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Abstract

Background: We recently reported the age interval 2–6y being the earliest and most critical for adult overweight. We now
aim to determine which age intervals are predictive of cardiometabolic risk at young adulthood.

Methods and Findings: We analyzed data from 642 18–28 years olds from the Terneuzen Birth Cohort. Individual BMI SDS
trajectories were fitted by a piecewise linear model. By multiple regression analyses relationships were assessed between
subsequent conditional BMI SDS changes and components of the metabolic syndrome (MetS), skinfold thickness and hsCRP
at young adulthood. Results were adjusted for gender and age, and other confounders. Gender was studied as an effect
modifier. All BMI SDS changes throughout childhood were related to waist circumference and skinfold thickness. No other
significant relationship was found before the age of 2 years, except between the BMI SDS change 0–1y and hsCRP. Fasting
blood glucose was not predicted by any BMI SDS change. BMI SDS change 2–6y was strongly related to most outcome
variables, especially to waist circumference (ß 0.47, SE 0.02), systolic and diastolic blood pressure (ß 0.20 SE 0.04 and ß 0.19
SE 0.03), and hsCRP (ß 0.16 SE 0.04). The BMI SDS change 10–18y was most strongly related to HDL cholesterol (ß -0.10, SE
0.03), and triglycerides (ß 0.21, SE 0.03). To a lesser degree, the BMI SDS change 6–10y was related to most outcome
variables. BMI SDS changes 2–6y and 10–18y were significantly related to MetS: the OR was respectively 3.39 (95%CI 2.33–
4.94) and 2.84 (95%CI 1.94–4.15).

Conclusion: BMI SDS changes from 2y onwards were related to cardiometabolic risk at young adulthood, the age interval 2–
6y being the most predictive. Monitoring and stabilizing the BMI SDS of children as young as 2–6y may not only reverse the
progression towards adult overweight, but it may also safeguard cardiometabolic status.
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Introduction

The high prevalence of overweight and obesity in children is

worrisome as among others it is related to cardiometabolic risk even

at young ages. In childhood, not only the BMI status itself, but

particularly the BMI increase, is strongly related to cardiometabolic

risk at adulthood [1]. As an increase in BMI SDS implies a more than

normal increase in the BMI with age as such, an increase in BMI SDS

during childhood might explain the high cardiometabolic risk even in

adults with a normal BMI [2,3]. In the Terneuzen Birth Cohort, we

found the age interval from 2 to 6 years to be the earliest and most

critical growth period for adult overweight [4]. As overweight reflects

total body mass and not only body fat mass, we question whether this

age interval is also most predictive of cardiometabolic risk.

Several studies have addressed the relation between BMI

increase in childhood and cardiometabolic risk at adulthood [5–9].

Longitudinal data from birth into adulthood are needed to

estimate the relative contribution of subsequent changes in BMI

SDS to cardiometabolic risk. Only a few studies have valid

longitudinal data to study these relationships [5–7]. Study results

differ with respect to which age interval is most predictive. One

study has assessed adolescence to be the only sensitive period for

developing visceral fat at adulthood [6]. Others have shown that

the BMI increase from 2 years onwards is associated with

cardiometabolic risk [5]. Yet another study did not find a critical

age interval: the weight increase from birth onwards had an evenly

spread influence on adult fat patterns [7]. Height and weight data

collected from birth up until young adulthood are at our disposal.

We aim to find whether there is a most critical age interval

predictive of cardiometabolic risk at young adulthood.

Methods

Population and Study Design
Ethics statement. The study protocol was approved by the

Medical Ethics Committee of the VU University Medical Centre
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Amsterdam, and written informed consent was obtained from all

the participants.

Population. The Terneuzen Birth Cohort consists of all

2,604 children born between 1977–1986 in the city of Terneuzen,

the Netherlands [3]. Data for height and weight from 1,701

subjects as registered according to a standard protocol by the

Municipal Health Services were available from birth until

adolescence. These subjects were invited to participate in a

follow-up study that included a physical examination, blood tests

and a questionnaire to collect sociodemographic characteristics

and data about cigarette smoking and their mothers’ actual BMI.

