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During the COVID-19 pandemic, it became clear that pandemic waves and population responses 
were locked in a mutual feedback loop in a classic example of a coupled behavior-disease system. 
We demonstrate for the first time that universal differential equation (UDE) models are able to 
extract this interplay from data. We develop a UDE model for COVID-19 and test its ability to 
make predictions of second pandemic waves. We find that UDEs are capable of learning coupled 
behavior-disease dynamics and predicting second waves in a variety of populations, provided 
they are supplied with learning biases describing simple assumptions about disease transmission 
and population response. Though not yet suitable for deployment as a policy-guiding tool, our 
results demonstrate potential benefits, drawbacks, and useful techniques when applying universal 
differential equations to coupled systems.

1. Introduction

The COVID-19 pandemic generated an enormous demand for mathematical models. Models were developed to simulate and 
predict environmental effects [1,2], understand economic trade-offs, [3–5], and most prominently, to predict cases and guide policy 
[6–8]. Disease transmission models were often mechanistic in nature, seeking to represent known or hypothesized transmission 
mechanisms in a mathematical, stochastic, or agent-based framework [9–11].

The advance warning provided by these models allowed public health institutions to prepare by implementing policies to mitigate 
the second wave when it arrived [12,13]. Modeling efforts were widely applied to investigate the impact of public health measures 
such as testing [14], school and workplace closures [15,16], vaccination strategies [17–20], or to stimulate action by projecting the 
impacts of a worst-case ‘do nothing’ scenario where governments and populations did not attempt to mitigate the pandemic [13,15].

Fortunately, most governments and members of the public did respond to the pandemic by taking measures to reduce case 
incidence. Numerous studies have shown that non-pharmaceutical interventions such as lockdowns, school closures, and social 
distancing protocols reduce case notifications and health impacts of COVID-19 [21–24]. The anticipation of infection risk in the face 
of rising case incidence supports adherence to these measures [25]. However, these prophylactic measures are economically costly 
and mentally fatiguing [26,27]. So, as the risk of infection wanes, the public’s willingness to abide by them wanes as well.

The ensuing relaxation of COVID mitigation efforts may potentially result in another pandemic wave. This two-way interaction 
– where infection spread influences behavior, which in turn influences infection spread, – suggests that the concept of coupled 
behavior-disease systems [28] may be useful for studying COVID-19 pandemic waves.
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As such, many mechanistic models informed by economic, social, or psychological assumptions have incorporated behavior-

disease dynamics to study the impact of interventions in the context of population behavioral feedbacks [29–35], including for 
COVID-19 [36–39]. The movement of people within and between communities has been particularly useful for this purpose [17,

40].

Among the most valuable insights provided by these models is the occurrence of multiple pandemic waves, which are predicted 
under a wide range of conditions by these models due to waning stringency causing a resurgence of the infection [41,17,42,43]. 
With hindsight, we can confirm that these models were correct – second waves occurred virtually everywhere during the COVID-19 
pandemic (and did so before the arrival of new variants).

Alongside these mechanistic models, the plethora of epidemiological, sociological, and economic data generated by the pandemic 
allowed machine learning models to flourish [44–48]. These models have proven adept at integrating vast quantities of data on 
a multitude of factors (including behavior) affecting disease spread. Consequently, they often adapt better to regional variability 
compared to mechanistic models [48,47]. However, machine learning models have significant drawbacks. They can fit existing data 
well and accurately predict days to a couple of weeks into the future, but pay for this predictive accuracy with reduced interpretability 
compared to traditional models [44]. Compared to mechanistic models with relatively few easily understood parameters, it is far 
more difficult to extract qualitative understandings of disease dynamics (such as second waves) from the hundreds or thousands of 
parameters in purely machine-learning models. They are also easy to over-fit (although mechanistic models also suffer from this 
risk), meaning their predictive value may be limited.

Recently, advances in high-performance automatic differentiation have enabled new techniques that combine the interpretability 
and qualitative understanding from mechanistic models with potentially higher predictive power and scalability of machine learning. 
Physics-informed machine learning (PIML) is one such methodology. The key idea is to create ML models that encode physical laws 
by inferring them from large amounts of data (observational bias), building them into the model’s architecture (structural bias), or 
training the model to uphold them (learning bias) [49].

Of particular interest for qualitative epidemic modeling are the latter two biases, as they reduce the model’s reliance on large 
amounts of data. By incorporating these biases, the model is prevented (in the case of structural biases) or at least discouraged (for 
learning biases) from making biologically impossible predictions such as negative population sizes or proportions that do not sum to 
unity. Learning biases can also discourage overfitting the data by introducing other objectives for the model.

Thus far, learning biases have primarily been limited to solving various forms of partial differential equations (PDEs) [50–52]. In 
these models, a neural network is trained to simultaneously fit data and to satisfy a PDE. In addition to physics, learning biases have 
been used in biologically informed machine learning (BIML) applications. These include blood flow dynamics [53], drug responses 
[54], and cancer detection and classification [55–57].

