60].

We then analyzed in each clade the distributions of synonymous

(dS), non-synonymous substitutions (dN), their ratio (dN/dS) and

the number of nucleotide substitutions per codon (t). Rates were

computed for genes between a pair of taxa within the clade. The

taxa were chosen such that their genetic distances were sufficiently

large (median dS and median dN per gene higher than zero), but

below saturation (less than 5% of genes with t.1.5). The 10 clades

lacking such an appropriate pair of taxa were discarded. To avoid

introducing closely related paralogs in our analysis, we excluded

the 6% protein families with multiple copies of a gene in any

genome of the clade.

Supporting Information

Figure S1 Observed/expected ratio of the proteins per
localization category among the three classes of core

genome, accessory and present in more than 50% of the
genomes (high frequency genes) and accessory present
in less than 50% of the genomes (low frequency genes).
Proteobacteria data on the left and Firmicutes data on the right.

(TIF)

Table S1 Description of clades from Proteobacteria
used in the study. The table displays the number of genomes

per clade, the average number of proteins per clade, the

pangenome size and its decomposition in core and accessory

genes, the number of proteins with predicted cell localization, the

number of multigenic families, i.e. families with more than one

member in any given genome, and the number of homologs to

virulence factors.

(DOC)

Table S2 Description of clades from Proteobacteria
used in the study. The table displays the number of genomes

per clade, the average number of proteins per clade, the

pangenome size and its decomposition in core and accessory

genes, the number of proteins with predicted cell localization, the

number of multigenic families and the number of homologs to

virulence factors.

(DOC)

Table S3 Genomes used in the study, classification in
clades, pan-genome and its spectrum of frequencies.

(XLS)

Table S4 Contingency table of cell localization by multi-
gene families. First line in cell is the count, second line is the

percentage relative to the cell localization column and the third

line is the expected value. Abbreviations of cell localization:

cytoplasm (Cyt), inner membrane (IM), periplasm (Per, Proteo-

bacteria), cell wall (CW, Firmicutes), outer membrane (OM,

Proteobacteria) and extracellular (Extr).

(DOC)

Table S5 Tests regarding genetic repertoires of the
pan-genome. Columns depict: (ii) p-value of the test of

independence of protein localization, (iii) localization with the

lowest fraction of genes in the core (relative to the non-core

genome), (iv & v) ratio of genes in core/accessory for extracellular

proteins and for outer-membrane (cell wall in Firmicutes).

(DOC)

Table S6 Summary of tests for the substitution rates of
the pan-genome.

(DOC)

Acknowledgments

We thank the members of the microbial evolutionary genomics laboratory

for comments and suggestions. We thank Sam Brown, Daniel Rankin and

Sorcha McGinty for discussions.

Author Contributions

Conceived and designed the experiments: TN MT EPCR. Performed the

experiments: TN MT EPCR. Analyzed the data: EPCR. Wrote the paper:

EPCR.

References

1. Walsh C (2000) Molecular mechanisms that confer antibacterial drug resistance.

Nature 406: 775–781.

2. Matz C, Kjelleberg S (2005) Off the hook–how bacteria survive protozoan

grazing. Trends Microbiol 13: 302–307.

3. Kirkup BC, Riley MA (2004) Antibiotic-mediated antagonism leads to a bacterial

game of rock-paper-scissors in vivo. Nature 428: 412–414.

4. Dale C, Moran NA (2006) Molecular interactions between bacterial symbionts

and their hosts. Cell 126: 453–465.

5. Preston GM, Studholme DJ, Caldelari I (2005) Profiling the secretomes of plant

pathogenic Proteobacteria. FEMS Microbiol Rev 29: 331–360.

6. Wooldridge K, editor (2009) Bacterial Secreted Proteins: Secretory Mechanisms

and Role in Pathogenesis: Caister Academic Press. 512 p.

Rapid Evolution of the Secretome

PLOS ONE | www.plosone.org 8 November 2012 | Volume 7 | Issue 11 | e49403



7. Crespi BJ (2001) The evolution of social behavior in microorganisms. Trends
Ecol Evol 16: 178–183.

8. West SA, Griffin AS, Gardner A, Diggle SP (2006) Social evolution theory for

microorganisms. Nat Rev Microbiol 4: 597–607.

9. Brown SP, Buckling A (2008) A social life for discerning microbes. Cell 135:

600–603.

10. Sturm A, Heinemann M, Arnoldini M, Benecke A, Ackermann M, et al. (2011)

The cost of virulence: retarded growth of Salmonella Typhimurium cells
expressing type III secretion system. PLoS Pathogens 7: e1002143.

