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Identifying conserved patterns in DNA sequences, namely, motif discovery, is an important and challenging computational task.
With hundreds or more sequences contained, the high-throughput sequencing data set is helpful to improve the identification
accuracy of motif discovery but requires an even higher computing performance. To efficiently identify motifs in large DNA data
sets, a new algorithm called PairMotifChIP is proposed by extracting and combining pairs of 𝑙-mers in the input with relatively
small Hamming distance. In particular, a method for rapidly extracting pairs of 𝑙-mers is designed, which can be used not only
for PairMotifChIP, but also for other DNA data mining tasks with the same demand. Experimental results on the simulated data
show that the proposed algorithm can find motifs successfully and runs faster than the state-of-the-art motif discovery algorithms.
Furthermore, the validity of the proposed algorithm has been verified on real data.

1. Introduction

A DNA motif is a conserved pattern occurring in the reg-
ulatory region of DNA sequences with small mutations [1].
All occurrences of the motif in the sequences are called motif
instances or motif sites, which are usually the sequence frag-
ments with specific biological functions such as transcrip-
tion factor binding sites (TFBSs) [2]. TFBSs are important
regulatory elements that control transcription initiation and
transcription efficiency of the associated genes. Identifying
motifs in a given set of DNA sequences is the basis for
analysis of gene expression regulation [3] and the precursor
to identifying disease-associated regulatory variations [4].

Though very important, motif discovery is a challenging
computational task. Given a set of DNA sequences, (i) the
motif and its instances are unknown; (ii) each of the input
DNA sequences is long with hundreds of bases, while the
motif is short, generally 5 to 25 bases [5]; (iii) a portion of
the input sequences may not contain motif instances; (iv) the
input sequences typically contain the disturbance of random
overrepresented substrings. In 2003, Evans et al. proved that
motif discovery is NP-complete [6]. In addition, with the

development of biological experimental techniques, the data
used for motif discovery have been changed from traditional
promoter sequence data sets to high-throughput sequencing
data sets [7]. A traditional data set typically contains only a
few to dozens of sequences. A high-throughput sequencing
data set is a set of peak regions containing TFBSs obtained
through ChIP-seq experiments [8], read mapping [9], and
peak calling [10]. It contains hundreds or more sequences,
thus forming a large DNA sequence data set, and further
increases the difficulty of rapid and accurate identification of
motifs.

Currently, there are a lot of motif discovery algorithms to
deal with small-scale data sets, such asWeeder [11], PairMotif
[12], PairMotif+ [13], MEME [14], PMS8 [15], and qPMS9
[16]; for more algorithms, refer to [7, 17]. Because of high
time or space complexity, these algorithms cannot be used
for motif discovery in high-throughput sequencing data sets
directly.

This paper mainly focuses on motif discovery algorithms
for high-throughput sequencing data sets. According to
motif representation, the algorithms can be divided into two
categories. The algorithms in the first category represent
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motifs as words. Some of these algorithms, such as F-
motif [18] and weeder2 [19], use pattern-driven ideas. They
exhaustively verify all possible strings of the motif length
over the DNA alphabet and then output the strings that
satisfy specified motif property. When verifying motifs, F-
motif and weeder2 use the suffix tree and De Bruijn graph
techniques, respectively. Some other algorithms, such as
RSAT [20], CisFinder [21], and MCES [22], adopt word
counting ideas; namely, they mine the substrings in input
sequences with high occurrence frequency and then combine
them into motifs. Besides a test set, these algorithms often
require a control set to eliminate the disturbance of random
overrepresented substrings.

The second category covers the discovery algorithms
representing motifs as position weight matrixes (PWMs). A
set of aligned sites of the same length in the input sequences
can form a PWM. These algorithms often select some initial
PWMs with certain means and then update each PWM
iteratively until it reaches the maximum score. MEME-ChIP
[23] is a well-known motif discovery algorithm for ChIP-seq
data sets, which updates initial PWMs using the expectation
maximization method. STEME [24], another discovery algo-
rithm based on expectation maximization, uses suffix trees
to improve the time performance of motif discovery when
implementing expectation maximization. Currently, there is
no discovery algorithm completely superior to others, and
thus, in order to tackle false positives produced by individual
discovery algorithms, ensemble algorithms [25] integrate
multiple existing discovery algorithms to improve the quality
of identified motifs.

In order to efficiently identify motifs in large DNA data
sets, we propose a new algorithm, which identifies motifs
by extracting and combining pairs of 𝑙-mers in the input
with relatively small Hamming distance. Comparisons with
the state-of-the-art motif discovery algorithms show that the
proposed algorithm can find motifs successfully with the
shortest running time. Also, the validity of the proposed
algorithm has been verified on real data.

2. Materials and Methods

2.1. Algorithm Overview. The notations frequently used in
this paper are summarized in the Notations. When we say a
pair of 𝑙-mers, we are referring to two 𝑙-mers that come from
two distinct sequences.

Almost all de novo motif discovery algorithms make
identification based on the fact that the motif instances of the
samemotif are similar to each other. In other words, themotif
information contained in the input sequences is presented
by the similarity among motif instances. In addition to
the degree of similarity among motif instances, the motif
information also depends on the number of pairs of motif
instances contained in the input sequences, denoted by𝑁mip.
It is calculated by

𝑁mip = 𝑞𝑡 (𝑞𝑡 − 1)2 . (1)

In our previous work, PairMotif [12] and PairMotif+ [13],
we mainly process promoter sequences, which correspond to

a small 𝑡. The basic idea is to extract some pairs of 𝑙-mers
in the input, making them contain at least one pair of motif
instances, and then refine each pair of 𝑙-mers to get motifs.
Because of the small value of𝑁mip, limitedmotif information
can be obtainedwhile retaining a large amount of disturbance
information. Thus, in order to ensure good identification
accuracy, exhaustive methods based on pattern-driven ideas
are used for refinement, which has a poor time performance.

