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Abstract

We performed a series of bioinformatics analysis on a set of important gene expression data

with 76 samples in early stage of non-small cell lung cancer, including 40 adenocarcinoma

samples, 16 squamous cell carcinoma samples and 20 normal samples. In order to identify

the specific markers for diagnosis, we compared the two subtypes with the normal samples

respectively to determine the gene expression characteristics. Through the multi-dimen-

sional scaling classification, we found that the samples were clustered well according to the

disease cases. Based on the classification results and using empirical Bayes moderation

and treat method, 486 important genes associated with the disease were identified. We con-

structed gene functions and gene pathways to verify our result and explain the pathogenicity

factor and process. We generated a protein-protein interaction network based on the mutual

interaction between the selected genes and found that the top thirteen hub genes were

highly associated with lung cancer or some other cancers including five newly found genes

through our method. The results of this study indicated that contrast on the gene expression

between different subtypes and normal samples provides important information for the

detection of non-small cell lung cancer and helps exploration of the disease pathogenesis.

Introduction

Lung cancer is the most common malignant tumors, which poses a major threat to public

health. In 2018, it was predicted that 1,735,350 new cancer cases and 609,640 cancer deaths

will occur in the United States, including 13.49% lung cancer cases and 25.27% lung cancer

deaths [1]. Lung cancer is the cancer with the highest mortality. There are two major subtypes

of lung cancer, small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC).

NSCLC, including two major histopathological subtypes, adenocarcinoma (AC) and squa-

mous cell carcinoma (SCC), accounts for 80% of all lung cancer cases [2]. At present, the most

effective treatment for NSCLC is surgical treatment in the early stage and radiotherapy and

chemotherapy in the middle and late stage. About 75% of the patients are diagnosed in the

middle and late stage. Regardless of the treatment options, the overall survival rate is still very

poor [3].
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In the recent years, researchers have paid more attention to the mechanism of the occur-

rence and growth of NSCLC, which has brought new breakthroughs to the diagnosis and treat-

ment of this disease. However, because of the high cost of treatment and the presence of drug

resistance, effective treatment is only applicable to a narrow population.

With the development of information technology, using gene expression data resources to

solve medical problems has become a general trend. Data mining technology is helpful to

extract potential and valuable information related to diseases, so as to effectively prevent and

control the diseases. Therefore, gene expression profile analysis has been widely used to iden-

tify new potential biomarkers of cancer [4, 5], among which tumor-associated genetic alter-

ations have played essential roles in the tumorigenesis and progression of cancer [6].

In this study, we focus on a particular set of gene expression data associated with early stage

of NSCLC. We are interested in this data set of 76 samples because the data set contains

detailed information about AC, SCC and normal samples. This information, as our study will

show, is critical for the extraction of candidate diagnostic markers for NSCLC. We will use the

affy package to read raw data, the edgeR package [7] to filter and normalize the data and the

limma package [8] to assess differential expressed genes (DEGs) and perform exploration anal-

ysis of the results. Using a multi-dimensional scaling analysis, we will observe the significantly

different gene expressions between different NSCLC subtypes and health cases. Applying the

linear models in limma package and empirical Bayes moderation in Bioconductor, we will dis-

cover more host genes associated with NSCLC. To verify these genes from the underlying biol-

ogy mechanism, we will use the database for annotation, visualization and integrated

discovery (DAVID) [9] to perform the gene ontology (GO) functional analysis [10] and the

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses [11]. Further, the pro-

tein-protein interaction (PPI) network will be constructed by search tool for the retrieval of

interacting genes/proteins (STRING) database [12], and the Cytoscape software [13] will be

used to analyze the PPIs to screen the hub genes.

Materials and methods

Microarray data

In this study, the data was obtained through the National Center for Biotechnology Information

(NCBI: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE33532) database. This dataset

was based on the Affymetrix microarray GPL570 platform, which was submitted by Meister,

et al. There are 100 samples in dataset GSE33532 including 80 NSCLC tissue samples and 20

normal tissue samples. Considering that 24 tumor samples do not have clear histopathological

information, we selected 20 normal samples and 56 tumor samples for our analysis, including

40 AC samples and 16 SCC samples. These 56 samples were also classified as 32 samples in the

first stage and 24 samples in the second stage according to the cancer infection (Table 1).

