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Abstract 

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), has spread into more than 200 countries and infected approximately 203 million people globally. 
COVID-19 is associated with high mortality and morbidity in some patients, and this disease still does not have effec-
tive treatments with reproducibly appreciable outcomes. One of the leading complications associated with COVID-19 
is acute respiratory distress syndrome (ARDS); this is an anti-viral host inflammatory response, and it is usually caused 
by a cytokine storm syndrome which may lead to multi-organ failure and death. Currently, COVID-19 patients are 
treated with approaches that mostly fall into two major categories: immunomodulators, which promote the body’s 
fight against viruses efficiently, and antivirals, which slow or stop viruses from multiplying. These treatments include a 
variety of novel therapies that are currently being tested in clinical trials, including serum, IL-6 antibody, and rem-
desivir; however, the outcomes of these therapies are not consistently appreciable and remain a subject of debate. 
Mesenchymal stem/stromal cells (MSCs), the multipotent stem cells that have previously been used to treat viral 
infections and various respiratory diseases such as ARDS exhibit immunomodulatory properties and can ameliorate 
tissue damage. Given that SARS-CoV-2 targets the immune system and causes tissue damage, it is presumable that 
MSCs are being explored to treat COVID-19 patients. This review summarizes the potential mechanisms of action of 
MSC therapy, progress of MSC, and its related products in clinical trials for COVID-19 therapy based on the outcomes 
of these clinical studies.
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Background
Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) [1] has caused a global pandemic of coronavirus 
disease 2019 (COVID-19) which has an R0 value that is 
similar to Spanish influenza but higher than the Middle 
East respiratory syndrome (MERS) and H1N1 influenza 

[2]. Recently, several SARS-CoV-2 variants, especially the 
highly transmissible delta (B.1.617.2) and the immuno-
evasive lambda (B.37) have caused a second wave of pan-
demics in many countries [3, 4]. Until August 31, 2021, 
more than 202,608,306 COVID-19 cases had been con-
firmed globally with a mortality rate of 2.1% based on a 
report by the World Health Organization (WHO) (www. 
WHO. int). COVID-19 has a variety of symptoms, rang-
ing from the mild, moderate, severe, and critically severe 
[5]. According to the WHO report, the vast majority of 
COVID-19-positive people developed only mild (40%) 
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or moderate (40%) symptoms; approximately 15% of 
COVID-19 patients developed severe symptoms that 
needed oxygen support, and 5% of patients developed 
critically severe symptoms with complications such as 
acute respiratory distress syndrome (ARDS), respira-
tory failure, sepsis and septic shock, and/or multior-
gan failure (including cardiac and acute kidney injury). 
ARDS is an anti-viral host inflammatory response that 
is usually caused by cytokine storm syndrome (CSS) 
which may lead to multi-organ failure and has become 
the leading cause of death in severe and critically severe 
COVID-19 patients. CSS, which is triggered by SARS-
CoV-2, involves a variety of inflammatory cytokines 
such as tumor necrosis factor (TNF), IL-2, IL-6, IL-7, 
MIP1A, granulocyte colony-stimulating factor, interferon 
gamma-induced protein 10, and chemokine (CC motif ) 
ligand (CCL) family members [6, 7]; CSS is closely linked 
to COVID specific ARDS, multi-organ failure, and even-
tual death [8–10].

Currently, there is no cure for COVID-19. According 
to WHO guidelines, severe and critically severe COVID-
19 patients should be administered anti-inflammatory 
and anti-viral drugs in addition to supportive therapies 
such as invasive and non-invasive mechanical ventilation 
[11]. To date, various drugs have been tested in clinical 
trials for their safety and efficacy, including in two major 
categories: (1) anti-viral drugs such as remdesivir [12], 
lopinavir-ritonavir [13], favipiravir chloroquine, and 
hydroxychloroquine [14]; and (2) immune-modulators 
such as anakinra, an IL-1 receptor antagonist [15], toci-
lizumab and sarilumab, both of which are IL-6 receptor 
antagonists [16], and ruxolitinib and baricitinib, which 
are Janus kinase signal inducer pathway inhibitors [17]. 
In addition to the aforementioned two major categories 
of treatments, other methods, such as neutralizing anti-
bodies [18, 19] and convalescent plasma therapy [20, 
21], are also used in the clinical fight against COVID-19. 
However, none of the above-mentioned drugs/treatments 
can significantly and reproducibly improve the symptoms 
of COVID-19 patients and are thus not recommended by 
the WHO for COVID-19 treatment. Recently, the emer-
gence of several COVID-19 variants, especially the delta 
variant that has caused rapid infection in India and other 
countries, provides an urgent impetus to find an effective 
therapy for COVID-19, especially for severe and critically 
severe patients [22, 23]. More recently, mesenchymal 
stem/stromal cells (MSCs), the multipotent stem cells 
that exhibit both virus-resistant and immunomodulatory 
activity, and that can differentiate into a variety of cell 
types (as well as its derivatives), have been used to treat 
COVID-19 patients in the clinic owing to their immu-
nomodulatory and tissue repair functions [24, 25]. This 
review focuses on the potential mechanisms of actions of 

MSC therapy, progress of MSC, and its related products 
in clinical trials for COVID-19 therapy based on out-
comes of clinical studies.

