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Cellular functions are regulated by extracellular signals such as hormones,

neurotransmitters, matrix ligands, and other chemical or physical stimuli. Ligand

binding on its transmembrane receptor induced cell signaling and the recruitment of

several interacting partners to the plasma membrane. Nowadays, it is well-established

that the transmembrane domain is not only an anchor of these receptors to the

membrane, but it also plays a key role in receptor dimerization and activation. Indeed,

interactions between transmembrane helices are associated with specific biological

activity of the proteins as cell migration, proliferation, or differentiation. Overexpression or

constitutive dimerization (due notably to mutations) of these transmembrane receptors

are involved in several physiopathological contexts as cancers. The transmembrane

domain of tyrosine kinase receptors as ErbB family proteins (implicated in several

cancers as HER2 in breast cancer) or other receptors as Neuropilins has been described

these last years as a target to inhibit their dimerization/activation using several strategies.

In this review, we will focus on the strategy which consists in using peptides to disturb in

a specific manner the interactions between transmembrane domains and the signaling

pathways (induced by ligand binding) of these receptors involved in cancer. This

approach can be extended to inhibit other transmembrane protein dimerization as

neuraminidase-1 (the catalytic subunit of elastin receptor complex), Discoidin Domain

Receptor 1 (a tyrosine kinase receptor activated by type I collagen) or G-protein coupled

receptors (GPCRs) which are involved in cancer processes.
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INTRODUCTION

Membrane proteins are defined as proteins found in cell
membrane either at the surface or on intracellular organelles
and represent around 30% of all eukaryotes and prokaryotes
proteins. Membrane proteins are classified as transmembrane
(TM) or peripheral proteins. Theirmembrane-spanning domains
are described to be structured as β-sheets in bacteria and
mitochondria or essentially as α-helices (1, 2). The TM
proteins (single or multi-pass membrane proteins) are involved
in several cellular processes such as cell signaling, cell-cell
communication, transport, energy transduction, and activation
of enzymes which induce several functions like cell proliferation,
migration, and differentiation. These cellular responses are
induced by external stimuli and mediated by signaling pathways
activated by membrane receptors associated with a large
panel of proteins constituting complex signal networks (3,
4). Their role in cellular and physiological responses, and
consequently in pathologies associated with their dysfunctions,
lead researchers to develop several strategies to target these
membrane proteins.

Activation of membrane receptors occurs most of the
time by dimerization or oligomerization of these single-pass
proteins in cell membranes and cumulative data underline
the role of TM/TM domain interactions during the formation
of these receptor complexes (5–8). Nowadays, it is well-
established that the TM domain plays a key role in receptor
dimerization and activation (9). Indeed, interactions between
TM helices are associated with specific biological activity of
these proteins. Overexpression or constitutive dimerization
(due notably to mutations) of these TM receptors are
involved in several physiopathological contexts as cancers.
The TM domain of receptor tyrosine kinase (RTK) as ErbB
family proteins (associated with several cancers) or other
receptors as Neuropilin and G-protein coupled receptors
(GPCRs) has been described these last years as putative
targets to inhibit their dimerization/activation using several
strategies. In this review, we will focus on the history of
a strategy which consists of using peptides to disturb in a
specific manner the interactions between TM domains and
the signaling pathways induced by ligand binding of ErbB
receptors and Neuropilins. This approach can be extended to
inhibit other TM protein dimerization such as neuraminidase-
1 (Neu-1, the catalytic subunit of elastin receptor complex),
DDR1 (Discoidin Domain Receptor 1, a RTK activated
by type I collagen) and GPCRs which are involved in
cancer processes.

Abbreviations: A2AR, A2A adenosine receptor; D2R, D2 dopamine receptor;

DDR, Discoidin Domain Receptor; EBP, Elastin-binding protein; EDP, elastin-

derived peptides; ERC, Elastin receptor complex; EGFR, Epidermal Growth Factor

Receptor; GPCRs, G-protein coupled receptors; HER, Human epidermal growth

factor receptor; MMP, Matrix metalloproteases; Neu-1, Neuraminidase-1; NRP1,

Neuropilin; PPCA, Protective protein/cathepsin A; RTK, Receptor tyrosine kinase;

TM, Transmembrane; VEGF, Vascular endothelial growth factor.