Of these 1,701 subjects, 577 could not be traced, 362 completely

refused to participate, and 120 refused to participate in blood

drawing. Therefore the analyses were restricted to the remaining

642 subjects. The males and females in this follow-up study do not

differ from the original cohort regarding baseline characteristics,

i.e. age, birth weight, BMI SDS at birth, age of the mother, parity,

and breastfeeding. The only difference was the difference for

gender itself (41% males vs. 51% in the original cohort, p,0.05).

We used BMI values (kg/m2) as the measure for (over)weight,

converted to age-specific standard deviation scores (BMI SDS)

based on Dutch reference data [10] most comparable to our study

population.

Physical examination and blood tests. Physical

examinations were performed by two assistants who received

standardized training at the Municipal Health Services in

Terneuzen (GGD Zeeland). Waist circumference was measured

mid-way between the lower side of the lowest rib and the upper

side of the pelvis, on bare skin, after a normal expiration, and with

muscles relaxed. Blood pressure (BP) was measured twice (with a

5-minute rest interval) on the left upper arm with the Omron 5–1,

which is a fully automatic blood pressure monitor. The mean

values of systolic blood pressure (SBP) and diastolic blood pressure

(DBP) were used as outcomes. Triceps, biceps, subscapular and

suprailiacal skinfolds were measured three times to the nearest

0.1 mm with a Holtain skinfold caliper (Holtain Ltd, Crosswell,

United Kingdom) on the left side of the body. Skinfold thickness

was defined as the sum of the mean values of the three

measurements of every skinfold.

Fasting venous blood samples were drawn in the clinical

chemistry laboratory of the Community Hospital at Terneuzen.

After centrifugation (10 minutes 1500xG), plasma was analyzed

with a routine clinical chemical analyzer, Synchron LX20PRO

(Beckman Coulter Inc., USA). Glucose, HDL cholesterol,

triglycerides and high-sensitivity C-reactive protein (hsCRP) were

measured. Detailed information about the anthropometric mea-

surements and the blood tests is described elsewhere [3]. An

external quality control was performed [11–13]. Metabolic

syndrome, a progressive disorder and a useful tool for the long-

term risk assessment of cardiometabolic diseases, was defined using

the NCEP-ATPIII definition [14].

Based on reported associations between rising BMI SDS and

cardiometabolic risk and characteristics of human growth, we

divided the age scale a priori into the following intervals: birth-1

year [15,16], 1–2 years [17,18], 2–6 years [19,20], 6–10 years, and

10–18 years [21,22].

We used narrow age intervals between birth and 2 years

because of the rapid changes in the BMI during infancy: during

the first year of life the BMI mostly increases and during the

second year it decreases [16]. In addition, the BMI at 1 year of age

is strongly associated with the BMI at 7 years at age [15]. The age

limit at two years was chosen because it has been shown that a

rapid weight gain in the first two years of life is associated with

adolescent overweight [18], and that adults with impaired glucose

tolerance or diabetes have an accelerated BMI increase from two

years onward [17]. The age of 6 years tallies with the approximate

age of adiposity rebound [16,19], and the onset of adrenarche in

children [20]. The upper limit in the interval 6–10 years (y) was

chosen since most children go into puberty after 10 years of age.

The upper limit of 18 years was chosen because it marks the start

of adulthood and the cessation of height growth.

Statistical analyses. The average number of BMI data

points per subject between 0–18 years is 21. The means (and SD)

of the numbers of BMI measurements in the age intervals birth-1y,

1-2y, 2-6y, 6-10y and 10-18y are respectively 12.8 (2.1), 1.8 (0.7),

2.7 (0.9), 1.8 (0.9) and 1.9 (0.7). Individual BMI SDS trajectories

were fitted by a piecewise linear model otherwise known as the

broken-stick model [23], which has been described in more detail

in a previous manuscript [9,24]. For each subject, this model

approximates the observed BMI SDS trajectory by a series of

straight lines that connect to each other at the break ages. The

expected value of BMI SDS at a break age is called the status score.