MSCs as a potential therapy against COVID‑19
MSCs are multipotent stem cells that may be isolated 
from several adult tissues including adipose tissue (AT-
MSCs), bone marrow (BM-MSCs), skin, dental pulp 
(DP-MSCs), foreskin, salivary gland, and fetal tissues 
including amniotic fluid, umbilical cord (UC-MSCs), pla-
centa, Wharton’s jelly, and cord blood (Fig.  1) [26, 27]. 
MSCs are characterized by: (1) their capacity to adhere 
to plastic surfaces, (2) their expression of CD105, CD73, 
and CD90, and their lack of expression of CD45, CD34, 
CD14 or CD11b, CD79α or CD19, and HLA-DR surface 
molecules, and (3) their capacity to differentiate into 
multiple cell lineages including adipocytes, osteoblasts, 
and chondroblasts in  vitro differentiating conditions 
[28], all of which fit the definition of stem cells as sug-
gested by the International Society for Cell & Gene Ther-
apy (ISCT). MSCs have been widely used for improving 
immune dysfunction and for facilitating damaged tissue 
regeneration [29]. Both autologous and allogeneic BM-
MSCs, UC-MSCs, and AT-MSCs [30] are applied in the 
clinic due to the low expression levels of major histocom-
patibility complex class I and the near absence of major 
histocompatibility complex class II on their surface [31]. 
Given the current extensive application of MSCs in the 
clinic, it is presumable that MSCs may be used to treat 
COVID-19 patients with a compromised immune sys-
tem, damage of organs such as the lung, and ARDS.

Possible mechanisms of MSCs underlying 
COVID‑19 treatment
In advanced stages of COVID-19 infection, CSS can 
induce ARDS, pulmonary edema, dysfunctional air 
exchange, cardiac injury, and even death. CSS also occurs 
in graft-versus-host disease during graft failure and leu-
kemia or lymphoma in response to CD19 CAR-T therapy 
[32]. CSS in COVID-19 often occurs with a median time 
of 8–14 days in an average of 15% of the infected patients 
[33]. Stimulated by the pro-inflammatory factor such as 
TNF-α [34], MSCs secrete trophic and immunomodu-
latory factors as mentioned above, MSCs express their 
functions mainly through paracrine effects, i.e., secret-
ing immunomodulatory cytokines such as indoleam-
ine 2,3-dioxygenase (IDO), prostaglandin E2 (PGE2), 
IL-6, and IL-10 to balance pro-and anti-inflammatory 
responses [35–38], as well as growth factors such as 
vascular endothelial growth factor (VEGF), hepato-
cyte growth factor (HGF), platelet-derived growth fac-
tor (PDGF), insulin-like growth factor 1, and fibroblast 
growth factor 2 (FGF2) which promote cell regeneration 
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and angiogenesis following tissue injury [39, 40]. These 
mechanisms support the notion that MSCs may reduce 
or even eliminate CSS among COVID-19 patients. On 
the other hand, MSCs can also be regulated by cell-to-
cell contact, and they can secrete extracellular vesicles 
[41]. These mechanisms support the notion that MSCs 
may reduce or even eliminate CSS of COVID-19 patients. 
The detailed possible mechanisms of action of MSCs are 
described below (Fig. 2).

Anti‑inflammation
During inflammation, impaired epithelial cells, the major 
barrier component of blood vessels and tissues, increase 
the permeability of lung tissues [42]. Previously, intratra-
cheal administration of MSCs in lipopolysaccharide-
induced inflammatory conditions in a mouse model 
has been shown to reduce inflammation and injury-
increased permeability of the lung tissues by inducing 
IL-10 through secreting PGE2, granulocyte–macrophage 
colony-stimulating factor (GM-CSF), and granulocyte 
colony stimulating factor (G-CSF) [31]. Additionally, 
MSCs release anti-inflammatory factors IL-10 and IL-4 
to repress the activation of lymphocytes and inflamma-
tory cytokines such as IL-1-α-β,, -6, -17, and TNF-α [43]. 
On the other hand, MSCs prevent infection-induced 
damage to lung tissues by decreasing the excessive secre-
tion of neutrophil extracellular traps at the infectious site 

[44]. During bacterial infections, MSCs reduces inflam-
mation and ameliorates tissue injury through at least the 
following mechanisms: (1) by diminishing the excessive 
production of neutrophils and enhancing neutrophil-
mediated phagocytosis [45], (2) promoting macrophages 
to differentiate into M1, which induces phagocytosis and 
promotes bacterial clearance, and M2, which benefits tis-
sue repair by attenuating inflammation at the infection 
site [46, 47], and (3) promoting the proliferation of regu-
latory T cells and inhibiting the proliferation of effector 
T cells, thereby diminishing the immune response and 
ameliorating lung damage in ARDS [48].