In terms of structural bias, universal differential equations (UDEs) have recently emerged as a method of interest. UDEs involve 
training neural networks embedded in differential equation models. Known dynamics can be included explicitly while leaving un-

known processes to be learned by the neural network [58]. The explicit parts of the UDE can be made to retain valuable laws such 
as invariant quantities. UDEs have been applied successfully on predator-prey models, metabolic networks, batteries, and photonics 
[58,59]. For instance, recent research uses a neural network to learn the change in COVID-19 quarantine measures in a population 
over time, within the framework of a modified QSEIR (quarantine, susceptible, infectious, recovered) model. The trained network 
was then used to quantify the effectiveness of those measures for different regions [46,60].

UDEs and learning biases both have a promising track record in these contexts, but their ability to make qualitative long-term 
predictions about coupled behavior-disease dynamics (of the sort provided by mechanistic models) has not yet been widely tested. 
In fact, to our knowledge, learning biases and UDEs have yet to be combined at all.

This research gap motivated our study. Our objective was to combine observational biases (UDEs) with satisfiable learning biases 
in a coupled behavior-disease model for COVID-19. We trained a compartmental UDE model to fit behavioral and epidemic data while 
penalizing deviations from several simple socio-biological assumptions. We hypothesized that a UDE model can learn the pattern 
of coupled behavior-disease interactions and hence predict a second wave (either qualitatively or quantitatively), having only seen 
the first wave (and its learning biases). We also hypothesized that without those learning biases, the model will learn much less 
effectively. We note that mechanistic epidemic models [10] commonly predict a second wave of COVID-19 if the modeler imposes 
an increase in the contact rate parameter after the first wave, to replicate the effect of relaxing restrictions [61]. In contrast, here we 
are interested in the more challenging problem of endogenizing the decision to relax restrictions by using a coupled behavior-disease 
dynamical framework that is intended to predict decision-making regarding COVID-19 restrictions, along with the resulting changes 
in the contact rates.

2. Results

A complete description of our model appears in the Materials and Methods section. A complicated mathematical model can easily 
be made to fit an epidemic curve, but runs the risk of over-fitting the data and thus not being useful for prediction [62,63]. Simpler 
mathematical models allow us to test our hypotheses by incorporating aspects we understand without becoming overburdened by 
details that we cannot reliably describe mathematically [63].

Hence, we used a UDE framework that allows us to leave the coupled behavior-disease dynamics of a simple compartmental 
behavior-disease model unspecified, save for a few plausible assumptions (“learning biases”). In doing so, we can test the validity 
2

of those assumptions. Compartmental models divide the human population into mutually exclusive compartments based on infec-
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Fig. 1. Infection prevalence time series predictions for all regions produced by the model with learning biases. Infection prevalence is the proportion of the total 
population that is infected at any given time. Green dots represent training data (first 22 weeks) and black dots show unseen data (a further 23 weeks). Predictions 
are generated using the median (solid line) and interquartile range (ribbon) of 100 independently trained instances of the model per region. Note that many of these 
populations (e.g. Texas, California) had larger first waves than is apparent in these plots, on account of high under-reporting rates in the first wave. In all regions, the 
model fits training data well. It frequently predicts a second wave in all regions except Ontario and British Columbia, in which it predicts greater continuation of the 
first wave.

tious status, and which are generally implemented as differential equations. These models have been a mainstay of mathematical 
epidemiology for decades [10].

The algorithm learned the manner in which the force of infection responds to mobility and manner in which mobility responds 
to its current value, the number of active cases, recent new cases, and recovered cases. The learning biases inform the model with 
several plausible assumptions: namely, that force of infection increases with mobility, that mobility decreases with more active and 
recent cases, that mobility tends toward 0 (the pre-COVID average) in the absence of cases, that this tendency is stronger the more 
people have recovered, and that mobility cannot fall below a 100% reduction or exceed a 200% increase from the pre-COVID average 
(see Methods). The learning biases strongly discourage infeasible values of mobility and make data-fitting relatively less important 
for the optimizer. As a result, the model makes out-of-sample predictions (i.e. second waves) frequently.

To ensure consistent and repeatable results, we ran the model on each region 100 times both with and without learning biases. 
We trained the algorithm on the first wave and tested whether it could predict the second wave. Overall, the model with learning 
biases was successful in every region in which we tested it, though some more so than others. It consistently learned to fit the data 
and constraint losses, predicted second waves, and seldom made biologically implausible predictions.

We compared UDE models with and without learning bias. The model without learning biases, while not entirely a failure, was 
much less successful. Though it was generally able to fit the data, it predicted second waves much less frequently and made many 
more unrealistic predictions. Details are provided in the following subsections.

2.1. Model predictions

To get a sense of the model’s average behavior, we plotted the median prediction of the 100 simulations for each region. An 
example for New York can be found in Section 2, Fig. 2(a-f) (analogs for other regions can be found in the Supplementary Appendix, 
figures 3-13). The model with learning biases has consistent behavior within the training region. The median prediction shows a 
small second wave and the interquartile range shows one of similar size to the first.