In the current work, we propose a new algorithm called
PairMotifChIP, which is used for processing large DNA data
sets. Our basic idea is still to extract pairs of 𝑙-mers in
the input. Since the value of 𝑁mip under large data sets is
significantly greater than that under traditional promoter
data sets, the advantages are as follows: (i) the extracted pairs
of 𝑙-mers contain sufficient pairs of motif instances and (ii) it
can be easier to filter outmost of the random overrepresented
pairs of 𝑙-mers; namely, we can distinguish most of the pairs
of motif instances and random overrepresented pairs of 𝑙-
mers by probabilistic analysis (see Section 3.1). Therefore,
after extracting pairs of 𝑙-mers, we perform filtration to filter
out most of the random overrepresented pairs of 𝑙-mers
and then combine the remaining 𝑙-mers using clustering
methods to obtain motifs while eliminating other random
overrepresented 𝑙-mers.

The overall algorithm of PairMotifChIP is shown in
Algorithm 1, containing three steps: extracting pairs of 𝑙-mers
(lines (2)–(4)), filtering pairs of 𝑙-mers (lines (5)–(9)), and
combining 𝑙-mers (lines (10)–(13)). Next, the technical details
of the three steps are described in detail.

2.2. Extracting Pairs of 𝑙-mers. In this step, we need to
determine the value of a threshold 𝑘 so thatwe extract all pairs
of 𝑙-mers 𝑥 and 𝑥 in the input satisfying 𝑑𝐻(𝑥, 𝑥) ≤ 𝑘 and
design an efficient algorithm to extract pairs of 𝑙-mers.

Let 𝑝𝑖 denote the probability that the Hamming distance
between two random 𝑙-mers is no more than i.

𝑝𝑖 =
𝑖∑
𝑘=0

(𝑙𝑘) ×
3𝑘
4𝑙 . (2)

Let 𝐸𝑖 denote the expectation of the number of pairs of𝑙-mers 𝑥 and 𝑥 in two n-length DNA sequences satisfying𝑑𝐻(𝑥, 𝑥) ≤ 𝑖.
𝐸𝑖 = (𝑛 − 𝑙 + 1)2 × 𝑝𝑖. (3)

The threshold 𝑘 is determined by (4), aiming at eliminat-
ing random overrepresented substrings in the pairs of 𝑙-mers
extracted from two 𝑛-length sequences.

𝑘 = max {𝑖 : 0 ≤ 𝑖 ≤ 𝑙, 𝐸𝑖 < 1} (4)

In order to handle large data sets efficiently, a good
time performance of extracting pairs of 𝑙-mers is necessary.
For extracting pairs of 𝑙-mers 𝑥 and 𝑥 from two n-length
sequences 𝑠 and 𝑠 satisfying 𝑑𝐻(𝑥, 𝑥) ≤ 𝑘, the simplest way
is to traverse each pair of 𝑙-mers 𝑥 and 𝑥 and calculate the
Hamming distance 𝑑𝐻(𝑥, 𝑥) separately.The time complexity
of this method is 𝑂(𝑛2𝑙). Yu et al. [26] proposed a method of
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Input: 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑡}, optional parameters 𝑙 and 𝑞
Output: a set of motifs𝑀
(1)𝑀← B, 𝐿1 ← B, 𝐿2 ← B, set the threshold 𝑘 of extracting pairs of 𝑙-mers
(2) for each pair of 𝑙-mers (𝑥1, 𝑥2) in 𝑆 do
(3) if 𝑑𝐻(𝑥1, 𝑥2) ≤ 𝑘 then
(4) add (𝑥1, 𝑥2) to 𝐿1
(5) for each pair of 𝑙-mers (𝑥1, 𝑥2) ∈ 𝐿1 do
(6) if occ(𝑥1) > occ𝑟(𝑥1) + occ𝑚(𝑥1) then
(7) add 𝑥1 to 𝐿2
(8) if occ(𝑥2) > occ𝑟(𝑥2) + occ𝑚(𝑥2) then
(9) add 𝑥2 to 𝐿2
(10) cluster the 𝑙-mers in 𝐿2
(11) for each obtained cluster do
(12) align substrings in it and fetch a segment with high information content to form a motif𝑚
(13) add𝑚 to𝑀
(14) return𝑀

Algorithm 1: PairMotifChIP.

𝑂(𝑛2) time by filling an 𝑛 × 𝑛 matrix𝑀. The element in row𝑖 (1 ≤ 𝑖 ≤ 𝑛) and column 𝑗 (1 ≤ 𝑗 ≤ 𝑛) of 𝑀, denoted by𝑀[𝑖, 𝑗], stores min(𝑖, 𝑗) − 𝑑𝐻(𝑠[𝑖 − min(𝑖, 𝑗) + 1 ⋅ ⋅ ⋅ 𝑖], 𝑠[𝑗 −
min(𝑖, 𝑗) + 1 ⋅ ⋅ ⋅ 𝑗]), where min(𝑖, 𝑗) is the smaller one of
two integers. After calculating𝑀[𝑖, 𝑗], theHamming distance
between the two 𝑙-mers 𝑠[𝑖−𝑙+1 ⋅ ⋅ ⋅ 𝑖] and 𝑠[𝑗−𝑙+1 ⋅ ⋅ ⋅ 𝑗] can
be obtained; namely, 𝑑𝐻(𝑠[𝑖 − 𝑙 + 1 ⋅ ⋅ ⋅ 𝑖], 𝑠[𝑗 − 𝑙 + 1 ⋅ ⋅ ⋅ 𝑗]) =𝑙 − (𝑀[𝑖, 𝑗] − 𝑀[𝑖 − 𝑙, 𝑗 − 𝑙]).