MSCs can also attenuate inflammation-linked tis-
sue injury through the regulation of transcriptional 
responses and protein–protein interaction. In a septic 
mouse model, MSCs were able to induce transcrip-
tional responses via upregulating the nuclear factor 
of activated T cells calcineurin gene family members 
that mediate the expression of cytokine genes and 
downregulating Toll-like receptor-mediated nuclear 
factor kappa light chain enhancer of activated B cells 
[49]. In an acute lung injury mouse model induced by 
lipopolysaccharide, BM-MSCs were able to generate 
a physical contact with connexin 43, a gap junction 
protein, through which MSCs released mitochondria-
containing micro-vesicles into alveolar epithelial cells. 
This transfer increased the amount of ATP in epithelial 

Fig. 1 Sources and minimal characteristic criteria of MSCs
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cells, thereby promoting the repair of alveolar endothe-
lial and epithelial barriers in acute lung injury [50]. In 
addition, a study on an Escherichia coli-induced pneu-
monia model showed that mitochondrial transfer from 
MSCs to macrophages, which occurs in part through 
nanotube-like structures, enhances phagocytic activity 
and establishes a mechanism for anti-microbial effect 
through cell-to-cell contact [51].

As mentioned above, MSCs can perform functions 
through a paracrine activity. In a rat lung injury model 
that was generated by a ventilator, the conditioned 
medium collected from an MSC culture reversed the 
lung injury via keratinocyte growth factor (KGF), which 
ameliorates the epithelial cell injury by potentiating the 
activity of Na-KATPase, anti-inflammatory cytokine 
(matrix metallopeptidase 9, IL-1α), and GM-CSF [52, 53]. 
Overexpression of some factors released by MSCs, such 
as EGF, PDGF-b, angiogenin 1, and basic FGF, increases 
cell proliferation and facilitates lung repair [54]. Studies 
from different research groups also suggested that the 
overexpression CXCR4, angiogenin 1, ACE-2, KGF, and 
HGF attenuates endotoxin-triggered lung injury, collagen 
deposition, and fibrosis and edema formation, in part by 

enhancing the anti-inflammatory and chemotactic prop-
erties of MSCs [55–58].

Immunomodulation
It has been shown that MSCs modulate the immune 
system during lung injury that is induced by respiratory 
viruses, which may also be one of the mechanisms under-
lying the COVID-19 treatment by MSCs. For example, in 
a mouse model of avian influenza virus (H5N1)-induced 
lung injury, UC-MSCs recovered the function of alveo-
lar epithelial cells, as evidenced by reduced permeability 
and elevated alveolar fluid clearance [59]. In addition, 
the function of MSCs is not significantly affected by viral 
infections, which may be partially attributed to the fact 
that intrinsically expressed interferon-stimulated genes 
(ISGs) prevent viruses from “attacking” MSCs because 
the induction of intrinsic ISGs in human MSCs trig-
gers the expression of anti-viral factors including SAT1, 
PMAIP1, ISG15, IF16, CCL2, and interferon-induced 
transmembrane protein 1 (IFITM1) [60].

The IFITM family members are important protec-
tors and prevent several viruses, including Rift Valley 
fever virus, Ebola virus, influenza A virus, dengue virus, 

Fig. 2 Potential mechanisms of action of MSCs in the treatment of COVID-19 pneumonia. MSCs regulate the COVID-19-triggered cytokine storm 
and lung damage through its immunomodulatory and trophic functions. MSCs can secrete various anti-inflammatory cytokines, e.g., PGE2, TGF-β, 
IDO, and IL-10, to promote the differentiation of macrophages from the pro-inflammatory type M1 to the anti-inflammatory type M2, to reduce the 
neutrophil infiltration, and to regulate hyper-activated T cells. On the other hand, MSCs can secrete growth factors to inhibit fibrosis and to suppress 
epithelial/endothelial cell apoptosis and influx of alveolar fluid
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reovirus, and SARS-CoV from entering cells through the 
lipid bilayer [61, 62]. Interestingly, the host cell receptor 
ACE-2 in IFITM-expressing cells prevents the internali-
zation of SARS-CoV viruses [61]. In the lungs, the ACE-2 
receptor is expressed in endothelial and alveolar type II 
cells, and these cells contribute to blocking virus entry 
and diminishing fibrosis and thus exhibiting endothelial-
protective and anti-inflammatory functions [63–65]. The 
potential benefits of overexpression of ACE-2 recep-
tors in MSCs in COVID-19 treatment warrants further 
exploration.