11. Smith J (2001) The social evolution of bacterial pathogenesis. Proc Biol Sci 268:
61–69.

12. Hardin G (1968) The Tragedy of the Commons. Science 162: 1243–1248.

13. Rankin DJ, Bargum K, Kokko H (2007) The tragedy of the commons in
evolutionary biology. Trends Ecol Evol 22: 643–651.

14. Nogueira T, Rankin DJ, Touchon M, Taddei F, Brown SP, et al. (2009)
Horizontal Gene Transfer of the Secretome Drives the Evolution of Bacterial

Cooperation and Virulence. Curr Biol 19: 1683–1691.

15. McGinty SE, Rankin DJ, Brown SP (2011) Horizontal gene transfer and the

evolution of bacterial cooperation. Evolution 65: 21–32.

16. Werren JH (2011) Selfish genetic elements, genetic conflict, and evolutionary

innovation. Proc Natl Acad Sci U S A 108 Suppl 2: 10863–10870.

17. Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, et al. (2005)
Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae:

implications for the microbial ‘‘pan-genome’’. Proc Natl Acad Sci U S A 102:

13950–13955.

18. Smet A, Martel A, Persoons D, Dewulf J, Heyndrickx M, et al. (2009) Broad-

spectrum beta-lactamases among Enterobacteriaceae of animal origin: molec-
ular aspects, mobility and impact on public health. FEMS Microbiol Rev 34:

295–316.

19. Cascales E, Buchanan SK, Duche D, Kleanthous C, Lloubes R, et al. (2007)

Colicin biology. Microbiol Mol Biol Rev 71: 158–229.

20. Rowe-Magnus DA, Guerout AM, Biskri L, Bouige P, Mazel D (2003)
Comparative analysis of superintegrons: engineering extensive genetic diversity

in the Vibrionaceae. Genome Res 13: 428–442.

21. Van Valen L (1973) A New Evolutionary Law. Evolutionary Theory 1: 1–30.

22. Dawkins R, Krebs JR (1979) Arms Races between and within Species. Proc
Royal Soc B 205: 489–511.

23. Wildschutte H, Wolfe DM, Tamewitz A, Lawrence JG (2004) Protozoan

predation, diversifying selection, and the evolution of antigenic diversity in

Salmonella. Proc Natl Acad Sci U S A 101: 10644–10649.

24. Cerdeno-Tarraga AM, Patrick S, Crossman LC, Blakely G, Abratt V, et al.
(2005) Extensive DNA inversions in the B. fragilis genome control variable gene

expression. Science 307: 1463–1465.

25. Lipsitch M, O’Hagan JJ (2007) Patterns of antigenic diversity and the

mechanisms that maintain them. J R Soc Interface 4: 787–802.

26. Meyer JR, Dobias DT, Weitz JS, Barrick JE, Quick RT, et al. (2012)

Repeatability and contingency in the evolution of a key innovation in phage
lambda. Science 335: 428–432.

27. Dobrindt U, Hochhut B, Hentschel U, Hacker J (2004) Genomic islands in
pathogenic and environmental microorganisms. Nat Rev Microbiol 2: 414–424.

28. Tobe T, Beatson SA, Taniguchi H, Abe H, Bailey CM, et al. (2006) An
extensive repertoire of type III secretion effectors in Escherichia coli O157 and

the role of lambdoid phages in their dissemination. Proc Natl Acad Sci U S A
103: 14941–14946.

29. Moxon ER, Rainey PB, Nowak MA, Lenski RE (1994) Adaptive evolution of
highly mutable loci in pathogenic bacteria. Curr Biol 4: 24–33.

30. van der Woude MW, Baumler AJ (2004) Phase and antigenic variation in

bacteria. Clin Microbiol Rev 17: 581–611.

31. Jordan IK, Kondrashov FA, Rogozin IB, Tatusov RL, Wolf YI, et al. (2001)

Constant relative rate of protein evolution and detection of functional
diversification among bacterial, archaeal and eukaryotic proteins. Genome Biol

2: RESEARCH0053.

32. Heinz E, Tischler P, Rattei T, Myers G, Wagner M, et al. (2009)

Comprehensive in silico prediction and analysis of chlamydial outer membrane

proteins reflects evolution and life style of the Chlamydiae. BMC Genomics 10:
634.

33. Rocha EPC, Danchin A (2004) An analysis of determinants of protein

substitution rates in Bacteria. Mol Biol Evol 21: 108–116.

