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Glacier-fed streams (GFSs) are extreme and rapidly vanishing ecosystems, and yet they harbor diverse microbial communities.
Although our understanding of the GFS microbiome has recently increased, we do not know which microbial clades are
ecologically successful in these ecosystems, nor do we understand potentially underlying mechanisms. Ecologically successful
clades should be more prevalent across GFSs compared to other clades, which should be reflected as clade-wise distinctly low
phylogenetic turnover. However, methods to assess such patterns are currently missing. Here we developed and applied a novel
analytical framework, “phyloscore analysis”, to identify clades with lower spatial phylogenetic turnover than other clades in the
sediment microbiome across twenty GFSs in New Zealand. These clades constituted up to 44% and 64% of community α-diversity
and abundance, respectively. Furthermore, both their α-diversity and abundance increased as sediment chlorophyll a decreased,
corroborating their ecological success in GFS habitats largely devoid of primary production. These clades also contained elevated
levels of putative microdiversity than others, which could potentially explain their high prevalence in GFSs. This hitherto unknown
microdiversity may be threatened as glaciers shrink, urging towards further genomic and functional exploration of the GFS
microbiome.
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INTRODUCTION
Glacier-fed streams (GFSs) are extreme ecosystems. In winter, they
are characterized by darkness and ice, while in summer low
temperatures but high UV-radiation and flow-induced hydraulic
stress dominate the GFS environment, even with pronounced diel
fluctuations [1]. While we increasingly understand that these
ecosystems harbor diverse microbial communities [2–4], we do
not know which phylogenetic clades in these communities are
ecologically successful and what could underlie their success in a
most extreme ecosystem.
Ecosystem-wide, ecologically successful clades should be more

prevalent compared to other clades but there are currently no
analytical tools to distinguish among clades with differential
prevalence patterns. Because taxa within clades are phylogeneti-
cally related by definition, clade-wise phylogenetic turnover could
be used to distinguish among such clades. In other words, an
ecologically successful clade in GFSs should include taxa found
across many GFSs and thus the phylogenetic distances of these
taxa across different GFSs should be shorter compared to other
clades. However, current methodologies calculate phylogenetic
turnover at the community level, averaging across all taxa
between any two given samples (Fig. 1A—between any two
columns in the matrix) and making inferences about community
assembly processes [5–7]. At the community level, higher-than-

expected phylogenetic turnover between two communities
indicates variability in environmental filtering (called “variable
selection”), whereas lower-than-expected phylogenetic turnover
indicates homogeneity in environmental filtering (called “homo-
geneous selection”) [5, 7]. While this approach can highlight the
dominant ecological processes that underlie community assem-
bly, it provides no indication on the contribution of individual taxa
to the community-level turnover and so it cannot distinguish
between clades with low or high phylogenetic turnover.
Here we developed a novel analytical framework that quantifies

clade-wise phylogenetic turnover, “phyloscore analysis”, to detect
clades with low phylogenetic turnover and therefore with high
clade-wise prevalence in sediment biofilms of GFSs. Phyloscore
analysis can identify clades with distinctly lower or higher
phylogenetic turnover to that expected by chance and compared
to other clades (Fig. 1B). For consistency with the existing
frameworks [5, 7], we will henceforth call clades with distinctly
low or high phylogenetic turnover as clades under homogeneous
ecological selection (HoS clades) and clades under heterogeneous
ecological selection (HeS clades), respectively (Fig. 1B).
We expected that, community-wide, low phylogenetic turnover

(i.e., homogeneous selection) dominates in GFSs, likely as in other
extreme and energy-limited ecosystems [8–10]. Therefore, we
expected to find HoS clades driving this low phylogenetic turnover
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in GFSs, which we anticipate to be ecologically successful with broad
spatial niches. Microbial clades with broad spatial niches are often
hotspots of microdiversity [11–19], containing genetically similar sub-
taxa, or ecotypes [20, 21], with distinct ecological niches [22]. Because
of that, we additionally examined whether HoS clades in GFSs also
show signs of microdiversity (Fig. 1C). To that end, we sampled
biofilms from GFS sediments across a 340-km long transect in the
Southern Alps in New Zealand (Supplementary Fig. 1), and analyzed
the bacterial part of their microbiome using 16 S rRNA gene
amplicon sequencing. Our sampling design allowed us to capture
patterns of spatial community turnover over a large spatial scale as
well as within GFSs where dispersal should be more important and
could potentially attenuate selection by mass effects [7, 23] via the
water flow.