Cell death prevention
Regulated cell death (RCD), such as apoptosis, pyrop-
tosis, necroptosis, and autophagic cell death, plays an 
important role in injury of tissues and organs, includ-
ing lung [66]. While appropriate levels of regulated cell 
death may help tissue regeneration by removing damaged 
cells and reduce the accumulation of toxins released by 
injured cells and thus are appreciated, exacerbated regu-
lated cell death may heighten inflammatory response and 
promote tissue injury [67]. Histological examination of 
postmorten lungs of COVID-19 patients uncovered the 
presence of apoptosis and necroptosis [68], suggesting 
the contribution of regulated cell death to lung injury 
in COVID-19 patients. Interestingly, one of the major 
functions of MSCs is to prevent RCD [69]. For example, 
ARDS patients who received MSCs treatment and had 
significant improvements also had significant decrease in 
the levels of cell death [70]. However, the direct evidence 
that links MSCs treatment and decrease in cell death in 
COVID-19 patients remains to be provided, although 
MSCs may counter regulated cell death through anti-
inflammatory and immunomodulatory actions as men-
tioned above.

While it is well known that MSCs possess multi-
ple biological functions, exact mechanisms behind the 
treatment of COVID-19 patients by MSCs remain to be 
elucidated.

Clinical experience and outcomes of treatment 
of viral infections and respiratory diseases 
with MSCs: lessons from the past
MSCs have been extensively applied to treat infectious 
and non-infectious diseases because of their regenerative 
and immunomodulatory activity.

Hepatitis B virus (HBV)
Chronic HBV infection is a primary cause of severe liver 
diseases, especially in East Asian populations, and liver 
transplantation is the sole cure for the end-stage liver 
diseases such as acute liver failure and decompensated 
liver cirrhosis [71]. BM-MSCs was shown to be resistant 

to HBV infection [72], and the administration of both 
autologous BM-MSCs and allogenic UC-MSCs in liver 
failure patients caused by HBV significantly increased 
the survival rates, elevated the circulating levels of serum 
cholinesterase, albumin, platelet, prothrombin, and 
decreased serum levels of alanine aminotransferase and 
total bilirubin [73, 74]. Consistent with the above obser-
vations, Wang et  al. also reported that UC-MSCs were 
well-tolerant and increased the survival rate of patients 
with chronic HBV induced liver failure and cirrhosis [75]. 
Recently, after the long-term follow-up of 75  months, 
the MSC-treated group showed significantly improved 
liver function and a higher overall survival rate than the 
control group while there was no significant difference 
in the hepatocellular carcinoma event-free survival rate 
between these two groups [75][75]. However, to further 
clarify the safety and efficacy of MSCs in treatment of 
HBV-induced severe liver disease patients, double-blind, 
placebo control, multi-center randomized clinical tri-
als with a long-term follow-up period are needed in the 
future.

Avian influenza virus (AIV)
AIV, such as H7N9, is another potential threat in terms 
of a global pandemic of a respiratory tract infectious 
disease. H7N9-infected patients usually develop ARDS, 
acute pneumonia, and lung failure, which are similar to 
the complications of COVID-19 patients. Little is known 
from a clinical perspective regarding whether MSCs can 
be safe and effective for treatment among H7N9 patients. 
In a recent open-label clinical trial at a single center, 
Chen et  al. transplanted allogeneic MB-MSCs into 17 
patients with H7N9-induced ARDS and 44 patients with 
H7N9-induced ARDS were included as a control group. 
Notably, the MSCs treatment group had a significantly 
lower mortality rate than the control group. It is note-
worthy that MSCs transplantation did not cause any 
harm to patients during the five-year follow-up period 
[77].

Human immunodeficiency virus (HIV)
Very few clinical studies were performed that use MSCs 
to treat HIV patients. In an open-label study, Zhang 
et al.[78]. treated seven non-immune responders (NIRs) 
patients with three doses of UC-MSCs, and the control 
group had six NIRs. They found increased levels of naive 
and central memory CD4+ T-cell as well as elevated pro-
duction of IL-2 and HIV-1-specific interferon. Recently, 
Wang et al. reported that hUC-MSC treatment for NIRs 
with chronic HIV-1 infection was safe and well-toler-
ated [79]. In addition, this study revealed significantly 
increased CD4+ T counts in the low-and high-MSC 
dose groups after a 48-week treatment, compared with 
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no change observed in the control group. Moreover, the 
cumulative probability of achieving an immunological 
response was higher than the control. However, there 
were no significant differences in the CD4/CD8+ T 
counts and CD4/CD8 ratio between these two groups 
[79].