34. Dotsch A, Klawonn F, Jarek M, Scharfe M, Blocker H, et al. (2010)

Evolutionary conservation of essential and highly expressed genes in Pseudo-
monas aeruginosa. BMC Genomics 11: 234.

35. Campanaro S, Treu L, Valle G (2008) Protein evolution in deep sea bacteria: an
analysis of amino acids substitution rates. BMC Evol Biol 8: 313.

36. Namouchi A, Didelot X, Schock U, Gicquel B, Rocha EP (2012) After the
bottleneck: Genome-wide diversification of the Mycobacterium tuberculosis

complex by mutation, recombination, and natural selection. Genome Res 22:
721–734.

37. Croucher NJ, Harris SR, Fraser C, Quail MA, Burton J, et al. (2011) Rapid
pneumococcal evolution in response to clinical interventions. Science 331: 430–

434.

38. Winter EE, Goodstadt L, Ponting CP (2004) Elevated rates of protein secretion,

evolution, and disease among tissue-specific genes. Genome Res 14: 54–61.

39. Julenius K, Pedersen AG (2006) Protein evolution is faster outside the cell. Mol

Biol Evol 23: 2039–2048.

40. Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, et al. (2005)
Opinion: Re-evaluating prokaryotic species. Nat Rev Microbiol 3: 733–739.

41. Staley JT (2006) The bacterial species dilemma and the genomic-phylogenetic

species concept. Philos Trans R Soc Lond B Biol Sci 361: 1899–1909.

42. Stackebrandt E (2006) Taxonomic parameters revisited: tarnished gold

standards. Microb Today 8: 152–155.

43. Pei AY, Oberdorf WE, Nossa CW, Agarwal A, Chokshi P, et al. (2010) Diversity

of 16S rRNA genes within individual prokaryotic genomes. Appl Environ
Microbiol 76: 3886–3897.

44. Gardy JL, Brinkman FS (2006) Methods for predicting bacterial protein

subcellular localization. Nat Rev Microbiol 4: 741–751.

45. Yu NY, Wagner JR, Laird MR, Melli G, Rey S, et al. (2010) PSORTb 3.0:

improved protein subcellular localization prediction with refined localization
subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26:

1608–1615.

46. Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the

nature of bacterial innovation. Nature 405: 299–304.

47. Konstantinidis KT, Tiedje JM (2004) Trends between gene content and genome
size in prokaryotic species with larger genomes. Proc Natl Acad Sci U S A 101:

3160–3165.

48. Rocha EPC (2003) An appraisal of the potential for illegitimate recombination in

bacterial genomes and its consequences: from duplications to genome reduction.
Genome Res 13: 1123–1132.

49. Treangen TJ, Abraham AL, Touchon M, Rocha EP (2009) Genesis, effects and
fates of repeats in prokaryotic genomes. FEMS Microbiol Rev 33: 539–571.

50. Vink C, Rudenko G, Seifert HS (2012) Microbial antigenic variation mediated

by homologous DNA recombination. FEMS Microbiol Rev 37: 1–32.

51. Bayliss CD (2009) Determinants of phase variation rate and the fitness

implications of differing rates for bacterial pathogens and commensals. FEMS
Microbiol Rev 33: 504–520.

52. Vulic M, Dionisio F, Taddei F, Radman M (1997) Molecular keys to speciation:
DNA polymorphism and the control of genetic exchange in enterobacteria. Proc

Natl Acad Sci USA 94: 9763–9767.

53. Baumdicker F, Hess WR, Pfaffelhuber P (2012) The infinitely many genes model

for the distributed genome of bacteria. Genome Biol Evol 4: 443–456.

54. Collins RE, Higgs PG (2012) Testing the Infinitely Many Genes Model for the
Evolution of the Bacterial Core Genome and Pangenome. Mol Biol Evol 29:

10.1093/molbev/mss1163.

55. Buchrieser C, Glaser P, Rusniok C, Nedjari H, D’Hauteville H, et al. (2000) The

virulence plasmid pWR100 and the repertoire of proteins secreted by the type
III secretion apparatus of shigella flexneri. Mol Microbiol 38: 760–771.

56. Frost LS, Leplae R, Summers AO, Toussaint A (2005) Mobile genetic elements:

the agents of open source evolution. Nat Rev Microbiol 3: 722–732.

57. Friehs K (2004) Plasmid copy number and plasmid stability. Adv Biochem Eng

Biotech 86: 47–82.