Data pre-processing and clustering analysis of samples

For differential expression and correlation analysis, gene expression is seldom considered at

the original counting level. Rather, it is common to convert the original data into a scale that is

Table 1. Data description of cancer samples.

The first stage The second stage Total

AC 24 16 40

SCC 8 8 16

Total 32 24 56

https://doi.org/10.1371/journal.pone.0225080.t001
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suitable for the library size. Here raw counts were transformed onto reads per kilobase of tran-

script per million (RPKM) values firstly. In the process of sample preparation and sequencing,

there is no biological significance such as sample batches which will affect the expression of a

single sample. Therefore, we need to standardize the data of each sample to ensure the similar-

ity of data distribution. Here, normalization by the method of trimmed mean of M-value

(TMM) was applied [14].

In the previous papers using GSE33532 datasets [15–18], the authors combined two dif-

ferent subtypes or stages of NSCLC into one single type directly and compared this type with

normal samples. However, sample classification is an essential step in bioinformatic analysis.

It is important to see whether genes are expressed at different level between different classifi-

cations. Therefore, in this study, we focused more on the information of sample classifica-

tion. we used the plotMDS function in limma package to draw a multi-dimensional scaling

(MDS) plot which showed the similarities and differences between different samples in an

unsupervised way. And then we did the comparison based on the classification results. In

our dataset, cancer subtypes and stages are two possible classification criterions and were

therefore tested.

Differential expression analysis

We followed the workflow in Bioconductor to find DEGs [19]. Firstly, we built a design matrix

for pairwise comparisons based on classification information by makeContrasts function. Sec-

ondly, based on the limma linear fitting, the empirical Bayes moderation was carried out to

infer the results of linear models [20]. P value < 0.05 was set by default to screen DEGs. The

number of up- and down- regulated DEGs can be summarized. However, the empirical Bayes

moderation is only successful in testing whether the differential expression differentiate from

zero, which cannot guarantee that the differences found are large enough to have biological

significance. Here, in order to get more meaningful conclusions, we used treat method, a t-test

related to the minimum fold change, to screen DEGs. And the differential expression obtained

is greater than a given threshold [21]. This method can also improve the existing false discov-

ery rate and identify more biologically significant DEGs. Finally, the DEGs in multiple com-

parisons were extracted as the most important genes.

GO functional and KEGG pathway analysis

In this study, we used DAVID (https://david.ncifcrf.gov/), a comprehensive set of functional

annotation tool, to analyze GO function and KEGG pathway analysis of DEGs. It uses statisti-

cal methods to select the most prominent annotations in a large number of biological annota-

tions, and the related information of their involvement in biological processes (BP), molecular

function (MF), cell component (CC) and signal pathway can be found where p< 0.05 was con-

sidered to indicate a statistically significant difference.

Integration of PPI network and identification of hub genes

We used STRING (https://string-db.org/), a database that collects and integrates known pro-

tein-protein interactions, to explore protein-protein interactions and construct PPI network.

Through the plug-in network analysis in Cytoscape, the degree between nodes was calculated

and the genes with the largest degree were selected to represent the hub genes which play

important roles in the whole PPI network.

Candidate diagnostic markers for non-small cell lung cancer
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Results

Clustering analysis

Based on the two different classification criterions of the samples we found that, samples were

clustered well within cancer subtypes over dimension 1 and 2, but the classification using the

grouping defined by cancer stage was not good. The clustering result based on cancer subtypes

was shown in Fig 1. The first dimension of the MDSplot explained the proportion of maxi-

mum changes in data. It showed that the transcription differences between AC versus N and

SCC versus N were the greatest in the first dimension, which inspired us to compare the two

cancer subtypes with the normal samples respectively to get more DEGs. Data sets of samples

with poor clustering results may show little or no evidence of differential expression in down-

stream analysis. Therefore, we ignored the classification based on cancer stages.