ARDS
ARDS exhibits high morbidity and mortality and lacks 
effective treatments. In a phase I clinical trial, MSCs were 
administered to patients with acute lung injury (ALI) 
and ARDS, and this trial demonstrated that MSCs from 
different sources were safe and well-tolerated in ARDS 
patients [80] with some patients showing improvement 
in the respiratory and hemodynamic function as well 
as outcomes regarding multiorgan failure [81]. A phase 
II randomized controlled trial (RCT) conducted in the 
United States demonstrated that a high dose (10 ×  106 
cells/kg) of allogeneic BM-MSCs infusion did not cause 
any significant respiratory AEs [82]. Moreover, this high 
dose of BM-MSCs infusion improved the oxygenation 
index and reduced the circulating levels of ANG-2 in 
these patients, which suggests ameliorating endothelial 
injury [82].

Current clinical trials of MSCs and its products 
in treatment of COVID‑19
To date, more than 90 clinical trials have been registered 
at ClinicalTrials.gov that use MSCs to treat COVID-19. 
Among these MSCs used, UC-MSCs accounted for 35%, 
followed by BM-MSCs (20%), AD-MACs (15%), and DP-
MSCs (7.5%) [83–85]. MSCs are usually administrated 
intravenously a single time or multiple times, and the 
doses range from 0.5 ×  106 to 5 ×  106 cells/kg per injec-
tion. Currently, more than 65% of these trials are in phase 
I/II or II, and approximately, 22% are in the early phase 
or phase I; only a few (less than 5%) are in phase II/III or 
III. The detailed information of clinical trials is listed in 
Additional file 1: Table S1.

Several MSC products have also been used in the 
above-mentioned clinical trials, and some of them are 
in the phase II or III stage. Mesoblast in collaboration 
with Novartis initiated a double-blind, randomized, and 
placebo-controlled phase III trial with 300 patients using 
an intravenous infusion of 2 ×  106 cells/kg BM-MSCs 
after encouraging results had been obtained from 12 
ventilator-dependent ARDS patients [86–88]. A com-
pleted phase I/II clinical trial of intravenous injection of 
MultiStem in COVID-19 patients has shown appreciable 
findings: a phase I study confirmed safety with a small 
starting dose, and a phase II study on 36 patients was a 
randomized, double-blind, and placebo-controlled trial. 
Compared to the placebo group, the treatment group had 

lower mortality and a shorter stay in the intensive care 
unit without any adverse effects [89, 90]. Athersys is cur-
rently carrying out a phase II/III clinical trial to examine 
the safety and efficacy of the BM-MSC product MultiS-
tem in 400 COVID-19 patients with ARDS. Hope Bio-
sciences is currently performing three clinical trials using 
autologous and allogenic AD-MSCs to evaluate its safety 
and efficacy in COVID-19 patients [91]. Pluristem has 
conducted a phase II double-blind, placebo-controlled, 
multi-center RCT study with 140 patients using intra-
muscular injection (300 ×  106 cells) of placenta-derived 
mesenchymal-like cells after a previous finding of the 
full recovery of six severely ill COVID-19 patients [92]. 
Cynata has initiated an open-label, RCT with an iPSC-
derived MSC product Cymerus in 24 patients in the 
intensive care unit. MSCs are derived from iPSC-differ-
entiated mesenchymal angioblasts, which were gener-
ated by transgene-, viral-and feeder-free techniques with 
the reprograming of donated blood cells [93]. Novellus 
and Citius proposed a placebo-controlled randomized 
dose escalation trial to assess the safety and efficacy of 
NoveCite in COVID-19 patients with ARDS. NoveCite 
is a product of MSCs derived from induced pluripotent 
stem cells, which are reprogrammed from fibroblasts 
with messenger RNA [94]. The detailed information of 
clinical trials with MSC products is listed in Table 1.

Current outcomes of clinical trials of MSC 
in COVID‑19 treatment
Clinical experience with MSC treatment for COVID-19 is 
still limited. Although many clinical trials have been reg-
istered in clinicaltrials.gov (Additional file  1: Table  S1), 
only a few have reported their findings (Additional file 1: 
Table S2). In China, MSCs have also been initiated as a 
therapeutic strategy for COVID-19, which was shown 
in several case reports. For example, the injection of 
human UC-MSCs into a 65-year-old woman on ventila-
tion decreased the circulating levels of C-reactive protein 
(CRP), serum bilirubin, and liver function enzymes, and 
increased the circulating levels of CD8+ T, CD3+ T, and 
CD4+ T cells to the normal level [95]. This patient even-
tually recovered and tested negative for the virus [95].