In this paper, we design a more efficient method.We only
care about the pairs of 𝑙-mers with Hamming distance no
more than 𝑘. That is, we do not need to calculate Hamming
distance for all pairs of 𝑙-mers. If the Hamming distance
between 𝑠[𝑖− 𝑙+1 ⋅ ⋅ ⋅ 𝑖] and 𝑠[𝑗−𝑙+1 ⋅ ⋅ ⋅ 𝑗] is greater than 𝑘, it
can be concluded that, for 0 ≤ ℎ < 𝑑𝐻(𝑠[𝑖−𝑙+1 ⋅ ⋅ ⋅ 𝑖], 𝑠[𝑗−𝑙+1 ⋅ ⋅ ⋅ 𝑗])−𝑘, the possibly smallest Hamming distance between𝑠[𝑖 − 𝑙 + 1 + ℎ ⋅ ⋅ ⋅ 𝑖] and 𝑠[𝑗 − 𝑙 + 1 + ℎ ⋅ ⋅ ⋅ 𝑗] is still greater
than 𝑘.Thus, after calculating theHamming distance between𝑠[𝑖 − 𝑙 + 1 ⋅ ⋅ ⋅ 𝑖] and 𝑠[𝑗 − 𝑙 + 1 ⋅ ⋅ ⋅ 𝑗], we can go directly to
verify the Hamming distance between 𝑠[𝑖 − 𝑙+1+𝐻 ⋅ ⋅ ⋅ 𝑖] and𝑠[𝑗 − 𝑙 + 1 + 𝐻 ⋅ ⋅ ⋅ 𝑗], where𝐻 is the skipped size calculated
by

𝐻 = max {1, 𝑑𝐻 (𝑠 [𝑖 − 𝑙 + 1 ⋅ ⋅ ⋅ 𝑖] , 𝑠 [𝑗 − 𝑙 + 1 ⋅ ⋅ ⋅ 𝑗])
− 𝑘} . (5)

Based on this, we describe ourmethod as follows. Figure 1
shows an example in which |𝑠| = |𝑠| = 20, 𝑙 = 5, 𝑘 = 1. First,
convert the two DNA sequences 𝑠 and 𝑠 into binary strings𝐵 and 𝐵. Then, fixing 𝐵, move 𝐵 from left to right gradually
2 bits each time and simultaneously do the exclusive OR for
the overlapped substrings of 𝐵 and 𝐵 with length equal to or
greater than 2𝑙; xor(𝑖, 𝑗, 𝑖, 𝑗) denotes the exclusive OR of the
overlapped substrings of 𝐵 and 𝐵 corresponding to 𝑠[𝑖 ⋅ ⋅ ⋅ 𝑗]
and 𝑠[𝑖 ⋅ ⋅ ⋅ 𝑗], where 𝑗 − 𝑖 = 𝑗 − 𝑖. Finally, extract pairs of𝑙-mers with Hamming distance no more than 𝑘 by traversing
the exclusive OR xor(𝑖, 𝑗, 𝑖, 𝑗) for each overlapped part of 𝐵
and 𝐵. Specifically, for each 𝑟 (𝑙 ≤ 𝑟 ≤ 𝑗), we look up a table
[12] to obtain theHamming distance between two 𝑙-mers 𝑠[𝑖+

𝑟− 𝑙 ⋅ ⋅ ⋅ 𝑖 + 𝑟−1] and 𝑠[𝑖 +𝑟− 𝑙 ⋅ ⋅ ⋅ 𝑖 +𝑟−1], which is equal to
the number of 2 bits that is not 00 in xor(𝑖 + 𝑟 − 𝑙, 𝑖 + 𝑟 − 1, 𝑖 +𝑟 − 𝑙, 𝑖 + 𝑟 − 1). During the traversal, we use (5) to avoid the
calculation for some pairs of 𝑙-mers with Hamming distance
greater than 𝑘.
2.3. Filtering Pairs of 𝑙-mers. The purpose of this step is to fil-
ter those randomoverrepresented pairs of 𝑙-mers extracted in
the previous step. According to the property of conservation,
if an 𝑙-mer 𝑥 is a motif instance, there may be some other
motif instances withHamming distance nomore than 𝑘 from
x, and thus there may be relatively more 𝑙-mers in the whole
data set with Hamming distance nomore than 𝑘 from 𝑥. If an𝑙-mer 𝑥 is not a motif instance, even if it appears in a random
overrepresented pair of 𝑙-mers, there are not many 𝑙-mers in
the whole data set with Hamming distance no more than 𝑘
from 𝑥.

For an arbitrary 𝑙-mer 𝑥, let occ𝑟(𝑥) denote the number
of 𝑙-mers in the input sequences with Hamming distance no
more than 𝑘 from 𝑥 in random case.

occ𝑟 (𝑥) = 𝑡 × (𝑛 − 𝑙 + 1) × 𝑝𝑘. (6)

For an arbitrary motif instance 𝑥, let occ𝑚(𝑥) denote
the number of motif instances in the input sequences with
Hamming distance no more than 𝑘 from 𝑥 in random case.

