
vision

Article

Development of Open-source Software and Gaze
Data Repositories for Performance Evaluation of Eye
Tracking Systems

Anuradha Kar * and Peter Corcoran

Department of Electrical & Electronic Engineering, National University of Ireland, H91 TK33 Galway, Ireland;
peter.corcoran@nuigalway.ie
* Correspondence: a.kar2@nuigalway.ie; Tel.: +353-8343-16560

Received: 30 June 2019; Accepted: 15 October 2019; Published: 22 October 2019
����������
�������

Abstract: In this paper, a range of open-source tools, datasets, and software that have been developed
for quantitative and in-depth evaluation of eye gaze data quality are presented. Eye tracking systems
in contemporary vision research and applications face major challenges due to variable operating
conditions such as user distance, head pose, and movements of the eye tracker platform. However,
there is a lack of open-source tools and datasets that could be used for quantitatively evaluating an
eye tracker’s data quality, comparing performance of multiple trackers, or studying the impact of
various operating conditions on a tracker’s accuracy. To address these issues, an open-source code
repository named GazeVisual-Lib is developed that contains a number of algorithms, visualizations,
and software tools for detailed and quantitative analysis of an eye tracker’s performance and data
quality. In addition, a new labelled eye gaze dataset that is collected from multiple user platforms and
operating conditions is presented in an open data repository for benchmark comparison of gaze data
from different eye tracking systems. The paper presents the concept, development, and organization
of these two repositories that are envisioned to improve the performance analysis and reliability of
eye tracking systems.

Keywords: eye gaze; eye trackers; fixations; data quality; performance evaluation; code repository;
gaze dataset

1. Introduction

Gaze data quality refers to the validity of the gaze data measured and reported by an eye tracker [1].
The most common method of representing gaze data quality is by specifying gaze estimation accuracy,
which refers to the difference between the true and the measured gaze positions [2]. There currently
exists significant diversity in gaze accuracy measures as described in reference [3], which leads to
ambiguity in interpretation of the quality of gaze data from different eye tracking systems and difficulty
in comparison of two or more eye trackers. Moreover, with the growing applications of gaze information
in consumer devices like augmented and virtual reality, smartphones, and smart TVs [4–7] the eye
trackers used in such applications need to be thoroughly evaluated to ensure the high quality and
consistency of their gaze data outputs. This calls for the development and adoption of homogeneous
metrics for reporting gaze accuracy and a consistent set of methods for complete characterization of
eye trackers’ data under different operating conditions [8]. There are several software tools [9–13] that
have been developed over the years by gaze researchers as well as eye tracker manufacturers for gaze
data analysis. The general focus of these software is toward determining eye movement characteristics
(i.e., fixations, scanpath, saccades) and studying eye movement relationships with human cognitive
process, such as creation of attention maps, understanding regions of user interests, and visual search

Vision 2019, 3, 55; doi:10.3390/vision3040055 www.mdpi.com/journal/vision

http://www.mdpi.com/journal/vision
http://www.mdpi.com
https://orcid.org/0000-0002-2543-1697
https://orcid.org/0000-0003-1670-4793
http://dx.doi.org/10.3390/vision3040055
http://www.mdpi.com/journal/vision
http://www.mdpi.com/2411-5150/3/4/55?type=check_update&version=3

Vision 2019, 3, 55 2 of 29

patterns. Also, a range of gaze datasets have been developed so far by gaze researchers, which are
either aimed at building of new gaze estimation algorithms or toward cognitive studies, visual saliency
research, and scanpath analysis. However, gaze datasets that contain gaze and ground truth data
collected under different operating conditions of an eye tracker, from multiple user platforms, are not
yet publicly available.

In this paper, two open-source code and data repositories are presented that are targeted specifically
toward in-depth analysis and comparison of eye gaze data quality from generic eye trackers. These
repositories are (1) the GazeVisual-Lib repository of software resources hosted on GitHub and (2) the
NUIG_EyeGaze01 gaze data repository hosted on Mendeley data. This paper describes the creation,
organization and usage of these two repositories that are aimed towards standardized evaluation of
the performance of generic eye-trackers. These repositories can benefit gaze researchers, developers
of gaze-based systems and applications, and generic users by providing them easy-to-use methods
for quantitatively evaluating gaze data outputs from an eye tracker, compare quality of two or more
trackers or user platforms. The key features of these two repositories are summarized in Sections 1.1
and 1.2 below.

The motivation behind developing the GazeVisual-Lib software repository is that it could be used
by gaze researchers to analyze gaze data and answer critical questions related to gaze data quality. For
example, what are the performance limits and tolerances of a given eye tracker? How much is an eye
tracker’s accuracy affected when operating under non ideal operating conditions? Which operating
conditions affect the tracker’s performance in a particular use-case? How can two gaze datasets, or the
performance of two eye tracking systems, be compared quantitatively? What are the performance
bottlenecks of individual algorithms? How can gaze error patterns be detected and predicted? The
software resources provided in the GazeVisual-Lib repository can help any generic user or an eye gaze
researcher to find answer to these questions with minimal programming effort.

The motivation for developing the NUIG_EyeGaze01 data repository is to present gaze datasets
collected under unique and challenging operating conditions which are not usually available to gaze
researchers. The gaze data within the repository has been collected from a high-resolution eye tracker
under carefully designed operating conditions so that best- and worst-case performance characteristics
of an eye tracker under the influence of these conditions may be studied. These gaze datasets can help
researchers to compare the variation in the data quality of multiple eye trackers, determine anomalous
gaze data types, and study a tracker’s reliability and system characteristics under unconstrained
operating conditions.

1.1. GazeVisual-Lib: An Open Software Repository for Eye Tracker Data Evaluation

This paper describes the GitHub code repository named GazeVisual-Lib that contains the source
codes for a complete GUI application tool and a range of numerical and visualization methods for
quantitative and visual exploration of eye gaze data quality. A major component of the GazeVisual-Lib
repository is the source code of a desktop GUI software application named GazeVisual, which takes in
raw eye gaze data and implements several accuracy metrics and a range of visualizations to study gaze
data quality. It also has methods to interface the GUI with an eye tracker for live gaze data collection [14].
Multiple videos are provided in the repository that show how to use the software to upload gaze data
and derive results and visualizations. Apart from this, in the repository, there are codes in different
sub-directories that could be used for (a) estimating gaze accuracy in angular resolutions as the difference
between input gaze and ground truth data coordinates, (b) metrics and visualizations for exploration
of gaze data quality [8], (c) de-noising and outlier removal from gaze data, and (d) augmentation of a
gaze (fixation/scanpath) dataset by seven different methods. The GazeVisual-Lib repository is hosted
on GitHub and accompanies full documentation and guidance on the use of individual repository
components. The GitHub repository can be found at github.com/anuradhakar49/GazeVisual-Lib.

This paper provides details on how to use the GazeVisual-Lib repository, installation of the
dependencies i.e., Python libraries (www.python.org) required for running the codes from the

www.python.org

Vision 2019, 3, 55 3 of 29

repository, and practical illustrative examples that would guide a user to run the GazeVisual GUI tool.
Also, all the Python codes are made available as Jupyter notebooks within the GitHub repository, so
that any user can run these and adapt these resources easily.

1.2. NUIG_EyeGaze01: An Open Gaze Data Repository

In addition to the open coding resources, a new eye gaze dataset is presented in this paper,
named NUIG_EyeGaze01 (Labelled eye gaze dataset). This dataset is created through dedicated
experiments, using data from a high resolution eye tracker while it operated on three different eye
tracking platforms—a desktop, a laptop, and a tablet—under a wide range of operating conditions
such as variable user head poses, user distances, screen resolutions, and platform poses. The gaze data
files are made available publicly and could be useful to gaze researchers for benchmark comparison of
performance of other eye trackers, for building advanced gaze data evaluation metrics, and also for
understanding gaze error patterns caused by the different operating conditions mentioned above. The
NUIG_EyeGaze01 dataset is hosted on Mendeley Data, which is an open data repository and may be
found in the following link: https://data.mendeley.com/datasets/cfm4d9y7bh/1.