Differential expressed genes

Based on the empirical Bayes moderation, 13,629 DEGs were found including upregulated

and downregulated for AC versus N, 14,271 DEGs were found for SCC versus N and 8,095

DEGs were found for AC versus SCC (Table 2, left).

In order to obtain more biologically significant conclusions, DEGs were screened according

to treat method. The number of DEGs reduced to a total of 641 DEGs for AC versus N, 1,085

DEGs for SCC versus N and 178 DEGs for AC versus SCC when testing requires genes to have

a Fold Change that is significantly greater than 1.2 (Table 2, right). Comparisons between AC

versus N and SCC versus N resulted in a larger number of DEGs, which verified our conjecture

from the MDS plot (Fig 1).

Through integration of the DEGs in different contrasts, 486 DEGs including 116 upregu-

lated and 370 downregulated DEGs in both AC versus N and SCC versus N were extracted by

treat method (Fig 2), which were taken as the most significant genes associated with NSCLC.

GO functional and KEGG pathway analysis

DAVID performed BP, MF and CC function analysis (Table 3) and KEGG pathway analysis

(Table 4) on 116 upregulated DEGs and 370 downregulated DEGs, respectively.

As a result, it was shown that upregulated DEGs belonged to the component of cytoplasm,

nucleus, nucleoplasm and other organelles, they had the molecular functions such as ATP

binding, microtubule motor activity, ATP-dependent microtubule motor activity, plus-end-

directed, participating in microtubule-based movement, positive regulation of cytokinesis,

chromosome segregation and other biological processes (Table 3A). They were mainly

involved in cell cycle, oocyte meiosis, progesterone-mediated oocyte maturation, Fanconi ane-

mia pathway and other signaling pathways (Table 4A). While, downregulated DEGs belonged

to the component of integral membrane, plasma membrane, extracellular exosome and other

organelles, they had the molecular functions such as calcium ion binding, Ras guanyl-nucleo-

tide exchange factor activity, heparin binding, participating in positive regulation of GTPase

activity, angiogenesis, cell adhesion and other biological processes (Table 3B). They were

mainly involved in adrenergic signaling in cardiomyocytes, neuroactive ligand-Receptor inter-

action, cGMP-PKG signaling pathway, vascular smooth muscle contraction and other signal-

ing pathways (Table 4B).

Integration of PPI network and identification of hub genes

After introducing all DEGs into STRING database, we constructed a PPI network which incor-

porated 436 nodes and 1,193 edges. We performed the subset of PPI network (Fig 3) for the

Candidate diagnostic markers for non-small cell lung cancer
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DEGs with a combined score > 0.7 to determine the hub genes. As shown in Fig 3, blue nodes

represented downregulated DEGs and red nodes represented upregulated DEGs. According to

the degree of each gene, the top thirteen hub genes with the highest degrees were selected

(Table 5), including BUBI mitotic checkpoint serine/threonine kinase (BUB1), Cyclin B1

(CCNB1), Mitotic arrest deficient 2 like 1 (MAD2L1), DNA topoisomerase 2-alpha (TOP2A),

Kinesin family member 11 (KIF11), Cell division cycle 20 (CDC20), BUBI mitotic checkpoint

serine/threonine kinase B (BUB1B), PDZ binding kinase(PBK), Abnormal spindle microtu-

bule assembly(ASPM), Non-SMC condensin I complex subunit G(NCAPG), Centromere pro-

tein F(CENPF), TTK protein kinase(TTK) and Aurora kinase B(AURKB). Table 5 also

showed that all the top thirteen hub genes were upregulated DEGs.

Discussion

NSCLC has been a serious threat to the public health worldwide. It is important to identify

genes which express differentially between subtypes and normal cases, predict their

Fig 1. Clustering of samples.

https://doi.org/10.1371/journal.pone.0225080.g001

Table 2. Number of up- and down-regulated genes for empirical Bayes and treat method.

Empirical Bayes Treat method

AC vs SCC AC vs N SCC vs N AC vs SCC AC vs N SCC vs N

Down 3910 6588 7145 141 476 678

Not 14095 8561 7919 22012 21549 21105

Up 4185 7041 7126 37 165 407

https://doi.org/10.1371/journal.pone.0225080.t002
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underlying functions, pathways and construct PPI network for the diagnosis and treatment of

NSCLC.