We perform filtration according to (7). Let occ(𝑥) denote
the number of 𝑙-mers in the input sequences with Hamming
distance no more than 𝑘 from an 𝑙-mer 𝑥. In the process of
extracting pairs of 𝑙-mers, we can easily record occ(𝑥) for each𝑙-mer 𝑥 in the input sequences. For an extracted 𝑙-mer 𝑥, we
filter it out if it does not satisfy

occ (𝑥) ≥ occ𝑟 (𝑥) + occ𝑚 (𝑥) . (7)

In the following, we focus on how to calculate occ𝑚(𝑥).
We calculate it by combining the methods [13, 22] for
evaluating the following probabilities. One is the probability
that the Hamming distance between a motif𝑚 and a random
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Second: fixing B, move B from left to right 2 bits each time and do exclusive OR for the overlapped part

Third: extract pairs of l-mers with Hamming distance ≤ k by traversing the exclusive OR

xor ) for each overlapped part. We take xor(1, 20, 1, 20), l = 5, k = 1, as an example(i, j, i , j

H = 1 H = 1 H = 1 H = 1 H = 1H = 2 H = 3 H = 4

and s[15 · · · 19] and s[15 · · · 19]

The pairs of l-mers with Hamming distance ≤ 1 are s[14 · · · 18] and s[14 · · · 18]

xor(1, 20, 1, 20):

xor(16, 20, 1, 5):

xor(15, 20, 1, 6):

xor(1, 20, 1, 20):

xor(1, 6, 15, 20):

xor(1, 5, 16, 20):

First: convert s sand to binary strings B and B (|s| = |s| = 20)

Figure 1: An example for extracting pairs of 𝑙-mers.
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motif instance𝑚 is 𝑖 (0 ≤ 𝑖 ≤ 𝑑), denoted by Pr(𝑑𝐻(𝑚,𝑚) =𝑖). The other is the probability that the Hamming distance
between two random motif instances 𝑚1 and 𝑚2 is no more
than 𝑘, denoted by 𝑝𝑘.

Let 𝑑 denote the maximum number of positions where
a motif differs from its instance. Given the motif length l,
we determine the value of 𝑑 in terms of the challenging
problem instance of plantedmotif search [27], which assumes
that motif instances are implanted into sequences. When
generating a random motif instance 𝑚 from a motif 𝑚,
we select 𝑑 out of 𝑙 positions randomly and then make the
character at each of the 𝑑 positions change with a probability
of 𝑔, which is the conservation parameter reflecting the
conservation degree of amotif. Based on this,Pr(𝑑𝐻(𝑚,𝑚) =𝑖) is evaluated as follows:

Pr (𝑑𝐻 (𝑚,𝑚) = 𝑖) = (𝑑𝑖) × 𝑔
𝑖 × (1 − 𝑔)𝑑−𝑖 . (8)

For any two instances𝑚1 and𝑚2 of amotif𝑚, the possible
values of ⟨𝑑𝐻(𝑚,𝑚1), 𝑑𝐻(𝑚,𝑚2)⟩ are {⟨𝑎, 𝑏⟩ : 0 ≤ 𝑎 ≤ 𝑑, 0 ≤𝑏 ≤ 𝑑}. Let Pr(⟨𝑎, 𝑏⟩) denote Pr(⟨𝑑𝐻(𝑚,𝑚1), 𝑑𝐻(𝑚,𝑚2)⟩ =⟨𝑎, 𝑏⟩). We have

Pr (⟨𝑎, 𝑏⟩) = Pr (𝑑𝐻 (𝑚,𝑚1) = 𝑎)
× Pr (𝑑𝐻 (𝑚,𝑚2) = 𝑏) . (9)

By the theorem of total probability, 𝑝𝑘 is evaluated using
(10) where the value of 𝑃(𝑑𝐻(𝑚1, 𝑚2) ≤ 𝑘 | ⟨𝑎, 𝑏⟩) is
calculated in terms of the actual situation [13].

𝑝𝑘
= ∑
0≤𝑎,𝑏≤𝑑

Pr (⟨𝑎, 𝑏⟩) × Pr (𝑑𝐻 (𝑚1, 𝑚2) ≤ 𝑘 | ⟨𝑎, 𝑏⟩) . (10)

Finally, we calculate occ𝑚(𝑥) as follows:
occ𝑚 (𝑥) = 𝑡 × 𝑞 × 𝑝𝑘. (11)

2.4. Combining 𝑙-mers. After performing filtration, we com-
bine the remaining 𝑙-mers by using the clusteringmethod.On
the one hand, we further eliminate random overrepresented𝑙-mers, as the filtration carried out in the previous step cannot
guarantee that all the random overrepresented 𝑙-mers are
filtered out. On the other hand, the input data may contain
more than one motif, and thus the clustering method is
also used to distinguish the instances of different motifs and
gather the instances of the same motif together.

The combining method is described in detail as follows:

(i) Merge the overlapped 𝑙-mers into one substring. For
example, for the three 𝑙-mers 𝑠[𝑖 ⋅ ⋅ ⋅ 𝑖+𝑙−1], 𝑠[𝑖+2 ⋅ ⋅ ⋅ 𝑖+𝑙+1], and 𝑠[𝑖+5 ⋅ ⋅ ⋅ 𝑖+ 𝑙+4] in the sequence 𝑠, they are
overlapped, and we merge them into a new substring𝑠[𝑖 ⋅ ⋅ ⋅ 𝑖 + 𝑙 + 4].