In this paper, details on the data collection process for creation of the NUIG_EyeGaze01 dataset
and the dataset organization is provided. The contents of the collected gaze data files are discussed
along with sample data presentation from the various experiments done for the data collections. Also,
a sample Python code snippet is provided in this paper that may be used to read from the CSV data
files in the open dataset, so that researchers can readily use these datasets and extract and manipulate
the information in them. Finally, the utility and significance of the dataset and the coding resources
toward gaze research are discussed.

1.3. Scope and Organization of the Paper

The scope of this paper is focused around discussing the organization and contents of the two code
and data repositories described in Sections 1.1 and 1.2. This paper describes the components of the
GazeVisual-Lib repository along with detailed instructions on how these resources maybe used with
minimum programing effort. This is done so that readers can understand the purpose, contents, and
implementation of the GazeVisual-Lib repository, and it can be readily useful to the interdisciplinary
gaze research community for evaluation of gaze data quality. It may be noted that the mathematical
derivation of the metrics, visualizations, and concept of the GazeVisual GUI application (present in the
GitHub repository) have been discussed in details in our previous papers [8] and [14], which provide
the scientific background for the coding resources presented in the repository. In a similar way, this
paper describes the content and structure of the NUIG_EyeGaze01 data repository with details on
each data file, their columns and file naming conventions and sample usage. These would ensure that
the collected datasets may be easily used by vision researchers. The philosophy behind the gaze data
collection process has been discussed in [8].

The paper is organized as follows: Section 2 presents a literature review on contemporary gaze
data evaluation software and publicly available gaze datasets. Section 3 describes the structure and
contents of the GazeVisual-Lib repository, and Section 4 presents the details of the NUIG_EyeGaze01
data repository. Sub-Section 4.4 presents discussions and analysis of the collected datasets. Appendix A
presents the installation instructions for the various libraries required to run the GazeVisual-Lib
coding resources, and Appendix B contains a series of gaze data plots created using data from the
NUIG_EyeGaze01 repository.

2. Previous Works on Open-Source Gaze Data Analysis Software and Gaze Datasets

Eye-tracking has found applications in fields such as neuro and cognitive sciences, psychology,
human-computer interactions, consumer electronics, and assistive technologies [15]. Performance of
eye trackers are judged based on their accuracy (in degrees of angular resolution) and it is affected
by physiological limitations, tracker setup geometry, or due to type of calibration techniques used in

https://data.mendeley.com/datasets/cfm4d9y7bh/1

Vision 2019, 3, 55 4 of 29

them [16]. Works such as references [2] discuss the evaluation and comparison of several commercial
eye trackers. In reference [5], an open-source Matlab toolkit is presented that can be interfaced with a
commercial (Tobii EyeX) tracker. The paper evaluates and reports the eye tracker’s performance in
terms of angular accuracy, precision, latency, and sampling frequency. In reference [6], the performances
of three wearable trackers, from Pupil Labs (120 Hz), SMI, and the TobiiPro, are compared in terms of
their accuracy under multiple viewing conditions. In reference [2], the accuracy and precision the Eye
Tribe tracker is compared with the SMI tracker. The work concluded that the selection of software to
record and process the data are significant in obtaining high accuracy results from an eye tracker.

There are several open-source software packages and toolboxes that have been developed for
recording and analyzing gaze data, for example ETCAL [7], Pygaze [10], GazeParser [17], EyeMMV [18],
and GazeAlyse [19] to name a few. PyGaze is an open-source software package in Python language
which is built for creating eye tracking experiments, e.g., for presentation of visual stimulus and
collection of user response via keyboard or mouse. It also allows online detection of eye movements
and supports a wide range of commercial eye trackers. Another Python based open-source library
is GazeParser which was developed for low-cost eye tracking, gaze data recording and analysis.
It captures images from a camera to record eye position and subsequently performs calibration,
synchronization of stimulus presentation along with recording and analysis of eye movements. Eye
Movements Metrics & Visualizations (EyeMMV) is a toolbox built using MATLAB for eye movement
analysis. It contains functions for identifying fixations, heatmap, and scanpath visualizations and
region of interest analysis. Another Matlab-based toolbox is GazeAlyze, which does analysis of eye
movement data, e.g., detecting and filtering artefacts, generating regions of interest, and visualizations
such as path plots and fixation heat maps. There are also functions for correcting eye movement
data due to the head position changes. The EMA toolbox [20] is implemented in Matlab for eye
movement analysis and can parse gaze data from eye trackers like SR Research, SMI (RED 250), and
Tobii EyeX. This toolbox allows for data conversion from normalized to pixel to degrees, determination
of saccades and their kinematics, and creating saliency maps. Another toolkit named Pytrack [21] is
built for analyzing and visualizing eye tracking data, feature extraction with respect to blinks, fixations,
saccades, micro-saccades and pupil diameter, generate gaze heat map, micro-saccade position, and
velocity plots.

ETCAL [7] is a recent development among open-source gaze research tools, and it is a library that
provides a common platform to implement a range of calibration procedures to determine gaze points
from raw eye movement recordings. The library contains algorithms for preparation and optimization
of calibration models and automatic detection of gaze targets for implicit calibration scenarios. ETCAL
is a useful tool for researchers who work with different calibration scenarios or want to build their own
eye trackers, compare different calibration algorithms and data quality.

It may be observed that most of software developed so far for eye trackers aim towards exploration
of eye movement characteristics (detecting fixations, scanpath, saccades, eye movement speed,
direction, duration), studying eye movement and their relationships with human behavior (such as
building attention maps), deriving regions and sequence of interests, and analyzing cognitive processes.
However, only a few software tools (for example, ETCAL [7]) exist that are designed for quantitative
evaluation and visualization of gaze error characteristics, e.g., for estimation of gaze error statistics
and distributions and comparison of gaze errors collected under different operating conditions (or
error sources). Therefore, in this paper, a new open-source repository of Python-based software tools is
presented that can be used for the in-depth analysis of the gaze error characteristics that is collected
from any eye tracker, irrespective of the tracking platform, hardware, or algorithm.

With respect to eye gaze datasets, there currently exists a multitude of them, and more are
being developed by researchers to cater to individual research problems. A survey of gaze datasets
was made, and it was observed that existing gaze datasets can be broadly classified into two types:
the ones used for building and testing gaze estimation algorithms, and the others that are used for
modelling and validating user attention patterns and cognitive processes. Table 1 shows the results

Vision 2019, 3, 55 5 of 29

of this survey and presents the details of several datasets that have been developed for building and
testing gaze estimation algorithms. Table 2 presents the datasets developed for saliency and cognitive
studies. These datasets have been developed with users looking at a series of images while their eye
movements/images/videos are recorded. The collected eye movement data is then used for building
and validating cognitive studies, visual attention patterns, saliency models, etc.

Table 1. Eye gaze datasets for building gaze estimation algorithms.

Dataset Name Type Purpose of the Dataset Description

CAVE [22] images
Dataset built to train a detector to sense
eye contact in an image. Can be used
for gaze estimation or tracking

56 subjects (32 male, 24 female). 5880
images, acquired for combinations of
five calibrated head poses. Dataset
includes users wearing glasses.

Weidenbacher et al. [23] images

Evaluations of computational methods
for head pose and eye gaze estimation.
Benchmark dataset for Point of Gaze
(PoG) detection algorithms

20 subjects, 2220 color images. Various
head poses, nine different gaze
conditions for each head pose.
Participants with glasses included.

McMurrough et al. [24] videos
Training and testing data for
appearance-based gaze estimation
methods.