The model without learning biases fits the data comparably well, but has greatly reduced variability outside of the training 
region. Second wave predictions are smaller or non-existent, typically only suggested by the upper quartile rather than the median. 
Section 2.1 Table 1 gives a numerical summary of the biased model’s second wave prediction performance across all regions (an 
analogous table for the unbiased model can be found in the Supplementary Appendix (Table 1). Section 2.1 Fig. 1(a-m) shows a 
graphical summary of the biased model’s performance across all regions. The Supplementary Appendix (Figure 2) contains an analog 
3

for the unbiased model.
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Table 1

Summary of true second wave and the biased model’s second wave predictions.

Region True peak time12 True size1 Prediction rate Mean predicted time13 Mean predicted size

Austria 294 1.15 × 10−2 0.86 222 5.88 × 10−2
Belgium 273 1.67 × 10−2 0.68 217 5.18 × 10−2
Germany 315 4.90 × 10−3 0.78 259 4.53 × 10−2
Netherlands 273 8.50 × 10−3 0.68 226 4.09 × 10−2
Italy 287 9.18 × 10−3 0.83 214 4.46 × 10−2
United Kingdom 280 6.44 × 10−3 0.63 266 2.95 × 10−2
California, USA 336 1.85 × 10−2 0.17 454 2.74 × 10−3
New York, USA 350 1.26 × 10−2 0.79 276 1.94 × 10−2
Pennsylvania, USA 329 1.29 × 10−2 0.80 212 2.05 × 10−2
Texas, USA 217 3.27 × 10−3 0.25 342 9.89 × 10−3
British Columbia, Canada 308 2.56 × 10−3 0.047 357 2.52 × 10−3
Ontario, Canada 343 3.54 × 10−3 0.098 158 4.19 × 10−3
Quebec, Canada 336 4.84 × 10−3 0.48 534 1.79 × 10−2

1 Calculated using the same mechanism as in section 4.3.
2 Measured in days since February 18, 2020.
3 Excluding simulations which do not predict second waves.

Fig. 2. Predicted time series of all model states for New York state with learning biases (a-c) and without (d-f). Panels (a) and (b) show susceptible fraction, (b) and 
(d) show infected, and (c) and (f) show mobility. Green dots represent training data, while black dots represent unseen data. All predictions are generated using the 
median (solid line) and interquartile range (ribbon) of 100 independently trained instances of the model.

2.2. Biological feasibility

Both models, with and without learning biases, tended to make feasible predictions, in the sense that all model states remained 
within their respective bounds. The biased model was stable 88% of the time, while the unbiased model was stable 85% of the time, 
across all regions.

However, when evaluating the learning bias loss functions on the trained models, it becomes clear that the model with learning 
biases is more reliable in this regard. The biased model achieves better losses across all loss objectives, including accuracy, compared 
to the unbiased model. Comparison of all loss functions can be found in the supplementary material.

The unbiased model does particularly poorly on the mobility upper and lower bounds (on the order of 104 times worse than 
biased), and the tendency for mobility to return to baseline in the absence of infection (roughly 103 times worse).

2.3. Second wave prediction

As a more robust metric for second wave prediction, we counted the number of local maxima exceeding at least 10−3 in the 
infected time series for each model simulation. The value 10−3 was tuned to exceed the size of any insignificant background fluctua-

tions during the lulls between actual waves. With learning biases, the model predicted second waves regularly for most regions. (For 
4

example, it predicted second waves more than 63% of the time for all European regions. It performed worst on Ontario and British 
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Fig. 3. Predicted force of infection based on mobility level for New York state with learning biases (a) and without (b). Dotted lines indicate values of mobility seen 
by the model during training. Solid line shows the median prediction of 100 model instances and ribbon shows interquartile range.

Columbia. This may be because the training data for these regions did not include the peak of the first wave, so the model predicts 
the first wave to increase further.

The unbiased model, meanwhile, rarely predicted second waves for any region (see Supplementary Appendix Table 1 for details). 
Its best performance was on Quebec, where it predicted second waves 51% of the time. This was also the only region in which it 
outperformed the biased model, which predicted second waves 48% for of the time. Otherwise, it predicted second waves less than 
66% as often as the biased model, sometimes as little as 1.6% as often. It predicted no second waves at all for British Columbia.

Most of the time, both models predict the second wave too early (exceptions being Texas and Quebec), but the biased model’s 
estimate is usually closer (only excepting Texas and Quebec). In terms of wave size, both models’ median predictions undershoot the 
actual second wave size, but the biased model’s upper quartile frequently exceeds it. The biased model’s upper quartile only exceeds 
the true size for Germany and otherwise falls well short of it.

2.4. Transmissibility

One of the main uses of this model is that the trained neural network representing the force of infection can, once trained, be 
analyzed to examine the learned relationship between mobility and the transmission rate.