(ii) Cluster the substrings. At first, we build an undirected
graph 𝐺 by taking each substring as a vertex. For
any two vertices V1 and V2, assume the corresponding

Table 1: Data for probabilistic analysis.

𝑙 𝑑 𝑘 𝐸𝑘 𝑁1 𝑁2 occ𝑟(𝑥) occ𝑚(𝑥)
8 1 0 0.57 284715 12784 2.95 32.00
9 2 0 0.14 69930 511 0.73 1.28
10 2 0 0.04 19980 511 0.19 1.28
11 3 1 0.29 144855 3577 1.54 8.95
12 3 1 0.08 39960 3196 0.42 8.00
13 4 2 0.39 194805 4581 2.08 11.46
14 4 2 0.11 54945 4059 0.60 10.16
15 5 3 0.43 214785 5274 2.30 13.20
16 5 3 0.13 64935 4584 0.70 11.47

substrings are str1 and str2, respectively. If there exist
an 𝑙-mer 𝑥1 in str1 and an 𝑙-mer 𝑥2 in str2 such that𝑑𝐻(𝑥1, 𝑥2) ≤ 𝑘, then we set the weight of the edge
connected by V1 and V2 to 1, otherwise 0. Secondly,
we cluster the vertices in the graph 𝐺 using the
MCL clustering algorithm [28]. Finally, we merge the
obtained clusters using theMCL clustering algorithm
again to further eliminate redundancy.

(iii) For each obtained cluster, align the substrings in it
and then fetch the fragment with high information
content as an identified motif.

In the combining method, we control the number of
elements to be clustered in order to ensure a good time
performance. First, merging overlapped 𝑙-mers into one
substring can help to reduce the elements to be clustered.
Second, if the number of substrings is still large, we divide
them into multiple groups with each group containing at
most 1000 substrings. Then, we cluster substrings in each
group separately and finally merge the obtained clusters.

3. Results and Discussion

3.1. Probabilistic Analysis of Extracting Pairs of 𝑙-mers. Weuse
probabilistic analysis to demonstrate the feasibility of motif
discovery by extracting pairs of 𝑙-mers with relatively small
Hamming distance for processing large DNA data sets. That
is, given 𝑡 DNA sequences, we verify whether the extracted
pairs of 𝑙-mers with Hamming distance no more than 𝑘
contain sufficient pairs of motif instances and whether the
pairs of motif instances and the random overrepresented
pairs of 𝑙-mers can be distinguished.

Table 1 shows a set of data for probabilistic analysis. In
generating these data, we set the number of sequences 𝑡, the
sequence length 𝑛, the probability 𝑞 that each input sequence
contains a motif instance, and the motif conservation param-
eter 𝑔 to 1000, 200, 0.8, and 0.8, respectively. For a fixed 𝑙, 𝑘
is obtained by (4), which is the maximummaking 𝐸𝑘 smaller
than 1. Let 𝑁1 and 𝑁2 denote the number of pairs of 𝑙-mers
and that of pairs of motif instances with Hamming distance
nomore than 𝑘 contained in 𝑡 𝑛-length sequences at random,



6 BioMed Research International

respectively.The notations occ𝑟(𝑥) and occ𝑚(𝑥) are explained
in the Notations.

𝑁1 = (𝑡2) × (𝑛 − 𝑙 + 1)
2 × 𝑝𝑘

𝑁2 = (𝑞𝑡2 ) × 𝑝


𝑘.
(12)

From the values of 𝑁1 and 𝑁2, it can be found that
the extracted pairs of 𝑙-mers with Hamming distance no
more than 𝑘 contain sufficient pairs of motif instances and
meanwhile many random overrepresented pairs of 𝑙-mers.
For a given 𝑙-mer 𝑥, the 𝑙-mer in the input with Hamming
distance no more than 𝑘 from 𝑥 is called a k-neighbor of𝑥. From the values of occ𝑟(𝑥) and occ𝑚(𝑥), the number
of 𝑘-neighbors of a motif instance is significantly larger
than that of random overrepresented 𝑙-mers. Thus, we can
distinguish the pairs of motif instances and the random
overrepresented pairs of 𝑙-mers, so as to filter out most
random overrepresented pairs of 𝑙-mers extracted in step 1. It
should be noted that, for Table 1, we set themotif conservation
parameter to 0.8, which is in low conservation case; the value
of occ𝑚(𝑥) increases with the increase of the conservation
degree, which makes it easier to distinguish the pairs of motif
instances and the random overrepresented pairs of 𝑙-mers.
In implementing PairMotifChIP, we fix the value of 𝑙 to 15
because it corresponds to a large value of occ𝑚(𝑥).
3.2. Data. We use both simulated and real data to make
experiments. The simulated data are helpful for the com-
parison of different motif discovery algorithms, since the
motifs and their locations are known exactly. The real data
are mainly used to test whether the proposed algorithm can
find motifs under the realistic biological situation.

We generate simulated DNA data according to [29]: gen-
erate 𝑡 𝑛-length sequences and an l-length motif𝑚 randomly
and then implant a random instance𝑚 of𝑚 to each sequence
with a probability 𝑞. Each instance 𝑚 differs from 𝑚 in
at most 𝑑 positions; as shown in column 2 of Table 1, the
value of 𝑑 under a specific 𝑙 is determined in terms of the
challenging problem instance of planted motif search [27].
When generating a random motif instance 𝑚 from 𝑚, the
specific Hamming distance 𝑖 (0 ≤ 𝑖 ≤ 𝑑) between 𝑚 and𝑚 is determined by (8), where 𝑔 is the motif conservation
parameter.