As mentioned above, most MSCs used in the reported 
clinical research were derived from the umbilical cord. 
In one clinical trial [96], UC-MSCs were injected intra-
venously into seven COVID-19 patients (two mild, four 
severe, and one critically severe) with a dose of 1 ×  106 
MSCs/kg, and three severe COVID-19 patients adminis-
tered with the placebo served as controls. This trial was 
followed up for 14  days. The treatment group signifi-
cantly improved lung function, which was accompanied 
by a decrease in the levels of serum CXCR3+ CD4+ T 
cells, CRP, CXCR3+ CD8+ T cells, CXCR3, and NK cells, 
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Table 1 MSC products in COVID-19 treatment

Product Company Source Dose Phase Country Trial ID NO

1 VUM02 VCANBIO Allogenic UC-MSCs 4E7 cells, i.v. at days 
0, 3, and 6

I II China NCT04252118 
NCT04288102

2 RYONCIL™(remestemcel-L) Mesoblast, Ltd./
Novartis

Allogenic BM-MSCs 2E6 cells/kg, 2 
times/week

III USA NCT04371393

3 Multistem Athersys, Inc Allogenic BM-MSCs – II/III USA NCT04367077

4 HB-adMSCs Hope Biosciences Autologous AT-
MSCs

5 times, i.v II USA NCT04349631

5 HB-adMSCs Hope Biosciences Allogenic AT-MSCs 2E8 cells, i.v. at 
weeks 0, 2, 6, 10, 
and 14

II USA NCT04348435

1E6 cells, at days 0, 
3, 7, and 10

II USA NCT04362189

6 PLX-PAD Pluristem Ltd Allogenic placenta 
MSCs

3E8, i.v II USA, Germany, & 
Israel

NCT04389450 
NCT04614025

7 JadiCell™ Therapeutic Solu-
tions International

Allogenic UC-MSCs (10 ± 2) E7 cells; at 
days 0 and 3

I/II USA NCT04355728

8 CYP-001 (Cymerus MSCs) Cynata Therapeu-
tics Ltd

iPSC-MSCs 2E6 cells/kg, i.v I/II Australia NCT04537351

9 NestaCell Cellavita iPSC-MSCs 2E7 cells i.v. at days 
1, 3, 5, and 7

II Brazil NCT04315987

10 HCLM051 Healios/Athersys, 
Inc

Allogenic BM-MSCs 9E8 (± 20%) cells II Japan NCT03807804

11 itMSCs Stemedica Cell 
Technologies, Inc

Allogenic BM-MSCs – II USA NCT04780685

12 ACT-20 Aspire Health Sci-
ence

Allogenic UC-MSCs 1E6 cells/kg, i.v I/II USA NCT04398303

13 i-MSC Citius Pharma/
Novellus

iPSC-MSCs – II USA –

14 CAStem Zephyrm Biotech ESC-MSCs 3, 5 or 10 E6 cells/
kg, i.v

I/II China NCT04331613

15 ULSC-CV-01 Restem, LLC Allogenic UC-MSCs 1E8 cells, i.v I/IIa USA NCT04494386

16 COVI-MSC Sorrento Therapeu-
tics, Inc

Allogeneic AT-MSCs 1E6 cells/kg or 
1.5E6 cells/kg, 
depending on CRP 
level

II USA NCT04728698

3E7 cells at days 0, 
2, and 4

II USA NCT04903327 
NCT04905836

1.85E7 cells at days 
0, 2, and 4;3.7E7 
cells at days 0, 2, 
and 4

Ib USA NCT04909892

17 BX-U001 Baylx Inc Allogenic UC-MSCs Low dose: 0.5E6 
cells/kg; Middle 
dose: 1.0E6 cells/kg; 
High dose: 1.5E6 
cells/kg