MATERIALS AND METHODS
Sampling
We sampled 20 GFSs in the Southern Alps in New Zealand along a 340-km
North-East – South-West transect (Supplementary Fig. 1). We selected GFSs
from five major head valleys (Arthur’s Pass, Westland, Mount Cook, Mount
Aspiring and Milford Sound). In each GFS, we sampled benthic sediments
from two reaches (ca. 50 m long). The upper reaches (hereafter referred to
as UP) were located the closest possible to the glaciers’ snouts, whereas
the lower reaches (hereafter referred to as DN) were located 100–2500m
downstream from UP.
Within each reach, we sampled sediments from three patches to assess

the within-reach variability; patches were 2–5m apart. Wet sediment was
sieved (315 and 250 µm, Retsch, Woven Wire Mesh Sieve) and the sandy
fraction retained. All metal sampling material was flame-sterilized. Up to
30 g of sediment (in 10-ml cryovials, VWR) were flash-frozen in situ in liquid
nitrogen pending DNA extraction. For bacterial abundance analysis, we
filled 5-ml cryovials (VWR) with 2.5–3 grams of sediment containing a 10%

solution of paraformaldehyde/glutaraldehyde [24] in 0.22 μm-filtered
streamwater that we added in-situ, and we flash froze the vials in liquid
nitrogen.

Streamwater physicochemical parameters and sediment
chlorophyll α
We measured streamwater temperature, dissolved oxygen and pH using a
WTW Multi-parameter portable meter (MultiLine Multi 3630 IDS), electrical
conductivity using a WTW—IDS probe (TetraCon 925) and turbidity using a
WTW portable turbidity meter (Turb 430 IR) (Supplementary Table 1).
Sediment chlorophyll α content was determined following a modified
ethanol extraction protocol [25].

Bacterial abundance
We quantified the number of cells per gram of dry sediment using flow
cytometry after detaching the cells from the sediment matrix, by slightly
modifying the method of Amalfitano & Fazi [26] as described elsewhere
[25]. We identified and gated the cell populations based on the height
of their fluorescence signals on a 530/30 – 725/40 nm biplot [27]
(Supplementary Fig. 2), using the ACEA NovoExpress software with
thresholds of 300 and 3000 on the front scatter and 530/30 nm channels,
respectively. We analyzed three stained technical replicates plus one
unstained replicate of the same extract per sample, the latter to exclude
any background fluorescence. The coefficient of variation among the counts
from technical replicates was 7.5 ± 5.1% on average. Finally, we corrected the
acquired numbers for the various dilution factors and for the sediment water
content, which we obtained from the weight loss of oven-dried sediment
samples.

DNA extraction, PCR amplification and 16 S rRNA gene
amplicon sequencing
We extracted DNA from sediment samples using a phenol-chloroform
method with certain modifications to address the nature of our samples [28].

Fig. 1 Community-wide and per-taxon phylogenetic turnover, and the subsequent search for putative microdiversity in specific
phylogenetic clades. A A conceptual microbiome survey with the phylogenetic tree of the microbiome on the left and the respective
presence/absence matrix on the right. Arrows indicate an example comparison such as it is currently performed with existing community-
wide methods between two samples (columns), allowing comparisons across samples but not across clades. B The same survey, but analyzed
following phyloscore analysis that allows comparisons of phylogenetic turnover across clades. The red clade (HoS clade) has high clade-wide
prevalence; when a red taxon is not present other red taxa are present. This will result in low phylogenetic turnover (β-nearest taxon distances
-βNTDs) clade-wise. Similarly, because the blue clade has low prevalence and the black clade is sparsely present in the ecosystem, the blue
clade will have higher-than-expected phylogenetic turnover and the black clade will have similar phylogenetic turnover to the null model
expectation. C HoS clades identified by phyloscore analysis can subsequently be examined for indications of microdiversity, by assessing the
degree of within-clade fine-scale diversification and ecological differentiation.
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We amplified the V3-V4 hypervariable regions of the bacterial 16 S rRNA gene
using primers 341 f (5′-CCTACGGGNGGCWGCAG-3′) and 785r (5′-GAC-
TACHVGGGTATCTAATCC-3′) that are general for amplifying Bacteria [29].
Due to low DNA yields and presence of inhibitors in the DNA extracts of
certain samples and in an attempt to avoid PCR biases due to unequal input
DNA, we diluted all DNA samples to a final concentration of ≤2–3 ng μl−1. The
KAPA HiFi DNA Polymerase (Hot Start and Ready Mix formulation) was used in
a 25-μl-amplification reaction containing 1X PCR buffer, 1 μM of each primer,
0.48 μg μl−1 BSA and 1.0 μl of template DNA. Amplification was performed in
a Biometra Trio (Biometra) instrument. The thermal conditions applied after an
initial denaturation at 95 °C for 3min, were 94 °C for 30 s, 55 °C for 30 s and 72
°C for 30 s for 25 cycles followed by a final extension at 72 °C for 5min.
Amplification was verified on a 1.5% agarose gel and products were sent to
Lausanne Genomic Technologies Facility (Switzerland) for further processing
according to the MiSeq manufacturer’s protocol (https://support.illumina.com/
documents/documentation/chemistry_documentation/16s/16s-metagenomic
-library-prep-guide-15044223-b.pdf). In brief, a second PCR was performed for
the addition of dual indices to the purified amplicon PCR products. This
allowed extensive multiplexing of samples on a single sequencing lane of the
MiSeq (Illumina) platform after quantification and normalization. Samples
were sequenced using a 300 base paired-end protocol. Sequencing data has
been uploaded to the European Nucleotide Archive under accession number
PRJEB40567.