Based on this generation method, two groups of simu-
lated data sets are designed, and they can be downloaded at
https://sites.google.com/site/feqond/pairmotifchip. For both
groups of data sets, 𝑛 is fixed to 200; 𝑞 is fixed to 0.8; l is taken
as 9, 15, and 21, representing short, medium, and long motif
length, respectively. The other settings for the first group of
data sets are as follows: 𝑡 is fixed to 600, which is the largest
sequence number that MEME-ChIP supports to process; 𝑔 is
taken as 0.2, 0.5, and 0.8, representing high, medium, and low
conservation, respectively. For the second group of simulated
data sets, we vary 𝑡 from 500 to 3000 to obtain different data
scales and fix 𝑔 as 0.5.

The used real data are mouse embryonic stem cells
(mESC) ChIP-seq data [30]. Each mESC data set, which
corresponds to a specific transcription factor, is a set of 200-
length sequences with each sequence being a peak region
bound by the specific transcription factor. These data sets
contain thousands to tens of thousands of sequences, and we
used the first 600 sequences to makemotif discovery for each
data set.

3.3. Evaluation. In the experiments, we compare the running
time and identification accuracy of different motif discovery
algorithms. For the site-level identification accuracy, we
evaluate it by using the site-level performance coefficient sPC
[29]. When we say a motif site𝑚 is in a set of motif sites𝑀,
there exists amotif site𝑚 in𝑀 such that𝑚 overlaps𝑚. Let𝐾 and 𝑃 represent the publishedmotif sites and the predicted
motif sites, respectively. Then, site-level true positive (sTP),
false negative (sFN), and false positive (sFP) are the number
of motif sites in both 𝐾 and 𝑃, in 𝐾 but not in 𝑃, and not in𝐾 but in 𝑃, respectively. Based on this, sPC is calculated as
follows:

sPC = sTP
sTP + sFN + sFP . (13)

For the nucleotide-level identification accuracy, we eval-
uate it by using the nucleotide-level correlation coefficient
(nCC) [31], an integrated assessment of nucleotide-level sen-
sitivity (nSn) and specificity (nSp). The value of nCC ranges
from−1 to +1; a high nCC indicates that the predictedmotif is
more accurate. Let𝐾 and𝑃 represent the nucleotide positions
covered by the published motif sites and the predicated motif
sites, respectively. Then, nucleotide-level true positive (nTP),
false negative (nFN), false positive (nFP), and true negative
(nTN) are the number of nucleotide positions in both 𝐾 and𝑃, in𝐾 but not in𝑃, not in𝐾 but in𝑃, and in neither𝐾 nor𝑃,
respectively. Based on this, nCC, nSn, and nSp are calculated
as follows:
nCC

= nTP × nTN − nFN × nFP
√(nTP + nFN) (nTN + nFP) (nTP + nFP) (nTN + nFN)

nSn = nTP
nTP + nFN

nSp = nTN
nTN + nFP .

(14)

3.4. Results on Simulated Data. We select four compared
algorithms: MEME-ChIP [23], F-motif [18], PairMotif+ [13],
and qPMS9 [16]. MEME-ChIP is a widely used motif dis-
covery algorithm for ChIP-seq data based on PWM. F-motif
is a motif discovery algorithm for ChIP-seq data based on
word. PairMotif+ is a motif discovery algorithm designed
in our previous work. qPMS9 is a recently proposed motif
discovery algorithm; it is the best one in exactmotif discovery
algorithms and can identify motif efficiently in traditional
promoter sequences.

All the algorithms are implemented in C or C++. Except
forMEME-ChIP,whose results are produced by itsweb server

https://sites.google.com/site/feqond/pairmotifchip
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Table 2: Running time on the first group of simulated data sets.

𝑙 𝑔 PairMotifChIP MEME-ChIP F-motif PairMotif+ qPMS9

9
0.2 26.3 s 1510.1 s 9.2 s 300.7 s 247.4 s
0.5 21.3 s 1507.1 s 9.2 s 212.9 s 234.7 s
0.8 18.7 s 1462.6 s 9.1 s 217.9 s 226.0 s

15
0.2 35.9 s 1325.0 s 16655.1 s 73048.5 s —
0.5 25.6 s 1354.9 s 16403.4 s 23549.0 s —
0.8 19.5 s 1466.7 s 15982.7 s 845.6 s —

21
0.2 47.4 s 1425.5 s — — —
0.5 30.7 s 1148.5 s — — —
0.8 20.5 s 1349.2 s — — —

Note. s: seconds; —: over 24 hours.

Table 3: Site-level identification accuracy on the first group of
simulated data sets.

𝑙 𝑔 PairMotifChIP MEME-ChIP F-motif PairMotif+

9
0.2 0.942 0.866 0.942 0.942
0.5 0.902 0.734 0.902 0.902
0.8 0.907 ∗ 0.907 0.907

15
0.2 0.995 0.960 0.995 0.995
0.5 0.969 0.916 0.969 0.969
0.8 0.936 ∗ 0.936 0.936

21
0.2 1.000 0.947 — —
0.5 0.988 0.953 — —
0.8 0.981 0.844 — —

Note. —: the result is not obtained because the running time is over 24 hours;
∗the result is not obtained because motif sites are not provided by MEME-
ChIP on the corresponding data sets.The site-level identification accuracy is
evaluated by the site-level performance coefficient sPC. Since qPMS9 and F-
motif report the same motifs and have the same identification accuracy, the
results of qPMS9 are not listed in this table.