TARGET RECEPTOR TRANSMEMBRANE
DOMAIN: TM PEPTIDES STRATEGY

Most of the membrane receptors involved in cancer are single
pass membrane receptors including RTKs, the integrins and
the cytokine receptors. From HER2/ErbB2 (10), being the
origin of one of the first targeted therapy, to for example
VEGFR (11), RTKs are crucial players controlling abnormal cell
proliferation, migration, or tumor angiogenesis. Consistently,
several approaches had been developed to block them in order
to fight cancer progression. Classical strategies using small
molecules or blocking function antibodies showed tremendous
therapeutic effects that contributed to significant increase of
patient survival or remission in many different types of cancer.
However, these targeted strategies still suffer from major
hurdles such as resistance or compensatory mechanisms as
exemplified for EGFR inhibitors (12) adding to often severe
side effects of the drugs (13). Facing the need of developing
new drugs potentially addressing these challenges, conceptual
studies moved from extracellular or intracellular domains of
membrane receptors to explore whether the TM domain could
be an alternative solution to current drug design. Indeed, TM
domains contribute in the dimerization of membrane receptors
and their role in multimerization to form dynamic receptor
platforms ensures complex biological functions in response
to the diversity of ligands. Involvement of TM domains in
these processes thus defines a totally virgin territory to design
new drugs which may meets the eyes for more efficient and
less toxic therapeutic compounds. As the TM domains of
a multitude of membrane proteins are directly involved in
receptor dimerization and activation, several strategies using
short hydrophobic peptides have been developed as tools
to target specifically the corresponding receptor activation
(Figure 1). This part will describe the main results concerning
the targeting of several membrane proteins involved in cancers
by TM hydrophobic peptides which mimic the TM segments of
these receptors.

ErbB Receptor TM Domains as Targets in
Cancer
Concerning receptors activated by dimerization, the case of
RTKs, notably ErbB receptors, is among the more described.
The ErbB family receptors include epidermal growth factor
receptor (EGFR/ErbB1), ErbB2, ErbB3, and ErbB4 which are
expressed ubiquitously in epithelial, mesenchymal, cardiac and
neuronal cells. These receptors are associated with several cellular
processes—as proliferation, survival, and angiogenesis—and are
often dysregulated in cancers (14). In most cases, the binding
of growth factors to the extracellular region of these receptors
provokes their dimerization and their activation (14–16).

Several studies have highlighted a major role for interactions
between TMdomains and their importance inmembrane protein
structure, function and assembly. Furthermore, mutations
in these TM domains are often associated with numerous
pathological contexts (5–8, 17). Although it was initially thought
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FIGURE 1 | Mechanism of action of transmembrane peptides to inhibit receptor dimerization. (A) Ligand binding induces dimerization and activation of receptors.

This activation leads to downstream signaling activation. In the case of abnormal activation, receptor dimerization can be associated with pathological processes as

tumor growth. (B) Introduction of TM hydrophobic peptides which mimic the TM segments of membrane proteins involved in cancers can disturb the dimerization of

these receptors. In order to deliver TM peptides, several methods could be used: (1) acidity-Triggered Rational Membrane (ATRAM) peptide, (2) delivery of the peptide

by detergent micelles, (3) delivery of the peptide using cell penetrating peptide, (4) plasmid encoding TM peptide. C, Cytoplasm; CPP, Cell penetrating peptide; EC,

Extracellular environment; L, Ligand; M, Membrane; TM peptide, Transmembrane peptide.

that the TM domain of RTKs as ErbB receptors was a passive
anchor to the membrane, it is now well-established that it plays
a key role in protein dimerization. Indeed, previous studies
have shown that TM domain of these proteins are able to self-
assembly and induce biological activity. For instance, Val644

to Glu mutation within the TM domain of ErbB2/Neu is
associated with an uncontrolled activation of this RTK leading
to glioblastomas in rats (18). Moreover, Gardin et al. (19) showed
that changing the TM domain of the insulin receptor (IR) with
the highly dimerizing TM domain of glycophorin A is associated
with an inhibition of insulin-induced receptor kinase activity.
Other works have shown that homodimerization of EGFR/ErbB1
receptors is linked to interactions between their TM domains

(20) and that TM domains of ErbB receptor family members
can spontaneously homodimerize in cell membranes (21–23).
Furthermore, sequence motifs have been reported to mediate TM
domain interactions: the GxxxG motifs (x = any amino acid) or
GxxxG-like motifs (a consensus sequence that has been extended
to SmallxxxSmall sequences where small amino acids are glycine,
alanine, or serine). These sequences are very frequent in TM helix
and represent the core of dimerization interface (5, 24).