Downstream sequence analyses
We used Trimmomatic v.0.36 [30] for quality filtering of the sequencing
reads. Briefly, we truncated the reads in 4-base sliding windows at the first
instance of mean quality dropping below a Phred score of 15, we removed
the three leading and trailing nucleotides and we discarded the reads that
were shorter than 200 bases.
We performed all subsequent sequence processing within the QIIME2

v.2019.1 framework [31]. We used DADA2 [32] with the default parameters
to remove the primers, denoise and join the reads into exact amplicon
sequence variants (ASVs). For this, 17 and 21 nucleotides (corresponding to
the primers’ length) were removed at the beginning of the forward and
reverse reads, respectively, and the reads were truncated at 300 bases. We
performed denoising and joining of the reads using the default
parameters, and we removed any ASVs that were not found in at least
two samples. We used the alpha-rarefaction method implemented in the
diversity plugin of QIIME2 to create the rarefaction curves (Supplementary
Fig. 3). We used the ASV table that contained the raw sequence counts of
each ASV at each sample to calculate the relative abundances of ASVs
within samples, and we transformed the relative abundances into absolute
abundances (cells per gram of dry sediment) by multiplying with the cell
counts derived from flow cytometry [33].
We assigned taxonomy with the feature-classifier plugin [34] in QIIME2.

First, we trained QIIME2’s naïve Bayesian classifier using the fit-classifier-
naïve-bayes method on the Greengenes [35] 99% OTUs database v. 13.5.
We created this training set using the extract-reads method with a minimal
and maximal length of 250 and 550 nucleotides, respectively, and using
the primers’ sequences. Finally, we assigned the taxonomy of the
sequence variants using the classify-sklearn method with default
parameters. We considered the taxonomies down to the genus level,
ignoring “species” assignments that can be ambiguous based only on part
of the 16 S rRNA gene [36]. Betaproteobacteria was the class with the
highest relative abundance in all samples (Supplementary Fig. 4). A
detailed taxonomic summary can be found in Supplementary Results
(Supplementary Information—section “Detailed taxonomic diversity”).
To build the phylogenetic tree, we aligned the sequences of the ASVs

with mafft [37] and we trimmed the alignment with the mask method in
QIIME2 using the default parameters. We then used RAxML [38] with the
GTRCAT substitution model and the rapid bootstrap option to build the
tree, and the midpoint-root method to root the phylogenetic tree. To
calculate pairwise nucleotide similarities we used ClustalOmega [39]
v.1.2.3.

Identification of the core microbiome
We identified the core microbiome across all samples based on taxonomy,
i.e., as the consensus taxonomic clades that are present in all 40 reaches
(20 GFSs x 2 reaches each). We used the package metacoder [40] in R [41]
to visualize the results as hierarchy trees.

Multivariate statistics
We used distance-based redundancy analysis to quantify the variance in
the Bray-Curtis similarity matrix (calculated using the ASV table with log-
transformed absolute abundances) that could be explained by the
measured physicochemical variables, using the capscale function of the
vegan [42] package in R. We performed a stepwise forward selection based
on the increase in the adjusted R2 to select for the variables to include in
the model, using the ordiR2step function in vegan with 200 permutations
(Supplementary Table 2). The samples clustered in two major groups
(Supplementary Fig. 5) while there was no single environmental variable
driving this grouping (Supplementary Information—section “Environmen-
tal drivers of bacterial β-diversity”).

Quantification of the dominant assembly processes at the
community level
We used the framework developed by Stegen and colleagues [6, 7] to
quantify phylogenetic and compositional turnover at the community level,
which are indicative of the dominant community assembly processes. This
framework assigns differences between two given communities (i.e.,
amplicons profiles of different patch samples in our case) to selection
(either homogeneous or heterogeneous), to dispersal (either homogeniz-
ing or limiting) or to the lack of any dominant process. The influence of
selection is first determined by examining the community-wise phyloge-
netic turnover between any two given communities via the z score (in this
case called β-nearest taxon index - βNTI) of the observed β-mean nearest
taxon distance (β-MNTD) from a null distribution of the same metric. The
observed β-MNTD is calculated as the abundance-weighted mean of the
nearest taxon distances for taxa that are present in only one of the two
compared communities. The null distribution is created for the same pair
of communities by shuffling the tips of the phylogeny, which essentially
randomizes the presence/absence and abundances of taxa (in our case
ASVs) in the compared communities but preserves the distribution of
the phylogenetic distances. βNTI scores less than −2 indicate that the
observed phylogenetic turnover is significantly lower than ~95% of the
null values and thus that homogeneous selection between the compared
communities causes higher-than-expected phylogenetic similarity (at short
distances). In analogy, βNTI scores greater than +2 indicate the dominance
of heterogeneous selection. Community pairs with βNTI scores between
−2 and +2 are then further compared in terms of compositional turnover
using the Raup-Crick distances based on the Bray-Curtis similarity (RCBray),
with the null distribution in this case being formed by probabilistic
permutations under weak selection and random dispersal. This part of the
analysis is based on the notion that passive dispersal should be blind as to
the species’ phylogeny so it should result in non-distinguishable
phylogenetic turnover from that expected by chance and in lower or
higher compositional turnover (if it is homogenizing or limiting,
respectively), from that expected by chance. Here, values of RCBray less
than −0.95 and greater than 0.95 indicate less and more compositional
turnover, respectively, than the null expectation and that is attributed to
homogenizing dispersal in the former case and to dispersal limitation in
the latter.
To apply the framework, two main assumptions must hold true for the