20 subjects. Videos recorded as subjects
followed a set of predefined points on a
screen. Participants didn’t wear
spectacles, free head motion.

UT Multiview [25] images Building and testing 3D gaze estimation
algorithms

50 (15 female and 35 male) subjects. 160
gaze directions per person were
acquired using eight cameras. 64,000
eye images, 8000 3D eye shape models,
1,152,000 gaze directions.

MPII Gaze [26] images For appearance-based gaze estimation
in the wild.

15 participants. 213,659 images. some
samples manually annotated with 6
facial landmarks and pupil centers. Free
head motion, uncontrolled illumination.

OMEG: Oulu Multi-Pose
Eye Gaze Dataset [27] images Evaluating and comparing gaze

tracking algorithms.

50 subjects. Over 40,000 images
captured under fixed and free head
poses. Five landmark labels and gaze
angles are provided as ground truth.

MSP Gaze corpus [28] videos For appearance-based, user dependent,
or independent gaze estimators.

46 subjects. Videos with/without head
movement, different user distance, free
head motion.

EYEDIAP [29] videos
For training and evaluation of gaze
estimation algorithms from RGB and
RGB-D data.

16 subjects (12 male, four female). 94
session recordings, each with different
characteristics of ambient conditions
and types of targets.

3D mask attack dataset
[30] videos Testing biometric face spoofing attacks.

17 subjects. 76,500 frames recorded
using Kinect for. Eye-positions
manually labelled in each video.

HPEG [31] videos For testing head pose and eye gaze
estimation algorithm.

10 subjects (two female, eight male).
Free movement of subjects, 20 color
video sequences.

I2Head [32] videos Reference dataset for low-cost gaze
estimation.

12 subjects. Dataset contains head pose,
gaze and user face models. Webcam is
and head pose sensors used.

Vision 2019, 3, 55 6 of 29

Table 2. Eye gaze datasets for saliency/cognitive studies.

Dataset Name Description

Hadizadeh et al. [33]
Video database for computational models of visual attention. Twelve video
sequences with eye-tracking data. Gaze fixations recorded using a
head-mounted eye-tracker 15 participants (two women and 13 men).

DOVES [34]
Benchmark for testing gaze modelling algorithms. Contains fixation
coordinates and eye movement trajectories of 29 observers as they viewed 101
natural calibrated images and 30,000 fixation points.

Fixations in Faces (FiFA) [35] Recorded to demonstrate that faces attract significant visual attention while
viewing images through free-viewing, search, and memory tasks.

KTH Eye-tracking Dataset [36]
Comprises of complex photographic images and was used to validate a
saliency model predicting interesting image regions. The study concluded
that early eye fixations are observed in symmetrical image areas.

McGill ImgSal [37] Aims to validate a frequency domain-based saliency detector incorporating
scale-space analysis.

MIT CSAIL Saliency [38]
Publicly available, large-scale eye movement database to aid natural
image-related visual attention studies. Used to validate a supervised saliency
model combining top-down/ bottom-up cues.

MIT Low-Resolution Saliency [39]
Compiled to study how image resolution affects consistency in eye fixations
across observers. The study noted that eye fixations are biased towards the
image center for all resolutions.

NUS Eye Fixation (NUSEF) [40]
Contains a repository of eye fixations to study viewing patterns on
semantically rich and diverse images, including faces, portraits,
indoor/outdoor scenes, and affective content.

Toronto Dataset [41] Contains eye movement recordings while viewing natural scenes to validate a
visual saliency model based on the principle of maximizing scene information.

Visual Attention for Image Quality-VAIQ [42]
Provides eye-tracking data for reference images from three image quality
databases to validate the hypothesis that salient image regions should
contribute more to objective image quality metrics.

Actions in the Eye Dataset [43]
Two subject groups—an active group of 12 subjects performed action
recognition, while a second group of four subjects free-viewed the videos.
Fixation patterns of free and active.

SALICON [44] Saliency in Context eye tracking dataset, 1000 images with eye-tracking data
in 80 image classes.

DR(EYE)VE [45]
Seventy-four video sequences of 5 min each, captured and annotated more
than 500,000 frames. The labeling contains drivers’ gaze fixations and their
temporal integration.

OSIE [46] Seven hundred images, 5551 segmented objects, eye tracking data.

CITIUS [47] A database of 72 videos with eye-tracking data to evaluate dynamic saliency
visual models.

Eye Movements in Programming (EMIP) [48]

The EMP dataset contains eye movement data during program
comprehension data on eye movement parameters such as horizontal and
vertical pupil positions, pupil center, diameter, corneal reflex positions, gaze
vector, and point of regard, along with programming experience of
participants in various languages.

It is observed that typically gaze datasets include eye images/video, eye corners, iris, blink rate,
eye closure, fixation or smooth pursuit data. Some include head pose information, while datasets are
captured under “free-head motion,” i.e., the exact angular positions of the user head are not known.
Some datasets include conditions such as users with/without glasses, change in illumination and
background, varying race, age, etc. In this work, a new eye tracking dataset is built comprising of
gaze data from three different user platforms, specifically for benchmark evaluation of eye trackers
operating under unconstrained operational scenarios and is described in Section 4 of this paper.

3. Description of the GazeVisual-Lib Code Repository

3.1. Organization of the Repository

The GazeVisual-Lib repository is hosted on GitHub and contains numerical and visual methods
implemented as Python codes that can be used to evaluate and compare data quality and characteristics
of generic eye trackers. The methods require gaze data samples from an eye tracker, ground truth

Vision 2019, 3, 55 7 of 29

locations, and values of setup variables like user-tracker distance, size, and resolution of the display
screen where gaze was tracked. Table 3 presents an overview of the repository.

Table 3. Features of GazeVisual-Lib repository.

Repository Parameters Description

File types in repository py and .IPYNB (Python scripts and Jupyter
notebooks)

Link to repository https://github.com/anuradhakar49/GazeVisual-Lib
Legal Code License GNU General Public License v3.0

Software languages used Python

Operating environments & dependencies

Operating environment: Python 2.7; Dependencies:
Python libraries Tkinter, Pygame, Statsmodels,
Seaborn, CSV, Pandas, Sklearn. Scipy, Numpy,

Matplotlib, PIL
Latest version date July 2019

3.2. Functionalities of the GazeVisual-Lib Repository Components

The GazeVisual-Lib repository provides easy-to-use gaze data evaluation resources for free use,
modification, and upgradation by eye gaze researchers and engineers. As shown in Figure 1, the
contents of the repository are organized into multiple sub-directories, each containing a set of codes
written in the Python language. The Python codes and supporting information for using the numerical
methods and visualizations are included in the repository in different folders (Figure 2). The details
about the contents of these folders and their functionalities are provided below. For running these
codes, a user must have Python 2.7 along with libraries like Python libraries like Numpy, Matplotlib,
Tkinter, Pygame, Statsmodels, and Seaborn installed.

Vision 2019, 3, x FOR PEER REVIEW 7 of 28

The GazeVisual-Lib repository is hosted on GitHub and contains numerical and visual

methods implemented as Python codes that can be used to evaluate and compare data quality and

characteristics of generic eye trackers. The methods require gaze data samples from an eye tracker,

ground truth locations, and values of setup variables like user-tracker distance, size, and resolution

of the display screen where gaze was tracked. Table 3 presents an overview of the repository.

Table 3. Features of GazeVisual-Lib repository.