The change between the status score at the start and the end of the

various age intervals is called the change score. The S Plus 8.0

function bs() was used to perform these analyses. For further

analyses we have used the status scores from the multilevel analysis

instead of the raw data.

To assess the relative contribution of the respective age

intervals, change scores in the age intervals were regressed on

the BMI SDS at birth and all previous change scores. When

relationships between change scores are nonlinear, quadratic

terms of the independent variables were included in these

regression calculations. By expressing residuals as BMI SDS

changes, uncorrelated independent variables describing BMI SDS

changes, conditional change scores, were obtained, and regression to

the mean was taken into account [25]. Associations between BMI

SDS changes in early life and adult outcomes were examined using

linear and logistic regression analysis, in which the BMI SDS at

birth and subsequent conditional change scores were all included

in one model. This implies that if a conditional change score

turned out to be a significant predictor of the outcome variable at

adulthood, the change score is a significant predictor of the

outcome variable, irrespective of the BMI SDS at birth and

preceding change scores. Age, gender, exclusive breastfeeding

(,90 vs. $90 days), cigarette smoking (none vs. $1 cigarette a

day) of the subject, and parity and BMI of the mother were studied

as possible confounders. Effect modification for gender was tested

by including the interaction between gender and change scores (at

a type 1 error rate of 0.05). Non-linearity was tested by adding

quadratic terms of subsequent conditional BMI SDS scores to the

models (at a type 1 error rate of 0.05). Standardized regression

coefficients were calculated to estimate the impact of a unit

standard deviation in the predictor.

The outcome variables were the components of the metabolic

syndrome, skinfold thickness and hsCRP value. The age of the

subjects varied between 18 and 28 years. The residuals of the

blood concentrations and SBP and DBP showed a skewed

distribution. These variables were log-transformed so that the

distribution is closer to normal. The regression coefficients and

outcome variables were standardized so that the effects on

different outcomes can be compared quantitatively. Results were

adjusted for gender and age. As far as indications existed for

confounding by parity, exclusive breastfeeding, smoking behavior,

and BMI of the mother (p,0.10), the outcomes were also adjusted

for these variables.

For the models with the highest (adjusted) explained variance

(i.e. $0.25), the effects of the change scores on the levels of the

outcome variables at young adulthood were quantified. The

BMI and Cardiometabolic Risk
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change in the levels of these outcomes was calculated for a

hypothetical increase in the conditional change score from 0 to 1

SDS for each age interval.

Results

Characteristics of the study population (n = 642) and the results

of the anthropometric measurements and blood tests are shown in

Table 1. Significant differences between adult males and females

are found for the levels of waist circumference, skinfold thickness,

HDL cholesterol, hsCRP, fasting glucose and systolic blood

pressure.

Table 2 shows the standardized regression coefficients for

cardiometabolic risk factors at young adulthood as a result of the

multiple linear regression analyses. BMI SDS at birth and the

conditional change scores were modeled as independent variables.

No evidence was found for confounding by exclusive breastfeeding

and smoking behavior of the subject, or parity and BMI of the

mother, so these variables were not included in the final models.

The quadratic term of the conditional change score did not appear

to be significantly related to the outcome variables (p.0.05) for

any of the age intervals.

The explained variance is highest for the outcomes of the two

anthropometric measurements, waist circumference and skinfold

thickness, followed by systolic blood pressure and the hsCRP level.

All conditional change scores from birth onwards show a

significant relationship with waist circumference and skinfold

thickness at young adulthood. The conditional change score 2-6y

is the only significant predictor for all outcome variables, with the

exception for fasting glucose for which no significant relation was

found for any age interval. Moreover, the conditional change score

2-6y is most predictive of the outcome variables, with the

exception for triglycerides and HDL cholesterol. It is noteworthy

that the regression coefficient of 6-10y was positive for HDL

cholesterol, whereas for other age intervals, the regression

coefficient was negative. Apart from the anthropometric outcomes,

the only other outcome that was predicted by a BMI increase

before the age of 2 years was hsCRP, i.e. by change score 0-1y.