examined dataset: (a) some degree of migration occurred among local
communities at least at some point in evolutionary time and (b)
phylogenetic conservatism exists, that is, phylogenetically more similar
organisms occupy more similar ecological niches. For our dataset, the first
assumption probably holds true even for the most distant GFSs because of
migration via air, water flow and precipitation. To test the second
assumption of phylogenetic conservatism we first calculated the niche
optima of the ASVs for each physicochemical parameter that we included
in the multivariate analyses (Supplementary Table 2), as previously
described [43], and we then calculated the niche distances among ASVs
as the euclidean distance of their niche optima (after standardization of
each parameter). We subsequently performed a Mantel correlogram
analysis, correlating the phylogenetic distances to the niche distances at
different distance classes. Proper use of the βMNTD requires a positive
correlation between the two at short genetic distance classes, indicating
that at short phylogenetic distances more related ASVs have shorter niche
optima distances and therefore occupy more similar ecological niches; that
was indeed the case for our dataset (Supplementary Fig. 6). We calculated
the abundance-weighted βMNTD using the comdistnt function of the
picante [44] package in R (setting abundance.weighted= TRUE).

S. Fodelianakis et al.

668

The ISME Journal (2022) 16:666 – 675

https://support.illumina.com/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf
https://support.illumina.com/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf
https://support.illumina.com/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf


Identification of phylogenetic clades under homogeneous
ecological selection (HoS clades)
In addition to inferring community-wide patterns of assembly [6, 7], we
developed a framework to identify HoS clades. In analogy to the
community-wide framework, we defined HoS clades as monophyletic
groups with distinctly low clade-wise phylogenetic turnover, i.e., groups
containing ASVs with phylogenetically closer relatives across communities
than expected by chance. Clades with such phylogenetic turnover patterns
should have high niche occupancy across the examined samples (such as
the red clade in Fig. 1B).
Our method consists of the following steps:

1. For a given pair of communities, j, k, and for each ASV, i, that is
present in one but not both communities, we calculate its
“phyloscore”. The phyloscore is a z score quantifying how different
its nearest phylogenetic distance is to a null expectation in which
species are randomly drawn to be present in the community in
which ASV i is absent. For example, if we examine ASV i across
communities j and k and i is present in community j and not in
community k, we first find the nearest phylogenetic distance di,j,k of i
based on the ASVs that are present in community k. We then sample
a null distribution of M minimum phylogenetic distances

d0i;j;k;m

n om¼M

m¼1
between our focal ASV i and the ASVs present in

community k in which ASV i is absent. If there are Nk species present
in community k, we randomly sample Nk species other than ASV i to
be present in the null community, compute the distance to the
nearest present taxon to our focal ASV, and repeat this process M=
100 times to estimate the distribution of nearest phylogenetic
distances in our null model. Finally, we calculate the phyloscore as:

zi;j;k ¼
log di;j;k

� �� log d0i;j;k;m

D E
m

σ0i;j;k

where log d0i;j;k;m

D E
m

is the average of the null distribution’s log-

transformed nearest taxon distances and σ0i;j;k the standard
deviation of this distribution.

2. We then calculate for each ASV its total phyloscore as the sum of its
phyloscores across all community pairs. We use phylofactorization
[45, 46] to identify monophyletic clades of ASVs with significantly
different total phyloscores compared to the complement set of ASVs
and to extract the consensus taxonomic classification of the ASVs
within. Phylofactorization is a graph-partitioning algorithm that
sequentially cuts edges in a phylogeny, splitting the tree into
disjoint sub-trees with high within-group similarities and between-
group differences. At each iteration, phylofactorization cuts the
edge that maximizes an objective function quantifying the
difference between the sets of ASVs on either side of the edge.
Here, the objective function was the absolute value of the t-statistic
from a two-sample t test of equal variance on the total phyloscores
between the two groups of ASVs on each side of the edge. The
output of phylofactorization will be phylogenetic clades containing
ASVs with distinctly different total phyloscores compared to
outgroups. This second step is particularly important for distinguish-
ing between niche-related patterns and dispersal. Dispersal would
result in uniform phyloscores across all the phylogeny -high scores
in the case of dispersal limitation and low scores in the case of
homogenizing dispersal- whereas clade-specific high/low niche
occupancy would result in monophyletic groups with lower/higher
phyloscores, respectively, compared to outgroups.