Repository Parameters Description

File types in repository py and .IPYNB (Python scripts and Jupyter notebooks)

Link to repository https://github.com/anuradhakar49/GazeVisual-Lib

Legal Code License GNU General Public License v3.0

Software languages used Python

Operating environments &

dependencies

Operating environment: Python 2.7; Dependencies: Python

libraries Tkinter, Pygame, Statsmodels, Seaborn, CSV,

Pandas, Sklearn. Scipy, Numpy, Matplotlib, PIL

Latest version date July 2019

3.2. Functionalities of the GazeVisual-Lib Repository Components

The GazeVisual-Lib repository provides easy-to-use gaze data evaluation resources for free use,

modification, and upgradation by eye gaze researchers and engineers. As shown in Figure 1, the

contents of the repository are organized into multiple sub-directories, each containing a set of codes

written in the Python language. The Python codes and supporting information for using the

numerical methods and visualizations are included in the repository in different folders (Figure 2).

The details about the contents of these folders and their functionalities are provided below. For

running these codes, a user must have Python 2.7 along with libraries like Python libraries like

Numpy, Matplotlib, Tkinter, Pygame, Statsmodels, and Seaborn installed.

Figure 1. Organization of the GazeVisual-Lib code repository on GitHub. Figure 1. Organization of the GazeVisual-Lib code repository on GitHub.

https://github.com/anuradhakar49/GazeVisual-Lib

Vision 2019, 3, 55 8 of 29

Vision 2019, 3, x FOR PEER REVIEW 8 of 28

Figure 2. View of the GazeVisual-Lib code repository on GitHub.

3.2.1. “Gaze Data Pre-Processing” Folder

In this folder, there are three Python or .py files, also combined in a Jupyter Notebook or .ipynb

file (named: Data pre-processing.ipynb), which are meant to perform the following functions:

(1) Raw data conversion and calculation of accuracy: The main_proc.py file in this folder

estimates gaze angular and gaze yaw and pitch accuracies from raw gaze data samples and

ground truth data. The output is a CSV file (user_data_proc.csv), which contains several

gaze angular variables (gaze yaw, pitch, frontal angle) and gaze accuracy values which are

the angular differences between estimated gaze locations and stimuli locations [8].

(2) Outlier removal: Gaze data is almost always corrupted with outliers and it is impossible to

observe any error patterns until outliers are removed. The outlier_removal.py file

implements three different outlier detection and removal strategies which are 1D Median

filtering, median absolute deviation and interquartile range method [8].

(3) Data augmentation: Six different methods for synthesizing gaze angular data variables

from an original gaze data file are presented in the code named data_augmentation.py. The

methods include addition of white and colored noise, data interpolation, time-shifting, data

convolution with cosine kernels, and a combination of these. Augmented gaze datasets may

be used for purposes like the use of machine learning algorithms [48] to model gaze data

patterns of a tracker, modelling of scanpath and search patterns. Sample output plots from

the main_proc.py and the outlier_removal.py codes are in Figure 3a,b.

(a) (b)

Figure 2. View of the GazeVisual-Lib code repository on GitHub.

3.2.1. “Gaze Data Pre-Processing” Folder

In this folder, there are three Python or .py files, also combined in a Jupyter Notebook or .ipynb
file (named: Data pre-processing.ipynb), which are meant to perform the following functions:

(1) Raw data conversion and calculation of accuracy: The main_proc.py file in this folder estimates
gaze angular and gaze yaw and pitch accuracies from raw gaze data samples and ground truth
data. The output is a CSV file (user_data_proc.csv), which contains several gaze angular variables
(gaze yaw, pitch, frontal angle) and gaze accuracy values which are the angular differences
between estimated gaze locations and stimuli locations [8].

(2) Outlier removal: Gaze data is almost always corrupted with outliers and it is impossible to
observe any error patterns until outliers are removed. The outlier_removal.py file implements
three different outlier detection and removal strategies which are 1D Median filtering, median
absolute deviation and interquartile range method [8].

(3) Data augmentation: Six different methods for synthesizing gaze angular data variables from an
original gaze data file are presented in the code named data_augmentation.py. The methods
include addition of white and colored noise, data interpolation, time-shifting, data convolution
with cosine kernels, and a combination of these. Augmented gaze datasets may be used for
purposes like the use of machine learning algorithms [48] to model gaze data patterns of a tracker,
modelling of scanpath and search patterns. Sample output plots from the main_proc.py and the
outlier_removal.py codes are in Figure 3a,b.

Vision 2019, 3, x FOR PEER REVIEW 8 of 28

Figure 2. View of the GazeVisual-Lib code repository on GitHub.

3.2.1. “Gaze Data Pre-Processing” Folder

In this folder, there are three Python or .py files, also combined in a Jupyter Notebook or .ipynb

file (named: Data pre-processing.ipynb), which are meant to perform the following functions:

(1) Raw data conversion and calculation of accuracy: The main_proc.py file in this folder

estimates gaze angular and gaze yaw and pitch accuracies from raw gaze data samples and

ground truth data. The output is a CSV file (user_data_proc.csv), which contains several

gaze angular variables (gaze yaw, pitch, frontal angle) and gaze accuracy values which are

the angular differences between estimated gaze locations and stimuli locations [8].

(2) Outlier removal: Gaze data is almost always corrupted with outliers and it is impossible to

observe any error patterns until outliers are removed. The outlier_removal.py file

implements three different outlier detection and removal strategies which are 1D Median

filtering, median absolute deviation and interquartile range method [8].

(3) Data augmentation: Six different methods for synthesizing gaze angular data variables

from an original gaze data file are presented in the code named data_augmentation.py. The

methods include addition of white and colored noise, data interpolation, time-shifting, data

convolution with cosine kernels, and a combination of these. Augmented gaze datasets may

be used for purposes like the use of machine learning algorithms [48] to model gaze data

patterns of a tracker, modelling of scanpath and search patterns. Sample output plots from

the main_proc.py and the outlier_removal.py codes are in Figure 3a,b.

(a) (b)

Figure 3. Outputs from using GazeVisual-Lib codes on eye gaze data (a) gaze angle, yaw, pitch values
as a function of time (b) outliers removed from gaze data using IQR method.

Vision 2019, 3, 55 9 of 29

3.2.2. “Gaze Accuracy Metrics” Folder

In this folder, there is a sample gaze data file (user_data_proc.csv, which is produced from
the main_proc.py program) and three files (data_statistics.py, data_similarity.py, spatial_density.py)
that may be used to compute gaze data statistics, similarity between gaze datasets, and gaze error
spatial density on the display screen where gaze was tracked. The data_statistics.py file calculates
mean gaze angular error (over the number of gaze data points), standard and median absolute
deviation, confidence intervals, and Z-score of the gaze angular error from an input gaze dataset. The
file data_similarity.py computes the similarity between gaze data, e.g., from different eye trackers
or experiments. The similarity calculation is based on correlation, intersection, and Bhattacharya
distance [8] computed on histograms of two gaze datasets. The scatter_density.py file helps to create
a gaze data density plot in which raw gaze data is plotted as data point clusters and color-mapped
according to point densities, which helps to study gaze data patterns and detect anomaly. All these are
combined in the Jupyter Notebook named “Gaze accuracy metrics.ipynb” kept within the folder.

3.2.3. “Gaze Data Visualizations” Folder

In this folder there is a sample gaze data file (user_data_proc.csv, output of the main_proc.py)
and 4 python codes (combined in the Gaze data visualizations.ipynb file) that implement various
visualizations [8]. The file 3D_plot.py creates a 2D grid of on-screen locations and produces a 3D plot
of the magnitude of gaze errors (along Z-axis) as a function of X and Y dimensions of the display
screen. These plots help to diagnose gaze error levels over the display area.

The eccentricity.py file plots create a 2D surface plot of gaze error levels mapped with respect to
visual angle values on the display screen, using data from the DIFF GZ” and “YAW DATA” and “PITCH
DATA” columns, respectively, from the user_data_proc.csv file. This plot program may be used to
study how gaze errors vary with visual angles, especially if user distance from the tracker is increased
or decreased. For shorter distances, gaze errors are usually more sensitive to visual eccentricities,
whereas gaze errors for long distances (e.g., at 80 cm) show less sensitivity to eccentricities [8]. The
file 3D_histogram.py plots stacked 3D data distributions using data from two or more trackers or
experiments. It helps to understand and compare data patterns and gain insight into data characteristics,
e.g., where error values are concentrated or presence of data extremes. Sample output plots from the
eccentricity.py and 3D_plot.py are shown in Figure 4a,b.