The odds ratios of MetS at young adulthood are also shown.

Significant odds ratios were found for the conditional change

scores 2-6y and 10-18y. The age interval 2-6y and after that 10-

18y are most strongly related to the prevalence of MetS (OR was

3.39 and 2.84 respectively).

Figure 1 shows associations between the conditional change

score from 0 to +1 SDS for the respective age intervals for the

models with the highest adjusted explained variance (.0.25) and

the actual changes in the values of the outcome variables. The

change in these outcome variables is highest for the age interval 2-

6y. This figure also shows differences between males and females.

Discussion

Our aim was to assess the relationship of change scores during

childhood (BMI SDS changes) with cardiometabolic risk at young

adulthood. All BMI changes, including those before the age of 2

years, were significantly related with waist circumference and

skinfold thickness at adult age. However, the association between

BMI changes and other cardiometabolic risk factors at adulthood,

except for hsCRP, only became apparent from the age of 2y

onwards. The change scores 2-6y and 10-18y were most predictive

of the outcome variables (Table 2). An unexpected finding was

that the relationship between the change score 6-10y and HDL

cholesterol at young adulthood was positive (p = 0.004). The

change scores 2-6y and 10-18y were associated with high risk for

metabolic syndrome, with the change score 2-6y having the

highest odds-ratio (3.39, 95%CI 2.33–4.94).

Our results are highly similar to the findings of the New Delhi

Birth Cohort, even though the studied populations differ to a great

extent with respect to ethnicity and welfare [5]. In both cohorts the

BMI changes from 2 years onwards are associated with

cardiometabolic risk. Due to the chosen study design, we were

able to distinguish the impact of relatively small age intervals.

For the first two years of life, the available evidence to date

points in different directions [7,26–28]. We found, in line with the

New Delhi Birth Cohort [5], the BMI SDS increase between birth

and the age of 2 years to be related only to waist circumference

and skinfold thickness at young adulthood, whereas for all other

identical outcomes in both cohort studies no significant relation-

ships were found. In addition, we found that the BMI SDS

increase between birth and 1y is also related to hsCRP, a strong

predictor of cardiometabolic risk [29], which was not included in

the Delhi Birth Cohort study. This would suggest that the hsCRP

is more sensitive to BMI SDS increase between 0-1y than other

studied outcomes. Generally, the age interval 1-2y showed even

weaker associations than the age interval 0-1y. What happens

during the age interval 1-2y seems to have very little effect on later

cardiometabolic risk. We have no clear explanation for this

finding. The way the fat mass expands at different ages during

childhood, either by increasing the number of adipocytes or by

increasing fat cell volume[30,31], and/or the development of

motor skills, may play a role.

Another study found that the age interval 1 to 5 years predicts

systolic blood pressure whereas before 1 year of age no relationship

was found [28]. This finding also seems in line with our results as

Table 1. Characteristics of the study population (n = 642) and
the outcomes of the anthropometric measurements and
blood tests by gender.

Males Females

Characteristics n mean SD n mean SD

age at young adulthood (y) 265 23.10 2.92 377 23.04 2.94

BMI at young adulthood
(kg/m2)

265 23.06 3.40 377 23.58 3.94

BMI mother (kg/m2) 218 24.9 3.88 323 25.72 4.41

BMI father (kg/m2) 210 26.05 2.95 285 26.31 3.08

waist circumference (cm)* 265 84.31 9.75 377 79.13 10.19

skinfold thickness (mm)* 264 44.85 22.00 372 67.51 26.16

HDL cholesterol (mmol/L)* 265 1.25 0.92 377 1.48 0.33

triglycerides (mmol/L) 265 0.95 0.61 377 0.95 0.53

hsCRP (mg/L)* 264 2.42 3.60 364 3.24 3.74

fasting glucose (mmol/L)* 265 5.23 0.55 377 5.00 0.02

systolic blood pressure
(mmHg)*

265 135.01 13.15 377 121.94 11.74

diastolic blood pressure
(mmHg)

265 76.05 8.76 377 76.05 9.01

n % n %

parity (% firstborn) 265 58.1 377 61.8

breastfeeding ($90 days) 265 24.9 377 25.2

smoking behaviour 265 24.2 377 23.9

metabolic syndrome 265 6.4 377 8.2

*statistically significant difference between males and females (p,0.05).
doi:10.1371/journal.pone.0013966.t001

BMI and Cardiometabolic Risk

PLoS ONE | www.plosone.org 3 November 2010 | Volume 5 | Issue 11 | e13966



T
a

b
le

2
.