We used the total phyloscore as an input for phylofactorization at the
second step of the method to give more weight to ASVs that are
frequently replaced by close relatives. However, this metric might be
biased against ASVs that have only a few phyloscore values because of
high or low occupancy even if all these values are negative. We therefore
recommend the users to check the distribution of phyloscore values and
decide on the appropriate metric. To facilitate this, the output of our online
algorithm (https://github.com/sfodel/phylo_z_scores) includes all relevant
per-ASV phyloscore values such as the sum (used here), the mean,
the median, the number of values and the quotient of the mean and of the
standard deviation. In our case, the choice of metric did not alter the
results significantly (see “Results”).

Because the phylogenetic distance pool is preserved across all
permutations, the phyloscores for each ASV are determined by
presence–absence patterns alone and are independent of the branch
lengths and patterns of speciation in the phylogeny. Because of that, we
need to ensure that all potential sources of bias to the presence/absence
matrix are excluded prior to the calculation of the phyloscores. To our
perception the potential sources of bias can be either sequencing error
biases or inadequate sampling biases. We describe below how we treated
both these potential biases, and we recommend similar assessment in
studies using our framework.

a. Sequencing error biases. Sequencing errors can skew the distribu-
tion of presences/absences by inputting false positives, i.e., non-
existent presences. Because these errors are more likely to happen
in more abundant sequences, these false positives might tend to
cluster around abundant ASVs in the dataset, artificially decreasing
the phyloscores of abundant phylogenetic clades. To treat these
potential biases we excluded ASVs observed in only one replicate
sample. Taking into consideration the error correction implemented
in DADA2 [32] with which we processed our sequencing data, we
have no reason to assume that any residual errors are differentially
distributed between HoS and non-HoS clades.

b. Inadequate sampling biases. Inversely to sequencing errors,
inadequate sampling biases can introduce false negatives (non-
existent absences). In other words, low sequencing effort can be
enough to capture all the diversity of abundant phylogenetic clades
but not that of less abundant ones. In this way some ASVs in the
latter clades can be left out and the presence/absence matrix can be
artificially sparse in these clades. This concerns not only each HoS
clade, but more importantly the outgroups against which these
clades have distinctly different phyloscores. Thus, we needed to
ensure that the non-HoS clades and each HoS clade are adequately
sampled. For that we performed individual rarefactions for each of
these phylogenetic groups and we observed that all such curves
saturate, supporting that there was no bias due to inadequate
sampling effort for any of the clades in question (Supplementary
Fig. 7).

The R code for phyloscore analysis has been uploaded to GitHub
(https://github.com/sfodel/phylo_z_scores).

Assessment of putative microdiversity
We assessed putative microdiversity within each HoS clade and in non-HoS
clades by searching for indications of fine-scale diversification and fine-
scale ecological differentiation. This is not part of our developed
phyloscore analysis, but rather complements it in the search for
microdiversity within specific clades. Unlike other studies that focus on
examining microdiversity within a-priori defined groups, e.g., within
genera [47–49], here we assess putative microdiversity in HoS clades
irrespectively of their breadth. We perceive this as an agnostic approach
that can reveal even broad monophyletic groups with indications of fine-
scale diversification and ecological differentiation.
To assess the degree of fine-scale diversification, we examined the

clades’ structure by comparing the distribution of the nearest taxon
distances (NTD—the shortest phylogenetic distance between a tip and all
other tips) in each clade; fine-scale diversification within a clade should
shift this distribution towards lower NTD values. Importantly, NTD
examines shortest paths by definition and it should thus not be affected
by how broad a given clade is, allowing comparisons among clades of
unequal phylogenetic depth. This is an important aspect of NTD that can
be leveraged to utilize the output of methods like phylofactorization that
do not constrain the breadths of the identified clades. There was no
relationship between a clade’s phylogenetic depth (distance from the root)
and NTD for our dataset (Supplementary Fig. 8A). However, in simulations
of randomly generated phylogenetic trees (1000 random trees of 1000 tips
each, generated using the rtree function of the ape [50] package in R), we
found a weak yet significant negative relationship between phylogenetic
depth and NTD (Supplementary Fig. 8B). Users may therefore check for the
existence of such a relationship in their datasets and correct the NTD
values according to the clade’s depth if needed.
To search for indications of fine-scale ecological differentiation, we

examined the nucleotide similarity among β-nearest ASVs in each clade
HoS clade and in non-HoS clades. A β-nearest ASV of a focal ASV is the one
that is most closely related phylogenetically to the focal ASV in a
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community where the focal ASV is not present. This analysis is
complementing our phyloscore analysis in the search for microdiversity,
because it further quantifies the genetic similarity among β-nearest ASVs
that, by definition, is higher than expected by chance in HoS clades
(because they have negative phyloscores) and significantly different
compared to outgroups (i.e., to non-HoS clades, as identified by
phylofactorization). We calculated this nucleotide similarity per ASV and
we subsequently compared the distributions of the similarities within each
HoS clade and in non-HoS clades. Similarity values of >97% indicate spatial
replacements that occur among sub-taxa and are were thus used as an
indication of the degree of fine-scale ecological differentiation of the
respective clade.