In the present study, based on the expression profiles of GSE33532, which is associated with

the early stage of NSCLC, selection of DEGs and bioinformatics analysis were performed. In

our process of data analysis, we focused more on the classification of samples which was an

essential step of bioinformatics analysis and found that samples were clustered well within can-

cer subtypes. Considering the difference between the two subtypes of NSCLC, we compared

both cancer subtypes with normal samples, respectively. And then we took intersection when

selecting DEGs for subsequent analysis. We eventually found 116 upregulated DEGs and 370

downregulated DEGs. To obtain further analysis of these DEGs, we performed GO functional

analysis and KEGG pathway analysis.

We found that the upregulated DEGs mainly participated in four pathways, the top three

are cell cycle, oocyte meiosis nad progesterone-mediated oocyte maturation, which were con-

sistent with previous results using the same dataset. Besides, we also found a new pathway

through data analysis, the Fanconi anemia complex I that functions to activate FANCD2 and

FANCI by mono-ubiquitinating the protein following response to DNA damage. The Fanconi

anemia pathway is a major mechanism of homologous recombination DNA repair. DNA-

repair deficiencies have been considered of interest in lung cancer prevention, given the

Fig 2. The number of DEGs in the comparison for the treat method.

https://doi.org/10.1371/journal.pone.0225080.g002

Candidate diagnostic markers for non-small cell lung cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0225080 November 14, 2019 6 / 12

https://doi.org/10.1371/journal.pone.0225080.g002
https://doi.org/10.1371/journal.pone.0225080


persistence of damage produced by cigarette smoke in this setting, as well as in treatment,

given potential increased efficacy of DNA-damaging drugs [22–24].

The downregulated DEGs mainly participated in five pathways, including adrenergic signal-

ing in cardiomyocytes, neuroactive ligand-Receptor interaction, cAMP signaling pathway,

cGMP-PKG signaling pathway and vascular smooth muscle contraction. All these pathways

were not mentioned in the previous studies but played important roles in lung cancer or other

disease. Beta-adrenergic signaling has been found to regulate multiple cellular processes that

Table 3. GO analysis of DEGs associated with NSCLC.

A.Upregulated

Category Term/gene function P-value Count

BP GO:0007018 microtubule-based movement 5.53 × 10−9 9

BP GO:0032467 positive regulation of cytokinesis 1.10 × 10−5 5

BP GO:0007059 chromosome segregation 1.84 × 10−4 5

BP GO:0000281 mitotic cytokinesis 3.22 × 10−4 4

BP GO:0090307 mitotic spindle assembly 5.47 × 10−4 4

BP GO:0007267 cell-cell signaling 8.26 × 10−3 4

CC GO:0005737 cytoplasm 9.72 × 10−3 27

CC GO:0005634 nucleus 7.08 × 10−3 26

CC GO:0005654 nucleoplasm 2.73 × 10−3 18

CC GO:0016020 membrane 4.34 × 10−2 11

CC GO:0030496 midbody 4.41 × 10−8 9

CC GO:0005871 kinesin complex 1.90 × 10−8 8

MF GO:0005524 ATP binding 4.05 × 10−6 21

MF GO:0003777 microtubule motor activity 9.37 × 10−7 7

MF GO:0008574 ATP-dependent microtubule motor activity, plus-end-directed 9.68 × 10−7 5