Section 2.4 Fig. 3(a,b) shows the distribution in the response of 𝛽 to mobility predicted by the model with learning biases for 
New York. The models all converge on the same relationship within the training region and on low out-of-sample values, but they 
diverge for large ones. It is also worth noting that the prediction is, as expected, monotonically increasing. Once again, all regions 
demonstrate similar behavior (see Supplementary Appendix figures 14-24).

As with the time series predictions, the model without learning biases fits the data similarly well within the region on which it 
has been trained. However, outside that region, it extrapolates a flatter curve that is about equally likely to be higher or lower than 
the median.

For a quantitative sense of how 𝛽 responds to mobility, we evaluated each trained network at the baseline value of mobility to 
determine the value of 𝛽, and hence 𝑅0 (= 𝛽∕𝛾), the basic reproduction number of the virus at the baseline value of mobility. We also 
applied Newton’s method to the trained neural network to find the value of mobility (𝑀𝑐𝑟𝑖𝑡) at which 𝑅0 drops below 1, the value 
below which the infection will die out [64]. Results for the biased model can be found in table Section 2.4 Table 2. The unbiased 
model results are negligibly different for the 𝑅0. The results for 𝑀𝑐𝑟𝑖𝑡 are more variable. These unbiased model results can be found 
in the Supplementary Appendix Table 2.

The 𝑅0 predictions, averaged over all simulations for a given region, range from 1.60 (British Columbia) to 2.60 (Germany). 
While estimates of 𝑅0 for COVID-19 vary significantly between countries and times, this is in line with estimates of between 2.4 and 
2.4 for the original COVID-19 strain [65–68]. It is also consistent with other models, which found Germany and the Netherlands to 
have higher values [69].

The model typically estimates that a 40-50% reduction in mobility is necessary to reduce 𝑅0 below 1. This is consistently more 
extreme than other studies have found (20-40%) [70], but not entirely implausible considering the interquartile range. That said, we 
cannot interpret any result for Belgium, California, or the UK where the interquartile range exceeds physically realistic bounds.

3. Discussion

Our results show that socially and biologically informed machine learning models can perform qualitative prediction tasks. 
When supplied with learning biases, the model routinely predicted second pandemic waves similar to those that occurred in most 
populations during the COVID-19 pandemic. The model seldom produced implausible predictions for mobility, and where it did, this 
tended to result from a failure to converge during training.

The most significant result is that the biased model predicts a second wave in every region except the Canadian province of British 
5
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Table 2

Predicted 𝑅0 and required mobility reduction.

Region Predicted 𝑅0 𝑀𝑐𝑟𝑖𝑡 Convergence1

Austria 2.2 (±0.2) −0.44 (±0.20) 0.96

Belgium 2.6 (±1.2) −0.56 (±0.54)* 0.76

Germany 2.6 (±0.3) −0.51 (±0.21) 0.98

Italy 2.1 (±0.5) −0.49 (±0.19) 0.99

Netherlands 2.1 (±0.2) −0.49 (±0.17) 0.99

United Kingdom 1.9 (±0.6) −0.17 (±7.99)* 0.79

California, USA 1.6 (±0.9) −0.44 (±3.96)* 0.6

New York, USA 2.4 (±0.2) −0.52 (±0.19) 0.92

Pennsylvania, USA 2.3 (±0.7) −0.56 (±0.14) 0.94

Texas, USA 1.7 (±0.8) −0.57 (±0.52) 0.82

British Columbia 1.6 (±0.1) −0.44 (±0.22) 0.99

Ontario 2.4 (±0.7) −0.65 (±0.21) 0.80

Quebec 2.3 (±1.2) −0.53 (±0.30) 0.92

Parentheses show 95% credible intervals.
1 Not all neural networks showed a root. Interval calculated using only 

those that did.
* Interval exceeds physically realistic values.

without behavioral (mobility) feedback. The biased model also tended to predict a second wave that was much larger than the first 
wave, as occurred in most populations during the COVID-19 pandemic, although the predicted second wave was often larger in 
magnitude than what occurred in reality.

This ability to predict second waves is valuable from a public health perspective, for mitigation of population health impacts. 
Though our model does not explicitly include government policy, it can influence behavior, and knowing the likely trajectory of 
future cases under current policy can help decision-makers assess whether mandates should be tightened or loosened [43,41]. In 
practice, our model could be used to simulate possible outcomes by using the trained 𝛽 network, but changing 𝑀 to a time signal 
representing total lifting of restrictions, gradual reopening, or continuing heavy restriction. Such a model may need to account in 
some way for the costs of each policy.

Mixed machine learning models need not supplant traditional models entirely, but they can be a valuable auxiliary. As our model 
shows, they need not be overly complex or computationally expensive. They can interpret large amounts of data, generalize well to 
a variety of different regions, and given appropriate learning biases, can be relied upon to make feasible predictions.