I/IIa China NCT04452097

18 PSC-04 Sorrento Therapeu-
tics, Inc

Allogenic AT-MSCs – I USA NCT04486001

19 BM-Allo.MSC ImmunityBio, Inc./
NantKwest

Allogenic BM-MSCs – Ib USA NCT04397796

20 MB-MSC injection IPM Biotech Allogenic MB-MSCs 9E7 cells, i.v. at days 
1, 3, and 5

I China ChiCTR2000029606

21 LMSCs Longeveron Inc – 1E8 cells, i.v. at days 
0, 3, and 6

I USA NCT04629105

22 Descartes-30 Cartesian Thera-
peutics

Allogenic UC-MSCs – I/II USA NCT04524962
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and an increase in the levels of regulatory dendritic cells. 
Furthermore, ACE-2 or transmembrane protease ser-
ine 2 was not expressed in MSCs. Shu et  al. conducted 
a clinical trial in which 12 COVID-19 patients received 
hUC-MSCs treatment, and 29 patients were in the con-
trol group [97]. This study showed that the hUC-MSC 
group had no patients with a progression from severe 
to critically ill and zero deaths during the 28-day study 
period, while the control group had four patients with a 
10.34% mortality rate. Also, the treatment group had a 
shorter time for clinical improvement and lung inflam-
mation absorption as revealed by CT imaging. In addi-
tion, the treatment group had significantly lower levels 
of CRP and IL-6 after three days of infusion and faster 
time for the lymphocyte count to return to a normal 
level [97]. Guo et  al. demonstrated that MSC therapy 
restored oxygenation, elevated PaO2/FiO2 and lympho-
cyte count, downregulated cytokine storms, decreased 
levels of serum CRP, procalcitonin, D-dimer and IL-6, 
without AEs after infusion of UC-MSCs into 31 severe 
COVID-19 patients [98]. Feng et  al. revealed that intra-
venous infusion of UC-MSCs partially recovered pulmo-
nary function through forced expiratory volumes in 1 s, 
and it improved the quality of life as revealed by the St. 
George’s Respiratory Questionnaire, which indicates rela-
tively long-term safety and preliminary efficacy for severe 
COVID-19 patients after a 3-month follow-up [99]. 
Recently, a Turkish group reported that UC-MSC treat-
ment was safe in 210 severe/critically severe COVID-19 
patients with 1–2 ×  106/kg infusion. The treated group 
had a significantly higher survival rate; they were accom-
panied by restored oxygenation such as  SaO2 parameters 
and downregulated cytokine storm [100].

MSCs from other sources also exhibited a similar ben-
efit to treating COVID-19 patients. Spanish researchers 
used AT-MSCs to treat 13 COVID-19 patients, with two 
receiving a single dose, 10 receiving two doses, and one 

receiving three doses. Median number of cells per dose 
was 0.98 ×  106 AT-MSC/kg body weight. These research-
ers showed that the treatment improved immune cell 
profiling with no adverse effects observed [101]. Men-
strual blood-derived MSCs were infused into 26 patients 
with a total of 9 ×  107 cells per infusion every other day 
for three times a day, and 18 patients received only con-
comitant medications as control. While there was no sig-
nificant difference in the incidence of most AEs between 
these groups, the MSC group showed a significantly 
lower mortality rate, significant improvement in dyspnea, 
 SpO2, and chest imaging results [102]. In another clini-
cal trial, 27 COVID-19 patients who received an infusion 
of MSCs derived from hESCs had normal levels of all 
hematological and clinical parameters and tumor mark-
ers; none of these treated patients developed any abnor-
mal responses/AEs that are associated with hESC-MSC 
therapy. Clinical improvements were also—observed in 
patients within 84 days after treatment with hESC-MSC 
therapy [103].

In addition to these case reports and clinical stud-
ies, three research groups have demonstrated outcomes 
from a more strictly designed phase I/II double-blind 
RCT. Giacomo et al. tested a single-center, double-blind, 
phase 1/2a, RCT of UC-MSC infusions in treatment of 
12 COVID-19 ARDS patients compared with 12 patients 
who received two infusions of vehicle. Patients in these 
two groups received comparable standard care. There 
was no significant difference in infusion-associated AEs 
between these two groups, and no serious AEs that are 
linked to UC-MSC infusion were observed; this indicates 
the safety of UC-MSC infusions. UC-MSC treatment was 
associated with significantly improved patient survival, 
SAEs (SAE)-free survival, and time to recovery [104]. 
Ismail et. al. conducted a double-blind, multicentered 
RCT with 40 critically ill COVID-19 patients. Among 
these patients, 20 received an intravenous infusion of 

Table 1 (continued)

Product Company Source Dose Phase Country Trial ID NO

23 SB1-101 Sentien Biotech-
nologies, Inc

Allogenic MB-MSCs 
with an FDA-
approved plasma-
pheresis device

High dose: 7.5E8; 
Low dose: 2.5E8

I/II USA NCT04445220

24 AlloRx™ Vitro Biopharma/
GIOSTAR 

Allogenic MSC 
engineered to 
secrete human 
DNases

– I USA –

25 DW-MSC Daewoong Phar-
maceutical

Allogenic UC-MSCs 5E7 cells, i.v I Indonesia NCT04535856

26 hDP-MSC injection SH Bio-Tech Allogenic DP-MSCs 3E7 stem cells at 
days 1, 4, and 7