As interactions between TM segments occur during receptor
dimerization, several studies have been carried out to evaluate
if introduction in the membrane of peptides with homologous
sequences—corresponding to the TM domain—could act as
competitors of the dimerization and thus disturb the cancer
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involved RTK activity. Lofts et al. (25) showed for the first time
that expression of TM sequence of the rat neu/ErbB2 receptor
could inhibit cell growth of mutant-transformed NIH3T3 cells.
As this work did not include characterization of receptor
activation, several subsequent studies demonstrated that TM
domain-derived peptides are able to interfere with dimerization
of ErbB2 receptors in whole cells. Indeed, Bennasroune et al.
(26) demonstrated in human cancer cells which overexpress EGF
or ErbB2 receptors that TM peptides are able to specifically
inhibit the autophosphorylation and the signaling pathway of
their cognate receptor. These results were obtained using two
strategies: the first one consisted of using expression vectors
encoding fusion TM peptides and the second one consisted of
incubating cells with chemically synthesized peptides. This study
was extended and confirmed by the same research group who
demonstrated that in cells overexpressing chimeric IR (where
the TM domain has been replaced by that of EGFR or a
mutated ErbB2 domain), TM peptides can inhibit specifically the
autophosphorylation and the signaling pathway of IR with the
corresponding domain (27).

Thereafter, few studies using TM peptide as tools to target
specifically protein dimerization have been realized in vivo.
Concerning RTK, Arpel et al. (28) showed that small peptides
interfering with the TM domain of ErbB2 inhibit breast tumor
growth and metastasis when used at micromolar concentrations
in a mouse model of breast cancer. Thus, even if there was a
disdain toward the use of peptides as a strategy to inhibit protein-
protein interaction, this technique has been extended to target
other membrane proteins involved in cancers.

Neuropilin and Plexin TM Domain as
Targets in Cancers
Other membrane receptors such as Neuropilins (NRP1) or
Plexins are also important regulators of cancer progression
through signaling pathways involving actin cytoskeleton
remodeling (29). NRP1 TM domain which contributes to the
dimerization of the receptor was shown mandatory to trigger
Sema3A-dependent cancer cell migration (30). It turns out to be
an efficient strategy to limit glioblastoma (31) or breast cancer
(32) growth in vivo. These studies used a peptide mimicking
the TM domain of NRP1 to interfere with the dimerization by
direct competition for binding with the natural TM domain
of the membrane receptor. To circumvent the hydrophobic
nature of the peptides which may preclude their use, the decoy
peptides were solubilized in micelles of Lithium Dodecyl Sulfate
favoring delivery to the membrane both in vitro or in vivo.
Biological or therapeutic effects were observed with low dose
of the peptide (in the range of 1 µg/kg in vivo, three times per
week after intraperitoneal injection) and showed remarkable
tolerance. The same strategy of mimetic peptide was also used
to target HER2 (ErB2) in the context of metastatic breast cancer
as described above (28). In the same line, the interference
of Plexin-A1 heterodimerization with a peptide mimicking
the natural sequence of this Rho-GTPase activating receptor
exhibited anti-angiogenic effects in models of brain tumors and
glioblastoma cancer stem cells growth (33). More recently the

same Plexin-A1 targeting peptide was shown as an efficient
tool to circumvent the Sema3A molecular barrier blocking the
remyelination process in the context of demyelinating diseases
(34). Because TM peptides interact with intra-membrane targets,
they do not have the capacity to be used to selectively reach
the cancer cells expressing the target. Rather, they exert their
function as small molecules by a widespread distribution in
the body. However, TM domain peptides can be combined
with targeting moieties attached to nanocarriers to address
this point and produce drugs with a more selective action on
a given cell type (35). While the development of formulations
compatible with a clinical use remains to be fully achieved, the
recent development in the production of TM domain peptides
with pH sensitive membrane interaction is opening interesting
opportunities both in term of solubility or activity. The so-
called acidity-triggered rational membrane (ATRAM) peptides
demonstrated preferential membrane insertion in breast cancer
cells and exhibited prolonged circulating time in the blood
thanks to a reversible binding to serum albumin (36).