Epidemic models are often under-determined by data [71]. UDEs allow a new approach to this problem. Since neural networks 
are universal approximators [72], they can represent the full range of possible functions that could fit the available data. By training 
multiple iterations of a UDE model and analyzing their trajectories, we can see a range of feasible outcomes for the system with 
just one single model. For example, two UDE predictions can fit the data and biological constraints equally well, yet one may 
predict a massive second wave, while the other predicts a rapid return to normalcy. A third may produce several smaller waves with 
corresponding mobility changes. That said, it is important to assign sufficient weight to the learning biases to avoid discouraging 
such a range of behaviors in favor of a single, overfitted solution.

The ability of UDEs to examine a range of data-fitting functions could be further enhanced with sparse regression methods 
[58,73,74]. By applying sparse regression to our trained 𝛽 model’s output, one could derive a multitude of symbolic equations that 
could be used to mathematically model the system.

The results also support our hypothesis that learning biases are effective at accelerating training and assuring socially and biolog-

ically plausible solutions while achieving superior training performance. While some attributes can be learned passably well by the 
unbiased model given sufficient training time, the biased model still achieves better losses on these attributes by at least two orders 
of magnitude. Good performance on training data should not be taken too seriously since it may be a sign of overtraining. However, 
this does not appear to be the case in our model. The vast majority of the average training loss comes from a few highly divergent 
solutions. The improved performance by the biased model indicates reduced proclivity for such solutions.

The fact that a monotonic 𝛽 is learned comparably well by both models indicates that both of them are instrumentally useful for 
the model to learn when satisfying the loss objective. This gives a good sanity check that these features are present in the real system 
and assuming them in the model is reasonable. The upper and lower bounds on mobility, however, are not typically inferred by the 
model without explicit instruction. This is not unexpected since the observed data never nears the bounds. By fitting the data well, 
the model never needs to learn what happens at those bounds. However, including these boundaries as learning biases gives greater 
assurance that the model will not produce divergent or unstable solutions if, for example, it were used to predict what would happen 
in a scenario where those bounds were neared. Of course, it is preferable to ensure stability mathematically using structural biases, 
but this may not always be feasible. The other objective that the unbiased model tends not to learn is the tendency for 𝑀 to return 
to the baseline value of 0. This may be because, as people become accustomed to life with the virus, the “baseline,” i.e. the average 
societal preference in the absence of disease, shifts downward.

It is interesting that the learning biases help generate greater variability in the out-of-sample time series predictions. This is likely 
because, in the absence of any other objective, the model consistently converges to a single global optimum for data fitting. Since 
the model’s extended prediction tends to remain within a small region of state space (𝑀 remaining negative, 𝐼 relatively small), 
6
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the data and hence has more freedom to explore the parameter space. The fact that the constraint losses are evaluated according to 
randomly generated sample points also confers greater variability to the results of the biased model.

The biased model also has greater variability in the upper quartile of its 𝛽 response but reduced variability in the lower quartile. 
This makes sense – the biased model has learned that for any 𝑀 greater than those it has seen, the value of 𝛽 must also be greater 
(and vice-versa for 𝑀 less than what it has seen). The unbiased model, having no such information, cannot make an informed 
prediction, and so is equally likely to predict a continued increase or an unrealistic decrease.

These variability trade-offs favor the biased model. Greater variability in time series prediction is valuable because (assuming 
the predictions are biologically feasible) it shows a greater variety of possible outcomes and assigns a degree of confidence to those 
outcomes. The reduced variability in predicting the transmissibility is also desirable because it derives from a better understanding 
of the system.

Although our current model is retrospective and hence not useful as a predictive tool, it demonstrates potential for the future. 
Socioeconomic factors will continue to be complex, and regional and temporal variability will persist. If data-driven approaches can 
help overcome the challenges these factors present, we should facilitate their use by ensuring continued availability of high-quality 
data – both for endemic diseases and future pandemics. Universal differential equations specifically, when fine-tuned and supplied 
with appropriate learning biases, could be useful alongside traditional models to quickly gain perspective on the state of outbreaks 
across the world without having to develop specialized models for each region.

3.1. Limitations

We used a heavily simplified model of COVID-19. It is not intended to capture all details of the pandemic, nor is it meant to 
recommend specific health policies. We assumed the acquired immunity is permanent, which it may well not be [75]. We do not 
account for vaccines, which came into play around the end of 2020 [76]. Thus, the long-term predictions (i.e. beyond 300 days or 
so) should be taken only as evidence that the model does not produce wildly implausible behavior rather than a serious attempt 
to forecast cases too far in the future. The emergence of new variants, first reported in September 2020 [77] at the end of the 
second wave in many populations, means that predictions for the tail end of 2020 are beyond the model’s intended scope. Similarly, 
spatial structure is important and can influence dynamics [78,24]. Even in the short term, the model is not intended to predict cases 
or to precisely estimate the virus’s basic reproduction number. It is limited by our ability to consistently measure recovery rates 
and estimate under-reporting ratios, which almost certainly vary between regions and over time within regions. For simplicity, we 
also left out asymptomatic transmission, seasonal changes in infectiousness, age structure, and reinfection, all of which hamper the 
model’s short-term predictive ability compared to more complex models [71,79].