I China NCT04336254

i.v., intravenous injection
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UC-MSCs with 1 ×  106/kg body weight, and 20 received 
100  ml saline (0.9%) solution as the control. The UC-
MSC group had a survival rate 2.5 times higher than the 
control group, and even 4.5 times compared to patients 
with comorbidities in the control group. The UC-MSCs 
infusion remarkably reduced the circulating levels of IL6 
in the recovered patients, with no ADs observed [105]. 
Wang’s group reported two consistent studies: a phase 
I exploratory study with 18 COVID-19 patients and a 
phase II double-blind, placebo control, multi-centric ran-
domized clinical study with 100 severe patients. In the 
phase I study, zero patients developed serious infusion-
associated ADs in nine treated patients (four of them 
were severe, five were moderate). Two patients in the 
treatment group developed transient facial flushing and 
fever, and one had transient hypoxia. One patient in the 
treatment group needed mechanical ventilation com-
pared with four in the control group [106]. In the phase 
II study, compared with the placebo control group which 
contained 35 patients, UC-MSCs administration in 65 
patients significantly improved the whole lung lesion vol-
ume from baseline to day 28, decreased the proportion of 
solid component lesion volume, and increased 6-MWT 
[107]. There were no differences in AEs and serum lev-
els of tumor markers at 12 follow-ups between these two 
groups (unpublished data). In line with the above find-
ings, several clinical trials have suggested that MSC treat-
ment greatly improved solid component lesion volume, 
reduced sleep difficulties, and improved daily activity 
compared to the placebo treatment [108–117]. In addi-
tion, the MSC treatment group had a significantly higher 
ratio of patients who had normal CT images at month 12 
follow-up than the placebo group. Neutralizing antibod-
ies were all positive with a similar median inhibition rate 
in both groups during 12  month follow-up [108–117]. 
The detailed outcomes of all these published clinical tri-
als are listed in Additional file 1: Table S2.

Perspectives
The persistent COVID-19 pandemic has prompted sci-
entists and clinicians to explore effective treatments 
since a clear unmet medical need still exists for severe 
and critically severe patients. Although anti-viral mol-
ecules, immunomodulators, neutralizing antibodies, and 
plasma have been administered for COVID-19 patients 
with ARDS and other life-threatening conditions as treat-
ments, very few of these approaches showed reproducibly 
appreciable efficacy. MSCs are considered to be a candi-
date for treating CSS and repairing damaged lung tissues 
due to their multiple potent activities, including anti-
inflammation, immunomodulation, and ability to secrete 
soluble vesicles and multiple growth factors. Promising 
outcomes have been reported from ongoing clinical trials 

involving MSC treatment for COVID-19: (1) patients 
were safe and well-tolerated after treatment with MSCs 
that were generated from various sources with a wide 
range of doses, (2) improvements were observed in 
patients after MSCs treatment, such as through decreas-
ing circulating levels of pro-inflammatory cytokines and 
laboratory parameters, better lung inflammation absorp-
tion, and (3) MSCs-treated patients had faster increase in 
 SpO2, a shorter hospital stay, and a higher survival rate. 
However, some scientific and clinical questions remain 
to be addressed. For example, what are the exact mech-
anisms underlying the MSCs’ treatment of COVID-19 
patients? Which source of MSCs is the best for this treat-
ment? At which stage will COVID-19 patients have the 
best outcomes as a result of MSCs treatment? Are there 
any COVID-19 patients who should not receive MSCs 
treatment? Can MSCs treatment reduce the long-term 
residual adverse effects associated with COVID-19 infec-
tion? In addition, will the combinatory therapy of MSCs 
with other supportive drugs work better than the single 
use of each individual treatment? Apart from cell-based 
therapy, exosome vesicles, and secretome of MSCs can 
be considered as an alternative. However, limitations of 
these closed trials were also acknowledged. For exam-
ple, most of these trials had a small sample size and were 
single-arm or parallel control; they lacked a strict design 
such as the double-blind, randomized, placebo control 
with multiple centers. Also, the main and secondary 
evaluation criteria were not uniform, and the long-term 
follow-up was not carried out. Currently, consensus and 
guidelines require doctors to better manage severely 
ill COVID-19 patients by using MSCs treatment [118]. 
For example, for subject selection, it is recommended to 
choose the patients with the most appropriate risk–ben-
efit balance. In addition, the heterogeneity of subjects’ 
baseline conditions is also an important factor in deter-
mining the success or failure of clinical trials. For safety 
and efficacy evaluation, the first clinical trial is expected 
to explore the safety and tolerability of MSCs in patients, 
including exploring the maximum tolerated dose, observ-
ing the incidence, timing, and severity of expected or 
unexpected AEs that are correlated with cell infusion. It 
is not recommended to include patients with large dif-
ferences in baseline and prognostic prediction in the 
same clinical trial. For risk control, the tumorigenicity 
should be continuously monitored t hrough long-term 
follow-up.

Conclusions
The general mechanisms of action of MSCs include 
immunomodulation and tissue repair capability (antifi-
brosis and angiogenesis), and current preliminary clini-
cal results of MSC-based therapies have shown some 
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favorable outcomes for severe and critically severe 
COVID-19 patients, thus making it a promising therapy. 
However, double blind RCTs with large sample sizes are 
still required to thoroughly examine the safety and effi-
cacy of MSCs and each specific MSC product. Never-
theless, MSC-based therapies during a global pandemic 
brings hope to combating COVID-19 and in meeting 
urgent medical needs, although a variety of challenges 
still lay ahead.
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