Vision 2019, 3, x FOR PEER REVIEW 9 of 28

Figure 3. Outputs from using GazeVisual-Lib codes on eye gaze data (a) gaze angle, yaw, pitch

values as a function of time (b) outliers removed from gaze data using IQR method.

3.2.2. “Gaze Accuracy Metrics” Folder

In this folder, there is a sample gaze data file (user_data_proc.csv, which is produced from the

main_proc.py program) and three files (data_statistics.py, data_similarity.py, spatial_density.py)

that may be used to compute gaze data statistics, similarity between gaze datasets, and gaze error

spatial density on the display screen where gaze was tracked. The data_statistics.py file calculates

mean gaze angular error (over the number of gaze data points), standard and median absolute

deviation, confidence intervals, and Z-score of the gaze angular error from an input gaze dataset.

The file data_similarity.py computes the similarity between gaze data, e.g., from different eye

trackers or experiments. The similarity calculation is based on correlation, intersection, and

Bhattacharya distance [8] computed on histograms of two gaze datasets. The scatter_density.py file

helps to create a gaze data density plot in which raw gaze data is plotted as data point clusters and

color-mapped according to point densities, which helps to study gaze data patterns and detect

anomaly. All these are combined in the Jupyter Notebook named “Gaze accuracy metrics.ipynb”

kept within the folder.

3.2.3. “Gaze Data Visualizations” Folder

In this folder there is a sample gaze data file (user_data_proc.csv, output of the main_proc.py)

and 4 python codes (combined in the Gaze data visualizations.ipynb file) that implement various

visualizations [8]. The file 3D_plot.py creates a 2D grid of on-screen locations and produces a 3D

plot of the magnitude of gaze errors (along Z-axis) as a function of X and Y dimensions of the display

screen. These plots help to diagnose gaze error levels over the display area.

The eccentricity.py file plots create a 2D surface plot of gaze error levels mapped with respect to

visual angle values on the display screen, using data from the DIFF GZ” and “YAW DATA” and

“PITCH DATA” columns, respectively, from the user_data_proc.csv file. This plot program may be

used to study how gaze errors vary with visual angles, especially if user distance from the tracker is

increased or decreased. For shorter distances, gaze errors are usually more sensitive to visual

eccentricities, whereas gaze errors for long distances (e.g., at 80 cm) show less sensitivity to

eccentricities [8]. The file 3D_histogram.py plots stacked 3D data distributions using data from two

or more trackers or experiments. It helps to understand and compare data patterns and gain insight

into data characteristics, e.g., where error values are concentrated or presence of data extremes.

Sample output plots from the eccentricity.py and 3D_plot.py are shown in Figure 4a,b.

(a) (b)

Figure 4. Outputs from using GazeVisual-Lib codes: (a) 2D surface distribution of gaze errors as a

function of visual angles; (b) 3D plot of gaze errors as a function of display dimensions in pixels.

3.2.4. “GazeVisual GUI Tool” Folder

Figure 4. Outputs from using GazeVisual-Lib codes: (a) 2D surface distribution of gaze errors as a
function of visual angles; (b) 3D plot of gaze errors as a function of display dimensions in pixels.

3.2.4. “GazeVisual GUI Tool” Folder

This folder contains the source code (contained in the files gazevisual_v101.py,
gazevisual_v101.ipynb) for the GazeVisual GUI application software. This software is designed for
quick, easy, and in-depth evaluation of eye tracker data through a suite of statistical and visualization
functions incorporated in it. GazeVisual comes in the form of a graphical user interface (GUI) and
contains a range of functions to input and process gaze data files and produce various gaze accuracy

Vision 2019, 3, 55 10 of 29

metric results and visualizations. It can generate visual stimuli and can also be directly interfaced with
an eye tracker to collect gaze data samples. It is entirely built in Python language using several data
analysis and graphics libraries. The architecture of GazeVisual software is shown in Figure 5a and
views of the software are in Figures 6 and 7.

Vision 2019, 3, x FOR PEER REVIEW 10 of 28

This folder contains the source code (contained in the files gazevisual_v101.py,

gazevisual_v101.ipynb) for the GazeVisual GUI application software. This software is designed for

quick, easy, and in-depth evaluation of eye tracker data through a suite of statistical and

visualization functions incorporated in it. GazeVisual comes in the form of a graphical user interface

(GUI) and contains a range of functions to input and process gaze data files and produce various

gaze accuracy metric results and visualizations. It can generate visual stimuli and can also be

directly interfaced with an eye tracker to collect gaze data samples. It is entirely built in Python

language using several data analysis and graphics libraries. The architecture of GazeVisual software

is shown in Figure 5a and views of the software are in Figures 6 and 7.

The GazeVisual software is comprised of four independent windows containing a range of

functions incorporated in it that are aimed toward gaze data evaluation. Input data format for the

GazeVisual software is shown in Figure 5b. It is comprised of columns for raw gaze and ground

truth data coordinates and input variables like display screen resolution and pixel pitch of the

display (µ) [8] and user distance from the tracker. Two sample gaze data files that can be input to the

GazeVisual software are provided in the GitHub folder. The GazeVisual software can be compiled

as a generic Python program/IPython Notebook to produce the GUI application. Following this, the

input gaze data files can be uploaded to the software using the “Upload csv file” button, and then

the rest of the software functionalities may be implemented using the other GUI buttons. Outputs of

the software include gaze accuracy values, error statistics, plots of error numerical and spatial

distributions, and comparison of two gaze datasets [14].

(a) (b)

Figure 5. (a) Architecture of the GazeVisual software; (b) Input data format (CSV) for the software.

Figure 6. View of the “Data Analysis” window of the GazeVisual software.

Figure 5. (a) Architecture of the GazeVisual software; (b) Input data format (CSV) for the software.

Vision 2019, 3, x FOR PEER REVIEW 10 of 28

This folder contains the source code (contained in the files gazevisual_v101.py,

gazevisual_v101.ipynb) for the GazeVisual GUI application software. This software is designed for

quick, easy, and in-depth evaluation of eye tracker data through a suite of statistical and

visualization functions incorporated in it. GazeVisual comes in the form of a graphical user interface

(GUI) and contains a range of functions to input and process gaze data files and produce various

gaze accuracy metric results and visualizations. It can generate visual stimuli and can also be

directly interfaced with an eye tracker to collect gaze data samples. It is entirely built in Python

language using several data analysis and graphics libraries. The architecture of GazeVisual software

is shown in Figure 5a and views of the software are in Figures 6 and 7.

The GazeVisual software is comprised of four independent windows containing a range of

functions incorporated in it that are aimed toward gaze data evaluation. Input data format for the

GazeVisual software is shown in Figure 5b. It is comprised of columns for raw gaze and ground

truth data coordinates and input variables like display screen resolution and pixel pitch of the

display (µ) [8] and user distance from the tracker. Two sample gaze data files that can be input to the

GazeVisual software are provided in the GitHub folder. The GazeVisual software can be compiled

as a generic Python program/IPython Notebook to produce the GUI application. Following this, the

input gaze data files can be uploaded to the software using the “Upload csv file” button, and then

the rest of the software functionalities may be implemented using the other GUI buttons. Outputs of

the software include gaze accuracy values, error statistics, plots of error numerical and spatial

distributions, and comparison of two gaze datasets [14].

(a) (b)

Figure 5. (a) Architecture of the GazeVisual software; (b) Input data format (CSV) for the software.