In addition to epidemiological features, the UDE framework also comes with limitations. For one, each model instance provides 
a single prediction with no indication of confidence level. We have done our best to mitigate this by running many model instances, 
but the optimization process may still favor certain solutions over others. As such, the intervals we present should not be considered 
true prediction intervals of the sort a probabilistic model might provide, but rather a general measurement of the model’s tendency. 
For another, while UDEs are a flexible framework, they are still deterministic differential equations. They do not account for intrinsic 
randomness in the system or the technically discrete nature of an epidemic. These limitations are mitigated by choosing regions 
with large, fairly concentrated populations and averaging data weekly. Further considerations on network structure are discussed in 
4.1. None of these limitations changed our conclusions, since our goal was to show that UDEs and PIML can fit available data while 
making qualitatively correct our-of-sample predictions.

3.2. Future directions

Future work could improve our model by incorporating some of the aforementioned details of the pandemic. This could give 
insight into other behavior-disease interactions like vaccine usage [80] or allow an examination of how these dynamics changed 
over the course of the pandemic. In sections 4.1-4.2.1 we also provide some methodological changes that could further develop the 
UDE/PIML themes, particularly regarding how to use learning biases effectively.

Probably the biggest opportunity for future work is to apply this type of data-driven differential equation model to other systems. 
Other infectious diseases, particularly those for which vaccines are available, are also coupled behavior-disease systems [80,74] and 
so could be amenable to this type of model. Beyond epidemic modeling, climate systems are also known to have important behavioral

components [81,82]. Ultimately, one of the greatest advantages of UDEs is that, as per their name, they can theoretically be applied 
to any dynamical system [58]. It is only a matter of testing them to see if they provide valuable insight.

4. Materials and methods

Our model is a universal delay differential equation (UDDE) based on the standard SIR (susceptible-infected-recovered) model:

𝑑𝑆(𝑡)
𝑑𝑡

= −𝛽(𝑀(𝑡− 𝜏1))𝑆(𝑡)𝐼(𝑡)

𝑑𝐼(𝑡)
𝑑𝑡

= 𝛽(𝑀(𝑡− 𝜏1))𝑆(𝑡)𝐼(𝑡) − 𝛾𝐼(𝑡)

𝑑𝑀(𝑡) = 𝑒−𝛿𝑡𝑓 (𝐼(𝑡− 𝜏 ),Δ𝐼(𝑡− 𝜏 ),𝑀(𝑡),𝑅(𝑡)) (1)
7

𝑑𝑡
1 2
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Fig. 4. Schematic of our model showing the relevant differential equations, neural networks, and training procedure. Neural networks are depicted with the actual 
topology used in the model. The learning biases are present only in the biased model. Otherwise, the biased and unbiased models have the same structure.

where 𝑆 , 𝐼 and 𝑅 represent the susceptible, infected and recovered proportions of the population respectively (𝑅 can be recovered 
as 1 − 𝑆 − 𝐼), and 𝑀 represents the relative difference in mobility compared to the baseline (i.e. 0 is the baseline, +1 is double 
the baseline, and -1 is complete reduction to no mobility. 𝛽(𝑀) represents the transmission rate as it depends on mobility, and 
𝑓 (𝐼, Δ𝐼, 𝑀, 𝑅) represents the dynamics governing social/behavioral (mobility) response to the infectious disease [42]. Both 𝛽 and 
𝑓 were learned by the algorithm. Δ𝐼(𝑡) represents the change in 𝐼 between the current time 𝑡 and a previous time 𝑡 − 𝜏2. The 
𝑒−𝛿𝑡 factor accounts for several factors that reduce the population response to the virus over time, including pandemic fatigue, the 
development of medical interventions that make the infection less fatal (such as ‘proning’), substituting less disruptive interventions 
(such as masking) for mobility reductions, and (for longer-term predictions than we study in this model) the evolution to milder 
virulence over time. 𝛿 is a trainable parameter. Section 4 Fig. 4 shows a schematic of the model.

The non-trainable model parameters are 𝛾 , the per-capita recovery rate, 𝜏1, the delay between a change in 𝑀 and the correspond-

ing change in prevalence, and 𝜏2, the reverse delay: the time between a change in prevalence and corresponding behavioral response 
[42,83]. The values we used are 𝛾 = 0.25day−1 [84], 𝜏1 = 14days, and 𝜏2 = 10days [85,70]. This does assume these variables do not 
vary spatially or temporally (which they may not).

We chose the SIR model as a template for our model for two main reasons. First, relevant data in the form of case notifications 
suffice to reconstruct the values for all model states as shown in 4.3. Second, a simple model (like the SIR model) allows all more 
complex dynamics to be learned from the data by the neural network components. A model with an “exposed” category (SEIR) or 
even something more complex could function as well, but previous work has found that although COVID-19 may have a latency 
period, the SIR model performs just as well if not better than the SEIR model for estimating disease parameters [68].