H
e

al
th

o
u

tc
o

m
e

s
at

yo
u

n
g

ad
u

lt
h

o
o

d
b

y
m

u
lt

ip
le

an
d

lo
g

is
ti

c
re

g
re

ss
io

n
an

al
ys

e
s

in
m

o
d

e
ls

in
cl

u
d

in
g

B
M

I
SD

S
at

b
ir

th
an

d
th

e
co

n
d

it
io

n
al

ch
an

g
e

sc
o

re
s.

S
ta

n
d

a
rd

iz
e

d
re

g
re

ss
io

n
co

e
ff

ic
ie

n
ts

a
n

d
9

5
%

C
I

O
u

tc
o

m
e

v
a

ri
a

b
le

s
(i

n
S

D
S

)
B

M
I

S
D

S
a

t
b

ir
th

ch
a

n
g

e
sc

o
re

b
ir

th
-

1
y

B
ch

a
n

g
e

sc
o

re
1

-2
y

B

ch
a

n
g

e
sc

o
re

2
-6

y
B

ch
a

n
g

e
sc

o
re

6
-1

0
y

B

ch
a

n
g

e
sc

o
re

1
0

-1
8

y
B

A
d

ju
-

st
e

d

e
x

p
la

in
e

d
v

a
ri

a
n

ce
w

ai
st

ci
rc

u
m

fe
re

n
ce

0
.1

0
0

.0
4

–
0

.1
6

*
*

0
.2

4
0

.1
8

–
0

.3
0

*
*

0
.1

2
0

.0
8

–
0

.1
6

*
*

0
.4

7
0

.4
3

–
0

.5
1

*
*

0
.2

3
0

.1
7

–
0

.2
9

*
*

0
.3

6
0

.3
2

–
0

.4
0

*
*

0
.6

0

sk
in

fo
ld

th
ic

kn
e

ss
0

.0
7

0
.0

1
–

0
.1

3
*

*
0

.2
0

0
.1

4
–

0
.2

6
**

0
.0

9
0

.0
3

–
0

.1
5

*
*

0
.3

8
0

.3
2

–
0

.4
4

*
*

0
.2

4
0

.1
8

–
0

.3
0

*
*

0
.3

3
0

.2
9

–
0

.3
7

*
*

0
.5

6

sy
st

o
lic

b
lo

o
d

p
re

ss
u

re
A

0
.0

2
2

0
.0

4
–

0
.0

8
0

.0
1

2
0

.0
5

–
0

.0
7

0
.0

0
2

0
.0

6
–

0
.0

6
0

.1
9

0
.1

3
–

0
.2

5
*

*
0

.1
1

0
.0

5
–

0
.1

7
*

*
0

.1
1

0
.0

5
–

0
.1

7
*

*
0

.2
8

d
ia

st
o

lic
b

lo
o

d
p

re
ss

u
re

A
0

.0
2

2
0

.0
6

–
0

.1
0

0
.0

4
2

0
.0

4
–

0
.1

2
0

.0
1

2
0

.0
7

–
0

.0
9

0
.2

0
0

.1
2

–
0

.2
8

*
*

0
.1

0
0

.0
2

–
0

.1
8

*
0

.0
4

2
0

.0
2

–
0

.1
0

0
.0

6

H
D

L
ch

o
le

st
e

ro
lA

2
0

.0
1

2
0

.0
9

–
0

.0
7

2
0

.0
7

2
0

.1
5

–
0

.0
1

2
0

.0
5

2
0

.1
3

–
0

.0
3

2
0

.0
8

2
0

.1
6

–
0

.0
0

*
0

.0
9

0
.0

1