TRANSMEMBRANE PEPTIDE STRATEGY
EXTENDED TO INHIBIT OTHER
TRANSMEMBRANE PROTEIN
DIMERIZATION: NEU-1, DDR-1, AND
GPCRs AS PUTATIVE TARGETS

The transmembrane peptide strategy can be extended to inhibit
other TM protein dimerization. Even if several membrane
proteins can be targeted by this approach, three examples will be
described in this section: Neu-1, DDR1, and GPCRs which are
involved in several cancer processes.

Neu-1 TM Domain as a Potential Target in
Cancers
Elastin degradation contributes to cancer progression (37). The
interaction of cancer cells with elastin-derived peptides (EDP)
induces mitogenic signals and a release of elastases that enhance
further elastin degradation (38). Most of the biological effects
of elastin degradation and EDP rely on the catalytic activity of
Neu-1 activated upon the binding of EDP on the elastin receptor
complex (ERC). This membrane heterotrimeric complex is
composed of the elastin-binding protein (EBP), a spliced variant
of the lysosomal β-galactosidase which interacts with EDP and
tropoelastin, PPCA/Cathepsin A ensuring the integrity of the
complex, and Neu-1 harboring a sialidase/neuraminidase activity
(39). Neu-1 is a member of the sialidase family composed also
of Neu-2, Neu-3, and Neu-4 (40). These exoglycosidases, widely
distributed amongst species (41), remove terminal sialic acid
residues from glycoproteins, glycolipids, and oligosaccharides.

Neu-1 regulates breast cancer cell proliferation and invasion.
EDP enhance invasiveness of MDA-MB-231 cells by enhancing
matrix metalloproteases (MMP) 2 and 14 activities (42).
Moreover, an increase of elastolysis is correlated with severity
of the disease. Clinical studies show that level of EDP in serum
of patients is higher in patients with large tumor size (43).
Blocking Neu-1 with oseltamivir phosphate (Tamiflu R©) or a
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Neu-1 siRNA in mammary carcinoma cells, MCF-7, and MDA-
MB-231 cell lines, inhibits cell growth (44). Additional studies
also point out an inhibition of tumor neovascularization growth
and metastasis under oseltamivir phosphate treatment in mouse
model of breast cancer that mimics human triple-negative breast
cancer (45). Furthermore, EDP induce an enhanced invasion
of melanoma cells (46–48). Implication of EDP and Neu-1 in
other cancer types has also been shown: Neu-1 is involved in
the development of hepatocellular carcinoma (49) and ovarian
cancer (50). Altogether, these data indicate that Neu-1 plays a key
role in the development and the amplification of several cancers
and can constitute a new target to slow down cancer progression.

Recent studies have identified two potential TM domains in
the sequence of human Neu-1 protein (51). Dynamic molecular
simulation studies underline that the TM domain 2 (TM2) is able
to preserve a stable helical conformation and homodimerizes in
membrane-mimicking environments. Further, molecular biology
experiments show that Neu-1 sialidase activity is linked to its
ability to homodimerize. Point mutations in the TM2 region of
Neu-1 are able to inhibit homodimerization and its associated
sialidase activity. Indeed, when EDP bind on EBP, two Neu-
1 subunits homodimerize and generate a sialidase activity.
Knowing that dimerization is required for its activity, interfering
peptides targeting specifically TM2 domain of Neu-1 constitute
novel key tools to selectively block Neu-1 activity and its linked
biological effects in cancer.

DDR-1 TM Domain as a Potential Target in
Cancers
The DDR belongs to RTKs family and consists of two members,
DDR1 and DDR2. They possess an extracellular discoidin
homology domain and are activated by the most abundant
component of tumor extracellular matrix, native triple-helical
collagen (52, 53). The expression of DDR1 in several different
types of human cancer including human esophageal (54), gastric
cancer (55), glioma (56), breast cancer (57), lung cancer (58),
suggests a function in tumor progression. After activation by
collagen, DDRs play a role in cell adhesion, proliferation,
migration, invasion, and DDR1/myosin dependent extracellular
matrix remodeling (59, 60).