Figure 6. View of the “Data Analysis” window of the GazeVisual software. Figure 6. View of the “Data Analysis” window of the GazeVisual software.Vision 2019, 3, x FOR PEER REVIEW 11 of 28

Figure 7. View of the “Visualizations” window of the GazeVisual software.

The “Data Analysis” window provides functions for estimation of gaze angular variables,

accuracy (in degrees), gaze error statistics, and distributions using a single gaze data file and allows

comparison of these parameters for two gaze data files. The “Visualizations” window can be used to

plot gaze error histograms and 3D spatial distributions from a gaze data file. It can also take in two

gaze data CSV files and compare their characteristics by creating correlation/regression/box plots.

The Test UI and LiveTracking window can create static and dynamic stimuli for data collection from

an eye tracker and also interface GazeVisual with an eye tracker for direct data collection.

The GazeVisual GUI application has been tested with data from two remote eye trackers and a

head mounted eye tracker and is seen to produce consistent results [14]. Its input requirements are

(a) input gaze data (x, y coordinates) and corresponding ground truth data coordinates, (b) input

gaze and ground truth data coordinates should have their origin at display center, (c) input data is

arranged in the format shown in Figure 5b, (d) the data is free from non-numeric or NAN values,

and (e) gaze and ground truth data must have same lengths (number of data rows). Sample input

data files for testing this software may be found in the GitHub folder (named

“usr1_45_gazedata.csv”). GazeVisual can be compiled and run as a desktop application on any

operating system having Python 2.7 with libraries such as Tkinter, Pygame, Statsmodels, and

Seaborn installed.

The GazeVisual GUI tool could be extended by gaze researchers in various ways. For example,

in Figure 7, a single dataset is used to plot the figure, and the utility of this is to study gaze data

characteristics from single person or experiments. However, functions for plotting the mean values

of gaze errors and error patterns for different persons could be a valuable feature that could be

added to the software in future. Although this feature is not present in the current version of

GazeVisual, it is always possible to extend the software features to include more functions such as

for uploading multiple datasets, numerical functions e.g., for data filtering and outlier removal.

Also, common APIs could be developed to interface the GUI will multiple eye trackers. This is the

utility of making the software and codes open resources that are freely available for modification.

3.2.5. Steps for Using the Gaze Data Evaluation Methods in GazeVisual-Lib for Analysing Gaze Data

The GazeVisual-lib is hosted on GitHub and can be found in the following web-address:

github.com/anuradhakar49/GazeVisual-Lib. It is released under the GNU-GPL v3.0 license, which

allows the users to run, share, and modify the software and the source codes in the repository.

An experimental setting for using this code repository and its components is schematically

shown in Figure 8. For using the gaze data evaluation methods, first of all, a sample of gaze data

from one or more participants is required [8]. To collect gaze data, (a) a user has to sit in front of the

eye tracker under test, which is mounted on a computer screen, and the user eyes are calibrated [49].

Figure 7. View of the “Visualizations” window of the GazeVisual software.

Vision 2019, 3, 55 11 of 29

The GazeVisual software is comprised of four independent windows containing a range of
functions incorporated in it that are aimed toward gaze data evaluation. Input data format for the
GazeVisual software is shown in Figure 5b. It is comprised of columns for raw gaze and ground truth
data coordinates and input variables like display screen resolution and pixel pitch of the display (µ) [8]
and user distance from the tracker. Two sample gaze data files that can be input to the GazeVisual
software are provided in the GitHub folder. The GazeVisual software can be compiled as a generic
Python program/IPython Notebook to produce the GUI application. Following this, the input gaze
data files can be uploaded to the software using the “Upload csv file” button, and then the rest of the
software functionalities may be implemented using the other GUI buttons. Outputs of the software
include gaze accuracy values, error statistics, plots of error numerical and spatial distributions, and
comparison of two gaze datasets [14].

The “Data Analysis” window provides functions for estimation of gaze angular variables, accuracy
(in degrees), gaze error statistics, and distributions using a single gaze data file and allows comparison
of these parameters for two gaze data files. The “Visualizations” window can be used to plot gaze
error histograms and 3D spatial distributions from a gaze data file. It can also take in two gaze data
CSV files and compare their characteristics by creating correlation/regression/box plots. The Test UI
and LiveTracking window can create static and dynamic stimuli for data collection from an eye tracker
and also interface GazeVisual with an eye tracker for direct data collection.

The GazeVisual GUI application has been tested with data from two remote eye trackers and a
head mounted eye tracker and is seen to produce consistent results [14]. Its input requirements are (a)
input gaze data (x, y coordinates) and corresponding ground truth data coordinates, (b) input gaze
and ground truth data coordinates should have their origin at display center, (c) input data is arranged
in the format shown in Figure 5b, (d) the data is free from non-numeric or NAN values, and (e) gaze
and ground truth data must have same lengths (number of data rows). Sample input data files for
testing this software may be found in the GitHub folder (named “usr1_45_gazedata.csv”). GazeVisual
can be compiled and run as a desktop application on any operating system having Python 2.7 with
libraries such as Tkinter, Pygame, Statsmodels, and Seaborn installed.

The GazeVisual GUI tool could be extended by gaze researchers in various ways. For example,
in Figure 7, a single dataset is used to plot the figure, and the utility of this is to study gaze data
characteristics from single person or experiments. However, functions for plotting the mean values of
gaze errors and error patterns for different persons could be a valuable feature that could be added to
the software in future. Although this feature is not present in the current version of GazeVisual, it
is always possible to extend the software features to include more functions such as for uploading
multiple datasets, numerical functions e.g., for data filtering and outlier removal. Also, common APIs
could be developed to interface the GUI will multiple eye trackers. This is the utility of making the
software and codes open resources that are freely available for modification.

3.2.5. Steps for Using the Gaze Data Evaluation Methods in GazeVisual-Lib for Analysing Gaze Data

The GazeVisual-lib is hosted on GitHub and can be found in the following web-address:
github.com/anuradhakar49/GazeVisual-Lib. It is released under the GNU-GPL v3.0 license, which
allows the users to run, share, and modify the software and the source codes in the repository.

An experimental setting for using this code repository and its components is schematically shown
in Figure 8. For using the gaze data evaluation methods, first of all, a sample of gaze data from one or
more participants is required [8]. To collect gaze data, (a) a user has to sit in front of the eye tracker
under test, which is mounted on a computer screen, and the user eyes are calibrated [49]. (b) The user
is presented with visual stimuli, and the eye tracker under test should record the gaze coordinates of
the user as the user gazes at the stimuli points. (c) The gaze data from the eye tracker is to be saved
in CSV format. The ground truth data comprising the screen coordinates of the visual stimuli points
appearing during gaze data collection are also to be saved in a separate CSV file.

Vision 2019, 3, 55 12 of 29

Vision 2019, 3, x FOR PEER REVIEW 12 of 28

(b) The user is presented with visual stimuli, and the eye tracker under test should record the gaze

coordinates of the user as the user gazes at the stimuli points. (c) The gaze data from the eye tracker

is to be saved in CSV format. The ground truth data comprising the screen coordinates of the visual

stimuli points appearing during gaze data collection are also to be saved in a separate CSV file.

The raw gaze and ground truth data collected in the above manner can then be used as inputs

to the codes in the repository and the GazeVisual software application. Details on how the gaze and

ground truth data files may be used with the repository codes to estimate gaze accuracy, and

successively implementing other gaze data evaluation methods is provided within the repository.

Figure 8. Workflow to implement gaze data evaluation methods of the GazeVisual-Lib repository.