–

0
.1

7
*

2
0

.1
0

2
0

.1
6

–
2

0
.0

4
*

*
0

.1
8

tr
ig

ly
ce

ri
d

e
sA

0
.0

0
2

0
.0

8
–

0
.0

8
0

.0
0

2
0

.0
8

–
2

0
.0

8
2

0
.0

6
2

0
.1

4
–

0
.0

2
0

.1
8

0
.1

0
–

0
.2

6
*

*
0

.0
8

0
.0

0
–

0
.1

6
*

0
.2

1
0

.1
5

–
0

.2
7

*
*

0
.0

9

fa
st

in
g

g
lu

co
se

A
2

0
.0

3
2

0
.1

1
–

0
.0

5
0

.0
2

2
0

.0
6

–
0

.1
0

2
0

.0
6

2
0

.1
4

–
0

.0
2

0
.0

6
2

0
.0

2
–

0
.1

4
0

.0
0

2
0

.0
8

–
0

.0
8

0
.0

5
2

0
.0

1
–

0
.1

1
0

.0
5

h
sC

R
P

A
2

0
.0

4
2

0
.1

2
–

0
.0

4
0

.1
0

0
.0

2
–

0
.1

8
*

0
.0

2
2

0
.0

6
–

0
.1

0
0

.1
6

0
.0

8
–

0
.2

4
*

*
0

.0
9

0
.0

1
–

0
.1

7
*

0
.1

5
0

.0
9

–
0

.2
1

*
*

0
.2

7

O
d

d
s

ra
ti

o
s

an
d

9
5

%
C

I

M
e

tS
1

.3
1

0
.8

8
–

1
.9

3
1

.3
0

0
.8

8
–

1
.9

3
0

.9
5

0
.6

4
–

1
.4

0
3

.3
9

2
.3

3
–

4
.9

4
*

*
1

.3
0

0
.9

3
–

1
.8

2
2

.8
4

1
.9

4
–

4
.1

5
*

*

A
ll

an
al

ys
e

s
ar

e
ad

ju
st

e
d

fo
r

ag
e

an
d

g
e

n
d

e
r.

*0
.0

0
2

,
p

,
0

.0
5

,
**

p
,

0
.0

0
2

(s
ta

ti
st

ic
al

ly
si

g
n

if
ic

an
t

re
la

ti
o

n
s

ar
e

p
ri

n
te

d
in

b
o

ld
;

p
,

0
.0

5
).

A
Lo

g
tr

an
sf

o
rm

e
d

va
ri

ab
le

s.
B
T

h
e

in
d

e
p

e
n

d
e

n
t

va
ri

ab
le

s
b

e
tw

e
e

n
b

ir
th

an
d

1
8

y
ar

e
co

n
d

it
io

n
al

m
e

as
u

re
s.

i.e
,

th
e

y
ar

e
re

g
re

ss
e

d
o

n
th

e
B

M
I

SD
S

at
b

ir
th

an
d

p
re

vi
o

u
s

ch
an

g
e

sc
o

re
s,

so
th

e
B

M
I

SD
S

ch
an

g
e

s
ar

e
u

n
co

rr
e

la
te

d
.

T
h

e
fo

rm
u

la
to

o
b

ta
in

th
e

co
n

d
it

io
n

al
ch

an
g

e
sc

o
re

s
is

X
re

s
n

=
Y

-
a

-
b

.
Z

0
-
c

(n
-(

n
-1

))
. .

X
re

s
(n

-(
n

-1
))

-
c

(n
-(

n
-2

))
X

re
s

(n
-(

n
-2

))
-

...
...