Our model inherits several structural biases from the standard SIR model template. First, 𝑆 = 0 and 𝐼 = 0 are both invariant, 
preventing any infeasible negative values for these variables. Second, it retains the conservation relation 𝑆 + 𝐼 + 𝑅 = 1. Thus, 
regardless of the functions fit by the neural network, 𝑆(𝑡) and 𝐼(𝑡) are guaranteed to be plausible. Of course, the model also inherits 
some biases and limitations from its SIR base. Namely, it assumes removal rate from death and recovery are constant and does 
not account directly for asymptomatic cases, latency period, differing severity, or potential for loss of immunity and subsequent 
reinfection.

4.1. Neural networks

The influence of mobility (i.e. contact rate) on the transmission rate is represented by neural networks that are used to represent 
𝛽(𝑀) and 𝑓 (𝐼, Δ𝐼, 𝑀, 𝑅). These networks each have linear output layers with one neuron and 2 hidden layers with 3 neurons per 
hidden layer and Gaussian Error Linear Unit (GELU) activation functions. This gives the 𝛽 network 22 parameters and the 𝑓 network 
31. Accounting for the 𝛿 decay parameter, the model has 54 trainable parameters.

UDEs present an inherent tradeoff between parsimony and bias. Part of the appeal of UDEs is the ability to represent arbitrary 
functions – including discontinuous, non-differentiable ones – with neural networks. However, this universal approximation property 
relies on arbitrarily large networks [72]. However, smaller models train faster and can achieve a more favorable ratio of predictive 
power to number of parameters. We chose to lean more towards parsimony, so our model may struggle to learn highly discon-

tinuous effects (such as the sudden implementation of country-wide lockdowns), being biased instead towards simpler continuous 
functions. The hyperparameter space was too large for us to optimize every aspect of the model, so different network parameters 
(size, activation, structure) may yield better results.

4.2. Training methodology

The baseline (unbiased) model, which received no social or biological feedback, was trained only to fit the data (details in 
section 4.3). The model’s prediction is generated by solving the delay differential equation system to get its prediction for each state 
8

at each time step. We use the method of steps with the Rosenbrock23 differential equation solver to perform this process. The model’s 
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Table 3

Biologically informed loss functions.

Biological assumption Loss function

1. 𝛽(𝑀) ≥ 0 for all 𝑀 relu(−𝛽(𝑀𝑖))
2. Higher values of 𝑀 correspond to higher values of 𝛽(𝑀) relu(𝛽(𝑀𝑖)) − (𝛽(𝑀𝑖 + 𝜖))
3. 𝑀 cannot go below a minimum value, i.e. a reduction of 100% from baseline relu(−𝑓 (𝑀min , 𝐼𝑖,Δ𝐼𝑖,𝑅))
4. 𝑀 cannot exceed a maximum value, set1 at 𝑀max = 2(𝑀baseline −𝑀min) relu(𝑓 (𝑀max , 𝐼𝑖,Δ𝐼𝑖,𝑅))
5. 𝑓 is monotonically decreasing in 𝐼 relu(𝑓 (𝑀𝑖, 𝐼𝑖 + 𝜖,Δ𝐼𝑖,𝑅)) − 𝑓 (𝑀𝑖, 𝐼𝑖,Δ𝐼𝑖,𝑅)))
6. 𝑓 is monotonically decreasing in Δ𝐼 relu(𝑓 (𝑀𝑖, 𝐼𝑖,Δ𝐼𝑖 + 𝜖,𝑅)) − 𝑓 (𝑀𝑖, 𝐼𝑖,Δ𝐼𝑖,𝑅)))
7. In the absence of infection, 𝑀 tends towards baseline relu[𝑓 (𝑀,𝐼,Δ𝐼,𝑅)(𝑀𝑖 −𝑀baseline)]
8. 𝑀 tends toward baseline more strongly when 𝑅 is higher relu[|𝑓 (𝑀,𝐼,Δ𝐼,𝑅)|− |𝑓 (𝑀,𝐼,Δ𝐼,𝑅+ 𝜖)|]
1 This upper bound is deliberately (if arbitrarily) set much higher than the maximum of the data to stop solutions diverging to infinity 

without excessively constraining the model.

predictions are recorded for each day. This prediction is then compared to the training data using a scaled mean-squared error loss 
function:

𝐿(Θ) =
𝑛∑
𝑖=1

𝑚∑
𝑗=1

(
𝑦𝑖𝑗 − �̄�𝑖𝑗

𝑚(�̄�𝑖max − �̄�𝑖min)
)2 (2)

Here, 𝑛 is the dimension of the system, 𝑚 is the number of data points, 𝑦𝑖𝑗 is the true value of the 𝑖th variable’s 𝑗th data point, and 
�̄�𝑖𝑗 is the prediction for 𝑖th variable’s 𝑗th data point. 𝑘 is the size of the parameter vector Θ, and Θ𝑙 is the 𝑙th entry in Θ. Scaling the 
loss function in this way helps ensure all variables are given equal importance despite having different ranges [86].