MF GO:0004222 metalloendopeptidase activity 2.71 × 10−3 5

MF GO:0061630 ubiquitin protein ligase activity 9.04 × 10−3 5

MF GO:0016887 ATPase activity 1.74 × 10−2 4

B.Downregulated

Category Term/gene function P-value Count

BP GO:0043547 positive regulation of GTPase activity 4.74 × 10−5 24

BP GO:0001525 angiogenesis 3.53 × 10−6 16

BP GO:0007155 cell adhesion 7.85 × 10−3 16

BP GO:0008285 negative regulation of cell proliferation 5.18 × 10−3 15

BP GO:0035556 intracellular signal transduction 6.03 × 10−3 15

BP GO:0006508 proteolysis 3.31 × 10−2 15

CC GO:0016021 integral component of membrane 2.43 × 10−3 110

CC GO:0005886 plasma membrane 1.19 × 10−6 106

CC GO:0070062 extracellular exosome 4.76 × 10−2 59

CC GO:0005887 integral component of plasma membrane 3.25 × 10−7 51

CC GO:0005576 extracellular region 2.17 × 10−4 47

CC GO:0005615 extracellular space 3.39 × 10−3 37

MF GO:0005509 calcium ion binding 5.39 × 10−4 25

MF GO:0005088 Ras guanyl-nucleotide exchange factor activity 9.62 × 10−5 10

MF GO:0008201 heparin binding 1.11 × 10−3 10

MF GO:0005215 transporter activity 1.61 × 10−2 9

MF GO:0016887 ATPase activity 2.79 × 10−2 8

MF GO:0004871 signal transducer activity 4.57 × 10−2 8

https://doi.org/10.1371/journal.pone.0225080.t003
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contribute to the initiation and progression of cancer, including inflammation, angiogenesis,

apoptosis/anoikis, cell motility and trafficking, activation of tumor-associated viruses, DNA

damage repair, cellular immune response and epithelial–mesenchymal transition [25]. The

increase in cAMP levels activates target molecules, such as cAMP-dependent protein kinase

(protein kinase A, PKA), exchange protein directly activated by cAMP (Epac) and cyclic nucleo-

tide-gated ion channels [26]. These target effector molecules regulate various cellular responses,

including metabolism, gene expression, proliferation and apoptosis. Various alterations to key

Table 4. KEGG analysis of DEGs associated with NSCLC.

A.Upregulated

Pathway

ID

Name P-value Count Genes

hsa04110 Cell cycle 4.44 × 10−6 8 CCNB1, CDC6, CCNB2, MAD2L1, BUB1, TTK, BUB1B, CDC20

hsa04114 Oocyte meiosis 2.24 × 10−2 4 CCNB2, MAD2L1, BUB1, CDC20

hsa04914 Progesterone-mediated oocyte

maturation

1.20 × 10−2 4 CCNB1, CCNB2, MAD2L1, BUB1

hsa03460 Fanconi anemia pathway 3.19 × 10−2 3 FANCI, BRIP1, UBE2T

B.Downregulated

Pathway

ID

Name P-value Count Genes

hsa04261 Adrenergic signaling in

cardiomyocytes

5.87 × 10−6 12 AGTR1, ADRB2, ADRB1, PLCB4, TNNC1, KCNE1, ADRA1A, SCN4B, RAPGEF4, SCN7A,

ATP1A2, CACNA2D2

hsa04080 Neuroactive ligand-Receptor

interaction

2.73 × 10−3 12 EDNRB, AGTR1, ADRB2, S1PR1, ADRB1, RXFP1, SSTR1, GRIA1, ADRA1A, CALCRL,

NPY1R, VIPR1

hsa04024 cAMP signaling pathway 2.30 × 10−2 10 FXYD1, ADRB2, ADRB1, SSTR1, GRIA1, NPR1, RAPGEF4, HHIP, ATP1A2, NPY1R

hsa04022 cGMP-PKG signaling pathway 2.43 × 10−3 9 EDNRB, AGTR1, ADRB2, ADRB1, PLCB4, PDE5A, ADRA1A, NPR1, ATP1A2

hsa04270 Vascular smooth muscle contraction 1.77 × 10−3 8 RAMP3, RAMP2, AGTR1, PLCB4, PLA2G1B, ADRA1A, NPR1, CALCRL

https://doi.org/10.1371/journal.pone.0225080.t004

Fig 3. The PPI network.