-
c

(n
-1

).
X

re
s

(n
-1

),
w

h
e

re
Z

0
e

q
u

al
s

B
M

I
SD

S
at

b
ir

th
,

X
re

s
n

co
n

d
it

io
n

al
ch

an
g

e
sc

o
re

s,
an

d
Y

th
e

o
u

tc
o

m
e

va
ri

ab
le

.
If

st
at

is
ti

ca
lly

si
g

n
if

ic
an

t
th

e
q

u
ad

ra
ti

c
te

rm
o

f
X

re
s

n
w

as
ad

d
e

d
to

th
e

fo
rm

u
la

.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
0

1
3

9
6

6
.t

0
0

2

BMI and Cardiometabolic Risk

PLoS ONE | www.plosone.org 4 November 2010 | Volume 5 | Issue 11 | e13966



the age intervals 1-5y and 2-6y largely overlap. In contrast, some

other studies have found a significant relationship of growth before

the age of one or two years with blood pressure, HDL cholesterol

or triglycerides [26,27]. These different findings might be due to

specific characteristics of the populations studied, such as small for

gestational age at birth or short stature at adulthood [26,27].

Further research, addressing the relationships between population

characteristics, such as prematurity and dysmaturity, and growth

parameters during the first two years of life, might clarify the

differences between some of these study results.

The positive regression weight between the change score 6-10y

and HDL level at young adulthood (p = 0.004) is not in accordance

with the expected negative regression weights of all other age

intervals. An explanation for this finding might be the supposedly

protective effect of subcutaneous fat against cardiometabolic risk

[32], which during late childhood contributes more to the BMI

increase than visceral fat [6]. Further research is needed to

investigate this hypothesis. The protective effect of subcutaneous

fat might also partly explain that the association between the BMI

SDS change in this age interval and the outcome variables is

generally weaker than in the age intervals 2-6y and 10-18y.

As shown in Figure 1, an increase in the conditional change

scores from 0 to +1 BMI SDS is associated with substantial

increases in waist circumference, skinfold thickness, systolic blood

pressure and hsCRP at young adulthood. Consistent with other

studies [14,33–35], the levels of waist circumference, skinfold

thickness, systolic blood pressure and hsCRP for males and

females differ (Table 1). As no significant interaction between

change scores and gender has been found, the different increases

for males and females are due to the different levels for waist

circumference, skinfold thickness, systolic blood pressure and

hsCRP for males and females. In relative terms, the found

increases in these outcome variables are approximately the same

for both sexes.

Our study has some limitations. The age intervals were chosen

on substantive grounds. However, it is noteworthy that this choice

might have influenced the study results. By combining subsequent

age intervals, the relationship with the outcome variable will be an

average of the relationships of these age intervals. Also, increasing

the width of an age interval generally increases the chance that a

significant relationship will be found and vice versa. As in most

birth cohorts, there was a loss to follow-up [5,6]. However,

selection bias is very unlikely. First, the males and females who

participated were representative with regard to the baseline

characteristics of the original cohort [3], and second, for this

within-sample analysis, there is no reason to assume that a

difference exists between those included and not included in the

study with regard to the relationships of the changes in BMI status

at childhood with the studied outcomes at adulthood. The strength

of our study is that it is population-based, with an average of 21

Figure 1. Association between the conditional change score from 0 to +1 SDS for the respective age intervals and the actual change
(+/2 1 SE) of several outcome variables. Outcome variables are respectively a) waist circumference (cm), b) skinfold thickness (mm), c) systolic
blood pressure (mm Hg) and d) hsCRP (mG/L) at 23y (males: black squares, females: white circles)
doi:10.1371/journal.pone.0013966.g001
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measurements between birth and young adulthood. Also, all

height and weight measurements throughout childhood were

recorded prospectively and the measurements in adulthood have

been performed according to a protocol by specially trained

personnel.

Notwithstanding the fact that several findings in our study are

reason for further research or give rise to new hypotheses, our

study shows that BMI SDS changes from 2 to 18 years are related

to increased cardiometabolic risk at young adulthood, the age

interval 2-6y being the most predictive. Along with the highest

odds ratio on MetS for this age interval, our findings suggest that

preventing BMI SDS increase during this age interval has the

potential to prevent cardiometabolic disease at adulthood.

Monitoring and stabilizing the BMI SDS of children as young as

2-6y may not only reverse the development towards adult

overweight [4], it may also safeguard cardiometabolic status.
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