RESULTS
Homogeneous selection is the dominant assembly process at
the community level
Using a community-level framework [6, 7], we first examined the
processes that govern community assembly among and within
the GFSs. We found that homogeneous selection (reflected as
βNTI values <−2) was the dominant assembly process for 89.2%
of the community pairs among GFSs (Fig. 2). Moreover, homo-
geneous selection dominated (in 99.3% of the community pairs)
the assembly within GFSs, indicating that it was not attenuated by
downstream dispersal via water flow. Dispersal limitation drove
assembly for 9.5% of community pairs among GFSs and its
probability of occurrence increased with increasing geographic
distance between the compared communities (logistic regression,
z= 11.97, p < 0.001). Finally, variable selection and homogenizing
dispersal drove assembly for 0.6% and 0.25% of community pairs
among GFSs, respectively, while no single dominant process was
found in 0.45% of community pairs.

HoS clades are diverse, abundant and widespread in GFSs
Next, having confirmed the dominant role of homogeneous
selection in driving assembly at the community level, we
developed and applied a method that leverages null phylogenetic
modeling to identify phylogenetic clades that are under homo-
geneous ecological selection (HoS clades—“Materials &
methods”).
We identified eight HoS clades with significantly lower total

phyloscores compared to outgroups (contrast tests, 3.3E-16 < p <
6.8E-255), comprising of 5 to 1418 ASVs each (Fig. 3, Supplemen-
tary Table 3). The consensus taxonomy of the largest identified
clade (1418 ASVs) affiliated to Betaproteobacteria (Fig. 3). This
clade also contained three sub-clades with distinctly low total
phyloscores and with consensus taxonomies affiliated to the
family Comamonadaceae (575 ASVs), to the uncultured order
Ellin6067 (54 ASVs) and to the genus Methylotenera (48 ASVs). The
second largest clade (602 ASVs) had a consensus taxonomy
affiliated to Alphaproteobacteria and it contained a low-score sub-
clade (5 ASVs) affiliated to the genus Novosphingobium. The third
largest clade (338 ASVs) was affiliated to the candidate class
Saprospirae within Bacteroidetes while the smallest clade (18 ASVs)
was taxonomically affiliated to the genus Nitrospira. Importantly,
we did not identify any phylogenetic clade with significantly
higher total phyloscores than expected by chance; this reflects the
low contribution of heterogeneous ecological selection in
governing assembly at the community level (i.e., low percentage
of community pairs with higher-than-expected phylogenetic
turnover; Fig. 2). The detected HoS clades were practically
identical when we used the average, the median, or the quotient
of the average and of the standard deviation of the phyloscores as
alternative inputs for phylofactorization instead of the total
phyloscores (Supplementary Table 4).
We found that HoS clades contained a significant part of the

total bacterial α-diversity and abundance at all GFSs, with on
average 43.7% (25.5–61.6%) of the total ASVs and 64%
(37.6–83.3%) of the total sequences per sample. In addition,

there was a notable overlap between HoS clades and the core
bacterial genera, i.e., those genera present at all reaches
(Supplementary Table 5, Supplementary Results). More specifi-
cally, nine of the twelve core genera resided within HoS clades
(Fig. 4); these genera included the majority of the ASVs (59.5%)
and of the sequences (87.7%) present in the core genera.
Furthermore, both the abundance and the α-diversity of HoS
clades increased disproportionately compared to the rest of the
microbiome as sediment chlorophyll a decreased (linear models,
n= 119, adjusted R2= 0.3 and p < 0.001 for both models)
(Fig. 5A, B). Since sediments with lower chlorophyll a also
contained fewer total bacterial cells (Pearson correlation, r=
0.85, p < 0.001) (Fig. 5C), the above correlations held true with
decreasing cell numbers as well (linear models, n= 119, adjusted
R2= 0.28 and 0.25, respectively, and p < 0.001 for both models)
(Supplementary Fig. 9). Collectively, these results indicate that
HoS clades are ecologically successful in the extreme GFS
environment.