Both biased and unbiased models for all regions were trained on the first 160 days, giving 𝑚 = 22 data points after weekly 
averaging (see 4.3). This time period fully encompasses the first wave for all populations studied, but does not include the beginning 
of the second wave.

4.2.1. Learning biases

The socially and biologically informed model was trained to minimize the same accuracy loss objective as well as 8 other 
objectives, each encoding a social or biological assumption. These biologically informed loss functions are deliberately constructed 
to give 0 loss to any functions that satisfy the relevant assumptions. This allows the model greater freedom to explore the range of 
biologically feasible functions.

To evaluate these additional loss functions, we generate 100 random points in the region 0 ≤ 𝐼 ≤ 1, 𝐼 − 1 ≤Δ𝐼 ≤ 𝐼, −100 ≤𝑀 ≤

100 and evaluate each loss function at each point. The total loss at each iteration is then a weighted sum of these losses and the 
accuracy loss. We tried dynamically updating the weights for each loss function as in [31], but this did not significantly improve 
results. The biological assumptions and corresponding loss functions are displayed in Section 4.2.1 Table 3.

We only tested a few values for the learning bias weight. The optimal value for achieving tolerable performance on training data 
while assuring qualitatively realistic long-term predictions may be higher, lower, or vary between loss functions or throughout the 
training process.

Model parameters were randomly initialized. To save training time, parameter choices that gave initial errors of more than 104
were re-initialized. To optimize the parameters, we use the Zygote package [87] for reverse-mode automatic differentiation to obtain 
gradients of each loss function with respect to the model parameters (note that we only take the accuracy gradient for the unbiased 
model). We pass these gradient values to the Adam optimizer to update the model parameters. One training epoch thus consists of a 
one predict-differentiate-update cycle. The code used to implement this algorithm is available online (see section Data availability).

We found that training the model on the entire training set at once caused it to become stuck in a local optimum where 𝐼 never 
increased. Thus, we trained the models in stages to achieve a better fit more quickly. The model trained on the first quarter of the 
data in the first stage (50,000 epochs at a learning rate of 0.001), the first half in the second (10,000 epochs at a learning rate of 
0.001), and the entire training set in the third (20,000 epochs at a learning rate of 0.0005).

Repeating our model with more computing time and power could be informative. Although we were able to run the model with 
enough iterations to ensure all models converged to a good degree, some certainly converged better than others. The mobility data 
was a particular challenge, with fairly sharp downturns and upturns occasionally not always fully captured. This could be assisted 
by using collocation-based training to speed up the process [88].

4.3. Data

4.3.1. Case data

Daily case notification data was taken from the Johns Hopkins CSSE dataset [89]. We derived daily susceptible and infected 
proportions using the following system:

𝐼𝑇 (𝑡𝑛) = 𝐼𝑇 (𝑡𝑛−1) − 𝛾𝐼𝑇 (𝑡𝑛−1) + 5𝐶(𝑡𝑛)
9

𝑆𝑇 (𝑡𝑛) = 𝑆𝑇 (𝑡𝑛−1) − 5𝐶(𝑡𝑛) (3)
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where 𝑆𝑇 (𝑡𝑛) and 𝐼𝑇 (𝑡𝑛) are the total number of susceptible and infected individuals (not proportions) on day 𝑡𝑛 and 𝐶(𝑡𝑛) are 
the number of new cases on day 𝑡𝑛. The parameter 𝛾 is the same used in the model as discussed above. In order to account for 
under-reporting of cases, we multiply 𝐶(𝑡𝑛) by 5 (corresponding to a ratio of 4 unreported cases per reported case). This ratio is in 
accordance with prior estimates [90]

Finally, we divided 𝐼 and 𝑆 by the total population to get a proportion at each time step to ensure different regions are compa-

rable.

4.3.2. Mobility data

Daily mobility data (𝑀) comes from the Google Community Mobility Report [91]. We mean-normalized this data to give it a 
comparable range to S and I. We chose the Retail and Recreation category of mobility data as it corresponded most to what we were 
trying to measure: voluntary activities in indoor settings that place people at risk of becoming infected. It is also strongly correlated 
with infection, so it is reasonable to expect it can be a good predictor of cases. Repeating the simulations with workplace mobility 
would be a good test of the model’s validity. Other mobility measures, such as parks, would be difficult to use due to their weaker 
correlation with infections [23].

Once we had data for each day, we sub-sampled it by taking a weekly moving average to reduce irregularities from weekends, 
holidays, and days where data was not available. We set the initial condition as the first data point for which 𝐼 ≠ 0.

We chose relatively populous regions across Western Europe, the US, and Canada for which case and mobility data were available. 
All these regions experienced second waves to some degree, with varying intensities and timings. Our list of regions is non-exhaustive 
so future work could study other regions
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