https://doi.org/10.1371/journal.pone.0225080.g003

Candidate diagnostic markers for non-small cell lung cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0225080 November 14, 2019 8 / 12

https://doi.org/10.1371/journal.pone.0225080.t004
https://doi.org/10.1371/journal.pone.0225080.g003
https://doi.org/10.1371/journal.pone.0225080


molecules of the cAMP signaling pathway have been observed in lung cancer, and phosphodies-

terase inhibitors have been shown to synergize with cisplatin to induce apoptosis in a broad

panel of human lung cancer cell lines [27]. Down-regulation of cGMP/PKG-mediated signaling

pathways often occurs during tumorigenesis and cell transformation, the activation of the

cGMP-dependent enzyme protein kinase G (PKG) can play an important role in inhibiting cell

proliferation and inducing apoptosis [28]. Vascular smooth muscle (VSM) is a major compo-

nent of the tunica media of blood vessels, and an important regulator of vascular function. VSM

contraction plays an important role in the regulation of peripheral vascular resistance and

blood pressure, and vascular dysfunction, excessive vasoconstriction, and vasospasm could lead

to major cardiovascular disorders such as hypertension and coronary artery disease [29].

Through the PPI network, we selected thirteen hub genes. Most of these hub genes were

reported by previous studies to participate in the corresponding functions during the infection

of NSCLC [30–43]. We also found five new hub genes that were not reported in previous refer-

ences using dataset GSE33532, including TOP2A, PBK, ASPM, NCAPG and TTK. Four of

them had great impacts on lung cancer based on experimental results, which was summarized

as follows. The overexpression of TOP2A in NSCLC tissues is related to lymph node metasta-

sis, which can promote cell proliferation and invasion [33]. PBK, also known as TOPK, is a

potential therapeutic target in lung cancer that promotes cell migration by modulating a PI3K/

PTEN/AKT-dependent signaling pathway. High PBK expression, either alone or in combina-

tion with a low level of PTEN, may serve as a prognostic marker for lung cancer [37]. Suberoy-

lanilide hydroxamic acid significantly enhanced the tumor initiating capacity and the

expression of malignant genes such as ASPM in the remaining living ALDH cells, which can

suppress the growth of tumor xenografts and decreases the lung cancer stem cell population in

vivo [38]. The non-SMC condensin I complex subunit G (NCAPG) that organizes the coiling

topology of individual chromatids, represents an overexpressed antigen in various types of

cancer, and also contributes to restructuring chromatin into rod-shaped mitotic chromosomes

and ensuring the segregation of sister chromatid during cell division [39]. The expression of

TTK in lung cancer tissues is significantly different from that in smokers and non-smokers,

which is consistent with the important role of TTK in smoking-induced lung cancer. TTK is a

candidate target gene for chemical prevention and treatment of lung cancer in smokers [42].

Further, six of the selected hub genes including BUB1, CCNB1, MAD2L1, CDC20, BUB1B

and TTK were found to participated in the same cell cycle pathway. It was also shown by the

Table 5. Hub genes and rank of degrees.

Gene symbol Description Feature Degree

BUB1 BUBI mitotic checkpoint serine/threonine kinase up 52

CCNB1 Cyclin B1 up 51

MAD2L1 Mitotic arrest deficient 2 like 1 up 50

TOP2A DNA topoisomerase 2-alpha up 49

KIF11 Kinesin family member 11 up 49

CDC20 Cell divison cycle 20 up 49

BUB1B BUBI mitotic checkpoint serine/threonine kinase B up 49

PBK PDZ binding kinase up 48

ASPM Abnormal spindle microtubule assembly up 48

NCAPG Non-SMC condensin I complex subunit G up 48

CENPF Centromere protein F up 48

TTK TTK protein kinase up 48

AURKB Aurora kinase B up 48

https://doi.org/10.1371/journal.pone.0225080.t005
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previous study that these hub genes served as a regulatory protein at multiple checkpoints in

the cell cycle pathway. Cell cycle pathway is the key pathway of lung cancer and regulatory pro-

teins located in cell cycle signaling pathway play an important role in the mechanism of lung

cancer [44–46].

In conclusion, the present study provides a broader analysis of DEGs for NSCLC which

contributes to exploration NSCLC pathogenesis and may serve as potential biomarkers for

future research on early NSCLC detection. However, current research is theoretical analysis

based on data, prospective clinical studies remains to be an important next step of

investigation.
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