(http://meme-suite.org/tools/meme-chip), all the algorithms
run on the same machine with a 2.67GHzCPU and a
4G memory. Each result is the average obtained on three
randomly generated data sets with the same settings. Both
PairMotifChIP and MEME-ChIP use the default parameters
to identify motifs. In executing F-motif, the minimum motif
length is set to 8, and the value of 𝑑 is set to 2, 5, and
8 when the length of the identified motif is 9, 15, and 21,
respectively. Both PairMotif+ and qPMS9 need specified 𝑙
and 𝑑 of the identified motif. When calculating identification
accuracy, the predicated motif sites are needed. For MEME-
ChIP, the predicatedmotif sites are returned by its web server;
for other algorithms, the sites are obtained by searching
the substring in each input sequence having the smallest
Hamming distance from the predicted motif.

For the first group of simulated data sets, the run-
ning time, the site-level identification accuracy, and the
nucleotide-level identification accuracy are given in Tables 2,
3, and 4, respectively. It can be seen that (i) all these algo-
rithms show good identification accuracy, since large data
sets contain sufficient motif information; (ii) PairMotifChIP
has the best time performance among these algorithms;

namely, it is able to deal with the DNA data set of 600
sequences within one minute; (iii) MEME-ChIP has the
second best time performance, and it solves the problem
within half an hour; (iv) for other compared algorithms,
their running time becomes impractical with the increase of𝑙 because of exhaustively verifying l-length candidate motifs.

For the second group of simulated data sets, whose data
scales range from 500 to 3000 sequences, the comparison of
different algorithms is shown in Table 5. Here, MEME-ChIP
and qPMS9 are not taken as the compared algorithms, as
MEME-ChIP allows the processed data set containing atmost
600 sequences and qPMS9 has a poor time performance in
processing large data sets. It can be seen that (i) the three
motif discovery algorithms still have a good identification
accuracy; (ii) PairMotifChIP performs slower than F-Motif
when 𝑙 is 9, while it is significantly faster than the other
two algorithms when 𝑙 is 15 and 21; (iii) the running time of
PairMotifChIP increases with the increase of data scale, but
it does not depend on the motif length.

Finally, it is necessary to test the method for extracting
pairs of 𝑙-mers because it plays a key role in the time
performance of the whole PairMotifChIP algorithm. Table 6
shows the comparison of the running time of the method in
this paper and the method in [26]. When extracting pairs of𝑙-mers with Hamming distance no more than 𝑘 in two given𝑛-length sequences, although the worst time complexity of
the method in this paper is still 𝑂(𝑛2), it has a better time
performance in practice. Specifically, the method in this
paper is 10 times faster than that in [26], which makes it
possible to process more DNA sequences.

3.5. Results on Real Data. We test PairMotifChIP’s validity
of motif discovery on the real ChIP-seq data (i.e., the mESC
data). To better show the results, we take our previous
algorithmPairMotif+ for comparison. For PairMotifChIP, we
use default parameters without any prior information; for
PairMotif+, we use the same setting 𝑙 = 13, 𝑑 = 4, and 𝑘 = 2
for each data set.

Table 7 shows the results on these real data. For each
data set, we list the name of the specific transcription factor,
the published motif, and the running time and predicted
motif of the two algorithms. The motifs are shown in the
form of sequence logos [32]. PairMotifChIP runsmuch faster

http://meme-suite.org/tools/meme-chip
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Table 4: Nucleotide-level identification accuracy on the first group of simulated data sets.

𝑙 𝑔 PairMotifChIP MEME-ChIP F-motif PairMotif+
nCC nSn nSp nCC nSn nSp nCC nSn nSp nCC nSn nSp

9
0.2 0.969 0.970 0.999 0.927 0.899 0.999 0.969 0.970 0.999 0.969 0.970 0.999
0.5 0.947 0.949 0.998 0.849 0.762 0.999 0.947 0.949 0.998 0.947 0.949 0.998
0.8 0.921 0.929 0.996 ∗ ∗ ∗ 0.950 0.951 0.998 0.950 0.951 0.998

15
0.2 0.997 0.997 1.000 0.978 0.997 0.998 0.997 0.997 1.000 0.997 0.997 1.000
0.5 0.983 0.984 0.999 0.952 0.950 0.997 0.983 0.984 0.999 0.983 0.984 0.999
0.8 0.965 0.967 0.998 ∗ ∗ ∗ 0.965 0.967 0.998 0.965 0.967 0.998

21
0.2 1.000 1.000 1.000 0.969 1.000 0.994 — — — — — —
0.5 0.993 0.994 0.999 0.972 0.955 0.996 — — — — — —
0.8 0.989 0.990 0.999 0.921 0.906 0.996 — — — — — —

Note. —: the result is not obtained because the running time is over 24 hours; ∗the result is not obtained because motif sites are not provided by MEME-ChIP
on the corresponding data sets. Since qPMS9 and F-motif report the same motifs and have the same identification accuracy, the results of qPMS9 are not listed
in this table. Besides the nucleotide-level identification accuracy nCC, the sensitivity nSn and specificity nSp are also listed in this table.

Table 5: Running time and identification accuracy on the second
group of simulated data sets.