To run the codes in the GazeVisual-lib code repository, users must have Python 2.7 and the

different Python libraries installed (installation commands may be found in Appendix A). All the

codes are in the “Code repository” folder (Figure 2 above), which has several “README” files in

various sub-folders that provide details about how to format an input data file and use it with the

codes. The README file of the root folder is the main documentation for the repository, which has

details about how the codes may be run and the current repository version. Researchers should

check this main README file to learn about current and subsequent version updates. Also examples

showing the workings of the GazeVisual GUI software may be found in the videos S1 and S2,

mentioned in the “Supplementary Materials” section of this paper below. Links to the videos are

https://www.youtube.com/watch?v=mPGlw711BCA (Video 1, showing Visualization functions)

https://www.youtube.com/watch?v=sir_qZmvGME (Video 2, showing Data Analysis functions).

Gaze data from any source (e.g., eye tracking device, application, or algorithm) must be

formatted as per the instructions in the README files and used first with the main_proc.py in the

“data pre-processing” sub-folder to produce an output CSV file. The rest of the code functions are

based on this output CSV file. Similarly, to use the GazeVisual GUI tool, users should copy and save

the GazeVisual_v101.py file into any directory of their computer, run it as regular python codes, and

make sure all the imported libraries are pre-installed. Sample CSV files to test the codes and

understand the data format are in each sub-folder of the repository. Links to sample videos showing

the operation of the GazeVisual GUI tool are in the “sample videos” file of the GUI folder.

The gaze data evaluation methods in GazeVisual-Lib are based on calculations using data from

both eyes and centralized gaze coordinates. If any eye tracker provides only monocular data or only

centralized gaze coordinates without left/right eye position values, then the repository codes can still

be used for gaze angle and accuracy calculations after minor changes. The metrics and visualizations

in the repository will still work, but the results may vary from the case when binocular data is used.

3.2.6. Installing the GazeVisual-Lib Components

For using the GazeVisual-Lib code repository, the repository has to be downloaded from

GitHub manually or cloned using git. For cloning a Git bash shell (on Window) or terminal (OSX,

Figure 8. Workflow to implement gaze data evaluation methods of the GazeVisual-Lib repository.

The raw gaze and ground truth data collected in the above manner can then be used as inputs
to the codes in the repository and the GazeVisual software application. Details on how the gaze
and ground truth data files may be used with the repository codes to estimate gaze accuracy, and
successively implementing other gaze data evaluation methods is provided within the repository.

To run the codes in the GazeVisual-lib code repository, users must have Python 2.7 and the different
Python libraries installed (installation commands may be found in Appendix A). All the codes are in the
“Code repository” folder (Figure 2 above), which has several “README” files in various sub-folders
that provide details about how to format an input data file and use it with the codes. The README file of
the root folder is the main documentation for the repository, which has details about how the codes may
be run and the current repository version. Researchers should check this main README file to learn
about current and subsequent version updates. Also examples showing the workings of the GazeVisual
GUI software may be found in the videos S1 and S2, mentioned in the “Supplementary Materials”
section of this paper below. Links to the videos are https://www.youtube.com/watch?v=mPGlw711BCA
(Video 1, showing Visualization functions) https://www.youtube.com/watch?v=sir_qZmvGME (Video
2, showing Data Analysis functions).

Gaze data from any source (e.g., eye tracking device, application, or algorithm) must be formatted
as per the instructions in the README files and used first with the main_proc.py in the “data
pre-processing” sub-folder to produce an output CSV file. The rest of the code functions are based
on this output CSV file. Similarly, to use the GazeVisual GUI tool, users should copy and save the
GazeVisual_v101.py file into any directory of their computer, run it as regular python codes, and make
sure all the imported libraries are pre-installed. Sample CSV files to test the codes and understand the
data format are in each sub-folder of the repository. Links to sample videos showing the operation of
the GazeVisual GUI tool are in the “sample videos” file of the GUI folder.

The gaze data evaluation methods in GazeVisual-Lib are based on calculations using data from
both eyes and centralized gaze coordinates. If any eye tracker provides only monocular data or only
centralized gaze coordinates without left/right eye position values, then the repository codes can still
be used for gaze angle and accuracy calculations after minor changes. The metrics and visualizations
in the repository will still work, but the results may vary from the case when binocular data is used.

3.2.6. Installing the GazeVisual-Lib Components

For using the GazeVisual-Lib code repository, the repository has to be downloaded from GitHub
manually or cloned using git. For cloning a Git bash shell (on Window) or terminal (OSX, Linux) and
the repository is to be cloned by the command git clone https://github.com/anuradhakar49/GazeVisual-
Lib.git.

https://www.youtube.com/watch?v=mPGlw711BCA
https://www.youtube.com/watch?v=sir_qZmvGME
https://github.com/anuradhakar49/GazeVisual-Lib.git
https://github.com/anuradhakar49/GazeVisual-Lib.git

Vision 2019, 3, 55 13 of 29

Prior to using the repository components, Python 2.7 must be installed on the computer, which can
be easily done through the Anaconda distribution for Windows, MAC, and Linux operating systems
(https://www.anaconda.com/distribution/). After installing Python 2.7 through the Anaconda installer,
the Anaconda prompt—which is a terminal application for installing Python libraries—is to be opened,
and the libraries required for running the GazeVisual codes are to be installed. Table A1 in Appendix A
lists the names of the special libraries used in the repository codes (libraries like math, csv, numpy,
os, sys, etc. are pre-installed in Python) and the commands that have to be entered to the Anaconda
Prompt to install them in their latest versions. For persons using pip for Python to install the libraries,
the corresponding commands are also provided.

In addition to the individual Python scripts, all the methods within the repository have been made
into Jupyter notebooks, in which the users do not need to install the libraries separately. A Jupyter
notebook is a web-based interactive environment for the development of Python codes, which can
be used for data analysis and visualization over a browser. This makes it very simple for users to
run, view the outputs, and share the GitHub repository codes. All the codes in the GazeViusal-Lib
repository can thus be run as Python scripts or as IPython notebooks. Jupyter can be opened by typing
on Anaconda prompt (or terminal) the following: “jupyter notebook”.

3.2.7. Running the GazeVisual-Lib Codes and the GazeVisual GUI Application

Running the codes of the GazeVisual-Lib repository is a three-step process (Figure 9a). First, the
repository has to be cloned or downloaded to a user’s computer. After this, the necessary libraries need
to be installed as described above. Finally, the Python (.py) files or Jupyter notebooks (.ipynb files)
are to be opened, and within, them the path variables (also mentioned in comments within the codes)
have to be changed so that they refer to the actual physical location of the downloaded repository
folder and its sub-folders on the user’s computer. After this, the repository codes can be run as normal
Python script files or Jupyter notebooks. The CSV data files in the downloaded repository need to be
checked to ensure that they contain column-wise data as shown on page, or they need to be formatted
into columns using the “text to columns” function of MS Excel.

An illustrative example of running the Jupyter notebook for the GazeVisual GUI application
tool is described here. To open up the Jupyter application, the steps described in the last section
should be followed and thereafter the Jupyter Notebook Dashboard will open up in the web browser
address: http://localhost:8888 as shown in Figure 9b. On the Dashboard, the Jupyter Notebook App
can access the files within its start-up folder, so a user has to navigate and find the folder where the
.ipynb files are stored. As in Figure 9b, the main repository folder downloaded from GitHub named
GazeVisual-Lib-master is seen under “Files” tab, which is where all the .ipynb files can be accessed.

The user has to click on “GazeVisual-Lib-master,” then click on the folder “Code repository”
within it, and then click the folder name “GazeVisual GUI tool” to reach the GazeVisual_GUI.ipynb
file. Then, to run this file, the user has to click on this file, upon which the notebook containing the
code for the GUI application will open up in a new browser tab, as shown in Figure 9b. Next, the path
addresses “initialdir” and “imgpath” have to be changed so that they point to the physical location
of the “GazeVisual-Lib-master” folder on the user computer. Finally, to run the GUI code, the whole
notebook has to be run by clicking on the menu Cell→ Run All (Figure 9c). To restart the kernel and
run the code afresh, the user has to click on the menu Kernel and then click Restart.

https://www.anaconda.com/distribution/
http://localhost:8888

Vision 2019, 3, 55 14 of 29

Vision 2019, 3, x FOR PEER REVIEW 13 of 28

Linux) and the repository is to be cloned by the command git clone

https://github.com/anuradhakar49/GazeVisual-Lib.git.