HoS clades are hotspots for putative microdiversity
Finally, having identified the HoS clades, we examined whether
they represent hotspots for putative microdiversity. For that, we
searched for indications of higher fine-scale diversification and
ecological differentiation in HoS clades compared to non-HoS
clades. We examined the following two attributes in each HoS
clade and in non-HoS clades: (a) the distribution of the NTD,
expecting the presence of fine-scale diversification to shift this
distribution towards lower values, and (b) the distribution of the
nucleotide similarity among β-nearest ASVs, expecting the
presence of fine-scale ecological differentiation to shift this
distribution towards higher proportions with values >97% (i.e.,
indicative of spatial substitutions among sub-taxa).
We found that the examined distributions were indeed shifted

towards lower and higher values, respectively, in HoS clades
compared to non-HoS clades (Wilcoxon tests, 0.03 < p≪ 0.0001,
Fig. 6). The lower NTD values in HoS clades compared to non-HoS
clades (Fig. 6A) indicate that the ASVs within HoS clades have
more similar closest relatives than the respective ASVs in non-HoS
clades. In addition, the higher nucleotide similarity of the β-
nearest ASVs in HoS clades compared to non-HoS clades (Fig. 6B)
indicates that ASVs are spatially replaced by more similar ASVs
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within the former. Particularly important for the presence of
microdiversity in HoS clades is the fact that 45.2–83.3% of these
replacements occur among ASVs that are >97% similar, whereas
this percentage is only 11.7% for non-HoS clades. Collectively,
these results suggest that HoS clades represent hotspots of
putative microdiversity.

DISCUSSION
Ecologically successful and microdiverse clades in the GFS
sediment microbiome
Using a novel analytical framework for phylogenetic turnover
analysis, we detected prevalent and putatively microdiverse
phylogenetic clades in the sediment microbiome of GFSs. Low
phylogenetic turnover at the community level, attributed to
homogeneous selection in community ecology [6, 7], dominated
the assembly in the sampled GFSs as is typical for extreme
environments [8–10]. Our analytical framework further allowed us
to dissect the contribution of individual phylogenetic clades (HoS
clades) to this low phylogenetic turnover. The high occupancies
and abundances of HoS clades in GFSs corroborate that they are
ecologically successful therein. Focusing on the phylogenetic
structure and on the similarity among β-nearest taxa in HoS
clades, we found signs for both higher fine-scale diversification
and ecological differentiation compared to non-HoS clades. These
findings shed new light on the presence of fine-scale phylogenetic
architecture and its consequences for the success of microbial life
in the extreme GFS environment.
Our results further suggest that unlike non-HoS clades, the

identified HoS clades can successfully occupy a niche in GFSs
that are largely devoid of algal primary producers. This is
indicated by their stronger presence in sediments with low
chlorophyll a content. Concomitantly, lower cell abundance in

these sediments further evokes that the rest of the microbiome
is energy-limited in these sediments. We interpret these
patterns as evidence for an ecological niche governed by
chemolithotrophic rather than heterotrophic energy pathways,
as is typical in extreme environments like the cryosphere and
the deep biosphere [51–54]. We note here, however, that cell
detachment biases prior to flow cytometry are still undocu-
mented for the particular ecosystem and might have affected
the observed patterns.
This notion of metabolic versatility in HoS clades is indeed

supported by the known physiologies of some of their genera. For
instance, the globally-spread [55] psychrophilic genus Polaromo-
nas is facultatively chemolithotrophic and metabolically versatile
[56], and was even reported to be microdiverse [47]. Furthermore,
the obligate methylotrophs Methylibium, Methylotenera and
Hyphomicrobium have been found in deglaciated alpine soils
[57] and glaciers [58], and can utilize a diverse array of C1
compounds [59–61] that can occur as intermediates in methane
oxidation that is typical for the sub-glacial environment [62, 63].
Interestingly, the family Methylophilaceae that contains Methylo-
tenera and Methylibium is one of the groups that has been
reported to diversify quickly [64], supporting the existence of
microdiversity therein as suggested by our analyses. The
anoxygenic phototrophs and nitrogen fixing genera Rhodobacter,
Rubrivivax and Rhodoferax include psychrotolerant isolates [65, 66]
and have been found in ice cores [67], deglaciated soils [68] and
glaciers [58, 69]. Furthermore, members of the Nitrospira genus are
ubiquitous nitrite oxidizers, and species able to perform complete
ammonium oxidation have recently been reported in a high-
altitudinal and cold-water river [70]. The sulfur-oxidizing, faculta-
tive anaerobe and chemolithotrophic Thiobacillus has a sequenced
genome from a subglacial isolate revealing cold adaptations [71]
and is frequently found in cold-related environments [72, 73]. The
only “classical” heterotroph among the identified genera is the
iron oxidizing Leptothrix [74], which has been recently reported
from a metagenome from Antarctica [75].
The environment of GFSs is predicted to change dramatically as

glaciers shrink owing to climate change [1, 76]. A recent synthesis
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has suggested that specialist species that are well adapted to the
glacial conditions in GFSs are highly threatened by glacier retreat
[76]. At the same time, as turbidity decreases in GFSs because of
reduced discharge and sediment loads, the environment will
become more advantageous for primary production [1]. Therefore,
the ecological niche with its putatively microdiverse clades that
we have identified will most likely vanish with ongoing glacier
shrinkage, and with this, a hidden biodiversity that has adapted to
the GFS environment and that could even contain unexploited
potential for biotechnology [77].
Contrary to the early expectations of an ecologically neutral