Both DDRs have the same domain architecture containing a
conserved discoidin I domain in their N-terminal extracellular
part which is responsible for collagen binding, a single-span TM
domain, an unusually large cytosolic juxtamembrane domain,
and a C-terminal tyrosine kinase domain. After collagen binding,
conformational modifications of the receptors are associated
with a slow but sustained self-phosphorylation compared to
other RTKs whose activation is rapid after ligand binding
(52, 53). DDR1 activation induces transphosphorylation at
the juxtamembrane and kinase domains of adjacent dimers.
Moreover, this phosphorylation requires specific contacts within
the TM domains but not in the extracellular domain (61).

One of the notable features is that in the absence of ligand, the
DDRs form stable, non-covalent dimers kept in an inactivated
state via N-glycosylation at highly conserved N211 residue
(62–64). Contacts between extracellular domains, cytoplasmic

domains, and TM regions contribute to the dimerization process.
However, interaction between the extracellular and cytoplasmic
regions is not critical for dimerization. Nevertheless, a mutation
in the leucine zipper motif of the TM segment results in
dimerization disruption highlighting the importance of TM
region in ligand independent dimerization of DDR1 (63). The
isolated DDR1 and DDR2 TM helices interact very robustly,
as detected in a bacterial TOXCAT reporter assay (63). In fact,
the comparison by a systematic study of the self-interaction
potential of all RTK TM domains shows that the DDR1 and
DDR2 TM domains gave the strongest signal of all RTKs in
this assay (65). Activation of DDR is induced by forming lateral
clusters in the presence of collagen thereby phosphorylating
the DDR dimers leading to activation thanks to specific TM
domain interactions. These data strengthen a key role for the
DDR1 TM domain in signaling. TM domain contacts may
also be necessary for DDR1 clustering, with direct receptor-
receptor interactions or another membrane protein domain (61).
These data suggest that TM peptides could be an adequate
strategy to target the TM domain of DDR and in particular the
leucine zipper motif to inhibit DDR activation and then receptor
autophosphorylation at multiple residues on its tyrosine kinase
intracellular domain. This inhibition could have an important
role considering the involvement of these receptors in cancer
progression but also in collagen processing events that contribute
to fibrosis.

GPCR TM Domain as a Putative Target in
Cancers
GPCRs are the largest class of membrane receptors and play
crucial roles in virtually every physiological process. Over
the past few decades, the idea that these seven TM helical
domain receptors function as isolated monomeric receptors
has been challenged by the accumulation of evidence for
the formation of homo- and hetero-dimers, and higher order
oligomers. Combined with x-ray structures, computational
molecular modeling, and bioinformatic approaches, synthetic
TM peptides targeting the TM domains of GPCRs have been
shown to be powerful tools to help in identifying the dimer
interface of GPCRs and to examine the functional importance
of GPCR dimerization both in vitro and in vivo. For instance,
receptor homodimerization and agonist-dependent signaling
can be inhibited by a synthetic TM peptide targeting the TM
domain VI for the β2-adrenergic (66), IV for the secretin (67),
and V for the A2A adenosine (68) receptors. Interestingly,
TM peptides are also able to disrupt heterodimerization. A
prototypical GPCR heterodimer is the one formed by the A2A
adenosine receptor (A2AR) and D2 dopamine receptor (D2R).
In a recent study by Borroto-Escuela et al. (69), TM peptides
corresponding to the TM domain IV and V of the A2AR were
shown to block heterodimer interactions and to disrupt the
allosteric effect of A2AR activation on D2R agonist binding.
Thus, the use of TM peptides permitted to identify the dimer
interface of GPCRs and to understand the functional role of
their dimerization. As in recent years, several studies have
shown the involvement of these receptors in different cancer
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types, as breast and prostate cancers, using TM peptides could
also be a very interesting strategy to target GPCRs in these
pathologies (70).

CONCLUSION

Overall, it is now well-established that interactions between TM
domains are specific and play a crucial role in many membrane
receptor activations. Consequently, this observation has been
exploited to develop TM peptides as specific inhibitors of
dimerization/activation of several receptors involved in cancers
as RTKs and Neuropilins. However, as TM peptides interact
with intra-membrane receptors, they do not have the capacity to
selectively target the cancer cells expressing the target. Indeed,
they exert their function as small molecules by a widespread
distribution in the organism. That’s why the next step will be
to combine TM peptides with targeting moieties attached to

nanocarriers to ensure specific delivery and to produce anti-
cancer drugs with a more selective action on a given cancer
cell type.
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