58. Epstein B, Branca A, Mudge J, Bharti AK, Briskine R, et al. (2012) Population

Genomics of the Facultatively Mutualistic Bacteria Sinorhizobium meliloti and
S. medicae. PLoS Genetics 8: e1002868.

59. Nei M, Gojobori T (1986) Simple methods for estimating the numbers of

synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:

418–426.

60. Yang Z, Nielsen R (2000) Estimating synonymous and nonsynonymous
substitution rates under realistic evolutionary models. Mol Biol Evol 17: 32–43.

61. Tukey JW (1953) Some selected quick and easy methods of statistical analysis.
Trans New York Acad Sci 16: 88–97.

62. Brussow H, Canchaya C, Hardt WD (2004) Phages and the evolution of

bacterial pathogens: from genomic rearrangements to lysogenic conversion.

Microbiol Mol Biol Rev 68: 560–602.

63. Ho Sui SJ, Fedynak A, Hsiao WW, Langille MG, Brinkman FS (2009) The
association of virulence factors with genomic islands. PLoS ONE 4: e8094.

64. Chen L, Xiong Z, Sun L, Yang J, Jin Q (2012) VFDB 2012 update: toward the
genetic diversity and molecular evolution of bacterial virulence factors. Nucleic

Acids Res 40: D641–645.

65. Chen SL, Hung CS, Xu J, Reigstad CS, Magrini V, et al. (2006) Identification of
genes subject to positive selection in uropathogenic strains of Escherichia coli:

a comparative genomics approach. Proc Natl Acad Sci U S A 103: 5977–5982.

66. Ma W, Guttman DS (2008) Evolution of prokaryotic and eukaryotic virulence

effectors. Curr Opin Plant Biol 11: 412–419.

67. Hao W, Golding GB (2006) The fate of laterally transferred genes: life in the fast

lane to adaptation or death. Genome Res 16: 636–643.

68. Tourasse NJ, Li WH (2000) Selective constraints, amino acid composition, and
the rate of protein evolution. Mol Biol Evol 17: 656–664.

69. Smith DR, Chapman MR (2010) Economical evolution: microbes reduce the
synthetic cost of extracellular proteins. MBio 1: e00131–00110.

70. Hsiao WW, Ung K, Aeschliman D, Bryan J, Finlay BB, et al. (2005) Evidence of

a Large Novel Gene Pool Associated with Prokaryotic Genomic Islands. PLoS

Genet 1: e62.

71. Daubin V, Ochman H (2004) Bacterial genomes as new gene homes: the
genealogy of ORFans in E. coli. Genome Res 14: 1036–1042.

72. Rohmer L, Hocquet D, Miller SI (2011) Are pathogenic bacteria just looking for
food? Metabolism and microbial pathogenesis. Trends Microbiol 19: 341–348.

73. Ma W, Dong FFT, Stavrinides J, Guttman DS (2005) Diversification of a Type

III Effector Family via both Pathoadaptation and Horizontal Transfer in

Response to a Coevolutionary Arms Race. PLoS Genet 2: e209.

Rapid Evolution of the Secretome

PLOS ONE | www.plosone.org 9 November 2012 | Volume 7 | Issue 11 | e49403



74. Woolhouse ME, Webster JP, Domingo E, Charlesworth B, Levin BR (2002)

Biological and biomedical implications of the co-evolution of pathogens and
their hosts. Nat Genet 32: 569–577.

75. Hall AR, Scanlan PD, Morgan AD, Buckling A (2011) Host-parasite

coevolutionary arms races give way to fluctuating selection. Ecol lett 14: 635–
642.

76. Pearson WR, Lipman DJ (1988) Improved tools for biological sequence
comparisons. Proc Natl Acad Sci USA 85: 2444–2448.

77. Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, et al. (2009)

Organised genome dynamics in the Escherichia coli species results in highly
diverse adaptive paths. PLoS Genet 5: e1000344.

78. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy

and high throughput. Nucleic Acids Res 32: 1792–1797.

79. Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE:

maximum likelihood phylogenetic analysis using quartets and parallel comput-

ing. Bioinformatics 18: 502–504.

80. Gascuel O (1997) BIONJ: an improved version of the NJ algorithm based on

a simple model of sequence data. Mol Biol Evol 14: 685–695.

81. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol

Evol 24: 1586–1591.

Rapid Evolution of the Secretome

PLOS ONE | www.plosone.org 10 November 2012 | Volume 7 | Issue 11 | e49403


