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The diagnosis of Acute Respiratory Distress Syndrome
(ARDS) encapsulates remarkable heterogeneity in etiol-
ogy, presentation, severity, course, and treatment
response. Undoubtedly, enrolling patients amalgamated
under the loosely defined term of ARDS has contributed
to innumerable “negative” clinical trials in ARDS.1 This
is likely due to heterogeneity of treatment effect (HTE),
or the nonrandom variability in the direction or magni-
tude of a treatment effect. Understanding and detecting
HTE is fundamental to providing personalized, or preci-
sion, medicine.2

Historically, investigators report subgroup analysis
using forest plots. This is often statistically flawed and
prone to identifying false-positives and overestimating
the effect of true-positives.2 Comparing individual char-
acteristics between populations underestimates person-
level heterogeneity.2 Etiology, severity, radiographic pre-
sentation, protein biomarkers, gene expression, and
intervention of ARDS are among the many ways
patients have previously been sorted into more homoge-
nous subgroups of ARDS.3 Latent class analysis (LCA)
is a probabilistic technique which allows for a multivari-
able approach to identifying unmeasured or unobserved
subgroups based on selected predictor variables agnos-
tic to the patient’s outcome. LCA combining plasma bio-
markers and clinical variables has identified
inflammatory subphenotypes of ARDS which, post-hoc,
have demonstrated a differential response to ARDS-
directed therapies.4 However, this 32-variable LCA
model is clinically impractical and impossible to use to
stratify patients in prospective clinical trials.

The use of complex machine learning (ML) algo-
rithms to group patients far surpasses, and is unen-
cumbered by, our clinical or methodological
understanding of patients or disease. Prior work by
Sinha et al. has demonstrated the merit of using
recursive partitioning and regression ML algorithms
to distill the cumbersome list of available clinical
and biomarker variables into a parsimonious 3,4 vari-
able model that can accurately identify ARDS sub-
phenotypes and HTE.5 More recent work by Dr.
Sinha’s group has established that gradient boosted
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tree ML algorithms can correctly classify patients
into subphenotypes of ARDS, absent the need for
protein biomarkers, using readily available clinical
data and this clinical classifier model detected HTE
which paralleled that of the prior LCA analysis.6

In contrast to decision tree algorithms, clustering
algorithms for pattern recognition have gained popu-
larity as a ML technique and shown promise in iden-
tifying HTE among subgroups in diseases related to
ARDS. In this publication, Sinha and colleagues uti-
lized nine unsupervised and supervised ML cluster-
ing algorithms to re-analyze three ARDS randomized
clinical trials (RCTs) to identify subgroups of
patients and HTE.7 This study was novel in demon-
strating the feasibility of applying commonly used
ML techniques to ARDS phenotyping. However,
these ML algorithms identified different numbers of
clusters within the same trials and were inconsistent
in establishing HTE. No single ML clustering algo-
rithm emerged as the most robust or reliable. There
was tremendous divergence in the contributing parti-
tioning variables between models and the attempt to
remove biomarkers from the models, presumably to
improve the practicality of this strategy, significantly
impeded the algorithms’ ability to identify patient
clusters or HTE.

ML algorithms are frequently criticized for being
a “black box” where the intricacies of the algorithm
are concealed and non-intuitive. In contrast, LCA is
considered a more statistically robust technique with
a lower rate of misclassifications. The variables
included in LCA modeling must be deliberately cho-
sen, driven by prior research, mechanistic plausibil-
ity, or biological feasibility.8 The success of
classifying patients into subgroups using LCA is
unequivocally linked to the expertise of the investiga-
tor and the purposeful selection of each indicator
variable, making this approach more hypothesis
driven, intuitive, and transparent. Although cluster-
ing algorithms failed to consistently identify HTE in
these three clinical trials, the complete anthology of
work from the Sinha group reinforces the feasibility
and inevitability of the ML strategy and illuminates
the value of the black-box of machine learning com-
pared to LCA alone in phenotyping ARDS.

Both LCA and ML algorithms have only been studied
in post-hoc analysis. Prospective clinical trials are
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imperative to validate ARDS phenotypes and HTE. This
hinges on point-of-care phenotyping of patients prior to
clinical trial enrollment. Combining the herculean
potential of ML in combination with the intuitive and
accessible point-of care clinical indicators offers great
promise in further phenotyping patients with ARDS
and is the aim of the PHIND study (NCT04009330).
Personalized medicine is here to stay, and with it the
use of ML as a tool for phenotyping patients. We com-
mend Dr. Sinha and his colleagues’ ongoing efforts to
exploit the black-box of ML to unwrap the black-box of
ARDS heterogeneity.
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