origin of microdiversity arising from genetic drift [78], the
stronger presence of putative microdiversity in HoS clades than
in non-HoS clades suggests that optimization of niche occu-
pancy could underlie the observed microdiversification in GFSs.
We conjecture that this could be a phenomenon common to the

microbiome of other extreme environments that might have
been hitherto unrecognized because of the lack of adequate
analytical frameworks and of the knowledge of relevant
ecological gradients. The relaxation of the current selective
constraints owing to climate change may change the balance
among the selective processes in GFSs and that could erode the
microdiversity of the GFS microbiome with yet unknown
consequences for the overall biodiversity and ecosystem
functioning therein.

Phyloscore analysis
Our developed framework, phyloscore analysis, can be used to
explore microbiomes for putative hotspots of microdiversity even
in the absence of known ecological gradients or isolates as often
required previously [16, 18, 19, 79]. Commonly, microdiversity is
assessed by revealing distinct temporal niches among sub-taxa
[80, 81], or by using differential abundance along environmental
gradients [82] or differential co-occurrence patterns [49]. However,
often it is hard to know or even quantify the ecological gradients
of interest along which to look for microdiverse clades. Because of
that, we might still be missing important microdiverse clades. In
contrast, phyloscore analysis does not require such a priori
knowledge. For example, Synechococcus in hot spring mats has
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been shown to develop microdiversity patterns along tempera-
ture, light and oxygen gradients [83, 84]. Even if we did not know
the exact environmental gradients therein but we performed a
microbiome survey and deployed phyloscore analysis, we could
start looking for microdiversity in Synechococcus because we
would detect it as an HoS clade.
We acknowledge that, because of the lack of phenotypic and

genomic comparisons among taxa in the HoS clades, we cannot
assess their degree of ecological differentiation. For example, in
the presence of low environmental heterogeneity across a given
dataset, HoS clades with low NTDs and high β-nearest genetic
similarity could still comprise prevalent “generalist” taxa with
fine-scale, yet ecologically neutral, diversification. In other
words, microdiversity in a clade should result in “HoS-like”
patterns but not all HoS clades are necessarily microdiverse
even if they show low NTDs and high β-nearest genetic
similarity. Such uncertainties are common to any similar method
that lacks phenotypic characterization, like the Ecotype Simula-
tion [85] that assigns putative ecotypes based on evolutionary
simulations of nucleotide sequences. Thus, phyloscore analysis
serves as a good starting point to screen for putatively
microdiverse clades that can then be further examined for
genomic and phenotypic differences.
Apart from being coupled to the search for microdiversity,

phyloscore analysis can be used as a standalone tool to identify
phylogenetic clades driving community assembly patterns, which
is a debated topic in microbial ecology [86, 87]. Analytical
frameworks detecting and quantifying assembly processes at the
community level [6, 7, 88, 89] have provided useful insights in a
great variety of ecosystems [87]. These frameworks identify
dominant assembly processes, but in most cases multiple
processes act simultaneously [90]. Thus, recently the focus has
expanded to the identification of specific components of the
microbiome that underlie community-level assembly processes.
For instance, the recent iCAMP [91] forms phylogenetic bins of
taxa, examines their phylogenetic and taxonomic turnover, and
assigns the underlying processes governing their turnover. Our
analytical framework is conceptually similar to iCAMP and can be
used in parallel with it. Like iCAMP, our framework detects clades
with distinctly different phylogenetic turnover than that expected
by chance. The detected phylogenetic clades do not necessarily
need to have low phylogenetic turnover like in the present study;
clades with high phylogenetic turnover indicative of heteroge-
neous selection (i.e., disproportionally present in different sample
groups like the blue clade in Fig. 1B) can be detected as well. Such
patterns would indicate clades with niches in specific spatial or
temporal subsets depending on the study. Unlike iCAMP,
however, our method avoids phylogenetic binning and uses
nearest-taxon phylogenetic distances. Both of these methodolo-
gical attributes can be valuable when examining patterns near the
tips of the identified phylogenetic clades, which might not
emerge with the use of other metrics [6]. Nevertheless, the
short amplicon lengths used in most studies might not be
adequate to properly resolve the topology at the tips of the
phylogeny. This is particularly important when examining
patterns among sub-taxa, which at the genome level are
defined at a cutoff of average nucleotide similarity of >95%
[92, 93] while this cutoff is usually >97% of sequence similarity
at the level of the 16 S rRNA gene [22]. While this should have
no effect on the identification of HoS clades because their
phylogenetic turnover should still be lower than that of
outgroups, it might affect the identification of specific ASVs of
interest within these clades. Thus full-length 16 S rRNA gene
amplicons [94–96] or metagenome-assembled genomes in
shotgun metagenomic studies might be used to construct
phylogenetic trees with highly supported topologies near the
tips to be used in our analytical framework.
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