𝑙 Sequence # PairMotifChIP F-motif PairMotif+

9

500 14.4 s (0.955) 7.8 s (0.955) 68.1 s (0.628)
1000 60.6 s (0.945) 17.2 s (0.945) 410.1 s (0.945)
1500 133.3 s (0.953) 27.8 s (0.953) 989.9 s (0.953)
2000 231.4 s (0.953) 40.0 s (0.953) 1704.1 s (0.953)
2500 361.4 s (0.951) 52.8 s (0.951) 3012.7 s (0.951)
3000 519.2 s (0.955) 67.2 s (0.955) 4307.4 s (0.955)

15

500 17.9 s (0.986) 13581.7 s (0.986) 14394.4 s (0.986)
1000 74.8 s (0.983) 30293.2 s (0.983) 35172.2 s (0.983)
1500 150.9 s (0.980) 50102.5 s (0.980) —
2000 253.0 s (0.981) 66344.7 s (0.981) —
2500 396.9 s (0.982) — —
3000 554.4 s (0.981) — —

21

500 22.9 s (0.995) — —
1000 90.5 s (0.996) — —
1500 171.6 s (0.995) — —
2000 277.2 s (0.995) — —
2500 423.8 s (0.996) — —
3000 592.2 s (0.996) — —

Note. s: seconds; —: over 24 hours. The number after each running time is
the corresponding nucleotide-level identification accuracy nCC.

than PairMotif+ on these data. Moreover, PairMotifChIP can
successfully find a motif overlapping the published motif for
each data set, while PairMotif+ fails to make prediction on
the n-Myc, Smad1, STAT3, and Tcfcp2I1 data sets.

4. Conclusions

In order to identify motifs in large DNA data sets, we
propose a new algorithm, PairMotifChIP, which is a ChIP-
tailored version of PairMotif/PairMotif+. The main differ-
ence between PairMotifChIP and PairMotif/PairMotif+ is
that (i) PairMotifChIP designs a more efficient method

Table 6: Running time of methods for extracting pairs of 𝑙-mers.

Sequence # Method in this paper Method in [26]
200 2.2 s 23.6 s
400 8.7 s 96.1 s
600 19.7 s 197.9 s
800 34.7 s 331.7 s
1000 54.3 s 518.1 s
1200 78.4 s 741.6 s
1400 109.0 s 1015.4 s
1600 140.5 s 1334.1 s
1800 178.3 s 1731.2 s
2000 223.2 s 2163.5 s
Note. s: seconds.

for extracting pairs of 𝑙-mers and (ii) unlike PairMo-
tif/PairMotif+, which obtains motifs by exhaustively verify-
ing candidate motifs generated from extracted pairs of 𝑙-
mers, PairMotifChIP obtains motifs by combining extracted𝑙-mers based on clustering methods. The improvements
of PairMotifChIP over PairMotif/PairMotif+ are that (i)
PairMotifChIP runs much faster when identifying motifs in
large data sets and (ii) PairMotifChIP can make motif dis-
covery without any prior information (e.g., the motif length).
The executable program of PairMotifChIP is available at
https://sites.google.com/site/feqond/pairmotifchip.

It should be noted that, limited by the idea of combining
overrepresented substrings, PairMotifChIP may not work
well on the traditional promoter sequence data set containing
dozens of sequences because of the lack of sufficient motif
information.

Notations

𝑙 : Themotif length𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑡}: The input DNA data set; each input
sequence 𝑠𝑖 is an 𝑛-length string
over the alphabet {A,C,G,T}𝑡: The number of input sequences,𝑡 = |𝑆|

https://sites.google.com/site/feqond/pairmotifchip
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Table 7: Results on the mESC data.

Data set Published motif PairMotifChIP PairMotif+
Time Predicted motif Time Predicted motif

c-Myc 37.2 s 4106.1 s

CTCF 29.1 s 23584.3 s

Esrrb 25.6 s 7424.6 s

Klf4 29.3 s 3558.5 s

Nanog 24.3 s 1975.6 s

n-Myc 36.3 s 33962.6 s —

Oct4 8.9 s 2608.8 s

Smad1 20.3 s 5296.1 s —

Sox2 23.1 s 4115.2 s

STAT3 22.9 s 6342.6 s —

Tcfcp2I1 23.5 s 2269.5 s —

Zfx 42.2 s 3617.2 s

Note.—: there is no motif overlapping the published motif in the top ten predicted motifs.

𝑛: The length of each input sequence𝑞: The probability that each input sequence
contains a motif instance𝑑: The maximum number of positions where a
motif differs from its instance𝑔: The motif conservation parameter𝑙-mer: An 𝑙-length string over {A,C,G,T}𝑘: The threshold of extracting pairs of 𝑙-mers,0 ≤ 𝑘 < 𝑙

occ(𝑥): The number of 𝑙-mers in the input sequences
with Hamming distance no more than 𝑘
from an 𝑙-mer 𝑥

occ𝑟(𝑥): The number of 𝑙-mers in the input sequences
with Hamming distance no more than 𝑘
from an arbitrary 𝑙-mer 𝑥 in random case; it
is calculated by (6)

occ𝑚(𝑥): The number of motif instances in the input
sequences with Hamming distance no more
than 𝑘 from an arbitrary motif instance 𝑥 in
random case; it is calculated by (11)𝑠[𝑖 ⋅ ⋅ ⋅ 𝑗]: A substring of the string 𝑠 starting from the𝑖th position to the 𝑗th position.
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