Prior to using the repository components, Python 2.7 must be installed on the computer, which

can be easily done through the Anaconda distribution for Windows, MAC, and Linux operating

systems (https://www.anaconda.com/distribution/). After installing Python 2.7 through the

Anaconda installer, the Anaconda prompt—which is a terminal application for installing Python

libraries—is to be opened, and the libraries required for running the GazeVisual codes are to be

installed. Table A1 in Appendix A lists the names of the special libraries used in the repository codes

(libraries like math, csv, numpy, os, sys, etc. are pre-installed in Python) and the commands that

have to be entered to the Anaconda Prompt to install them in their latest versions. For persons using

pip for Python to install the libraries, the corresponding commands are also provided.

In addition to the individual Python scripts, all the methods within the repository have been

made into Jupyter notebooks, in which the users do not need to install the libraries separately. A

Jupyter notebook is a web-based interactive environment for the development of Python codes,

which can be used for data analysis and visualization over a browser. This makes it very simple for

users to run, view the outputs, and share the GitHub repository codes. All the codes in the

GazeViusal-Lib repository can thus be run as Python scripts or as IPython notebooks. Jupyter can be

opened by typing on Anaconda prompt (or terminal) the following: “jupyter notebook”.

3.2.7. Running the GazeVisual-Lib Codes and the GazeVisual GUI Application

Running the codes of the GazeVisual-Lib repository is a three-step process (Figure 9a). First, the

repository has to be cloned or downloaded to a user’s computer. After this, the necessary libraries

need to be installed as described above. Finally, the Python (.py) files or Jupyter notebooks (.ipynb

files) are to be opened, and within, them the path variables (also mentioned in comments within the

codes) have to be changed so that they refer to the actual physical location of the downloaded

repository folder and its sub-folders on the user’s computer. After this, the repository codes can be

run as normal Python script files or Jupyter notebooks. The CSV data files in the downloaded

repository need to be checked to ensure that they contain column-wise data as shown on page, or

they need to be formatted into columns using the “text to columns” function of MS Excel.

(a)

(b) (c)

Vision 2019, 3, x FOR PEER REVIEW 14 of 28

(d)

Figure 9. (a) Flowchart for running the GazeVisual-Lib codes. (b) Opening the Jupyter Dashboard to

locate the downloaded GazeVisual-Lib folder. (c) Running the GazeVisual GUI code on Jupyter

(arrow shows the paths which have to be changed). (d) View of the Jupyter notebook for the Gaze

accuracy metrics folder.

An illustrative example of running the Jupyter notebook for the GazeVisual GUI application

tool is described here. To open up the Jupyter application, the steps described in the last section

should be followed and thereafter the Jupyter Notebook Dashboard will open up in the web browser

address: http://localhost:8888 as shown in Figure 9b. On the Dashboard, the Jupyter Notebook App

can access the files within its start-up folder, so a user has to navigate and find the folder where the

.ipynb files are stored. As in Figure 9b, the main repository folder downloaded from GitHub named

GazeVisual-Lib-master is seen under “Files” tab, which is where all the .ipynb files can be accessed.

The user has to click on “GazeVisual-Lib-master,” then click on the folder “Code repository”

within it, and then click the folder name “GazeVisual GUI tool” to reach the GazeVisual_GUI.ipynb

file. Then, to run this file, the user has to click on this file, upon which the notebook containing the

code for the GUI application will open up in a new browser tab, as shown in Figure 9b. Next, the

path addresses “initialdir” and “imgpath” have to be changed so that they point to the physical

location of the “GazeVisual-Lib-master” folder on the user computer. Finally, to run the GUI code,

the whole notebook has to be run by clicking on the menu Cell → Run All (Figure 9c). To restart the

kernel and run the code afresh, the user has to click on the menu Kernel and then click Restart.

4. Description of the NUIG_EyeGaze01 Gaze Data Repository

There are currently no publicly available eye gaze datasets that allow benchmark comparison

and analysis of gaze data quality from two or more eye trackers. Also, there are no datasets that can

be used to study gaze error patterns caused by various external operating conditions (or error

sources) like head poses, user distances, or platform poses. While there exist plenty of eye gaze

datasets containing eye images and videos or fixations and scanpath, none of them contain fixations

and corresponding ground truth data collected from more than one eye tracking platform on

different display resolutions. Without high-quality gaze data collected under measured variations of

different such operating conditions (or error sources), no objective or practical comparisons of

performance of new and/or existing gaze tracking systems can be made.

Considering these factors, a rich and diverse gaze dataset, using the eye tracking data collected

through dedicated eye tracking experiments conducted under wide range of operating conditions, is

therefore built and presented in an open data repository. The dataset is named NUIG_EyeGaze01

Figure 9. (a) Flowchart for running the GazeVisual-Lib codes. (b) Opening the Jupyter Dashboard to
locate the downloaded GazeVisual-Lib folder. (c) Running the GazeVisual GUI code on Jupyter (arrow
shows the paths which have to be changed). (d) View of the Jupyter notebook for the Gaze accuracy
metrics folder.

4. Description of the NUIG_EyeGaze01 Gaze Data Repository

There are currently no publicly available eye gaze datasets that allow benchmark comparison
and analysis of gaze data quality from two or more eye trackers. Also, there are no datasets that
can be used to study gaze error patterns caused by various external operating conditions (or error
sources) like head poses, user distances, or platform poses. While there exist plenty of eye gaze
datasets containing eye images and videos or fixations and scanpath, none of them contain fixations

Vision 2019, 3, 55 15 of 29

and corresponding ground truth data collected from more than one eye tracking platform on different
display resolutions. Without high-quality gaze data collected under measured variations of different
such operating conditions (or error sources), no objective or practical comparisons of performance of
new and/or existing gaze tracking systems can be made.

Considering these factors, a rich and diverse gaze dataset, using the eye tracking data
collected through dedicated eye tracking experiments conducted under wide range of operating
conditions, is therefore built and presented in an open data repository. The dataset is named
NUIG_EyeGaze01 (Labelled eye gaze dataset) and is hosted in the Mendeley open data repository
with the doi:10.17632/cfm4d9y7bh.1. The link to the dataset is provided in Section 1.2. This is a new
kind of gaze data set, collected from three user platforms (desktop, laptop, tablet) under the influence
of one condition at a time. Using this dataset, the impact of different operating conditions may be
observed and quantitatively compared. The conditions include fifteen different head poses, four user
distances, nine different platform poses, and three display screen size and resolutions. Each gaze data
file is labelled with the type of operating conditions under which it was collected.

4.1. Description of the Gaze Data Collection Process

The gaze data collection setup for creating the NUIG_EyeGaze01 dataset included a commercial
eye tracker mounted on a desktop computer, a laptop and a tablet whose specifications are provided in
Table 4. A Tobii EyeX eye tracker was used for gaze estimation, and an Eyetribe tracker was used for
pilot data collection. Participants were seated in front of the tracker-screen setup, and their chin was
fixed with a chin rest (Figure 10a). Prior to each data collection session, the eye tracker was calibrated
with its own calibration software (six-point calibration). After calibration, a visual stimulus interface
(Figure 10b) was presented to the participants [4], and they were asked to gaze at the specific stimuli
targets that appeared on the display screen as their gaze was recorded by the eye tracker. For each
experiment session, the following gaze data parameters were estimated for each user: (a) gaze positions
data vs ground truth data (locations of stimuli) in pixels and millimeter (b) gaze yaw, pitch angles vs
time, and corresponding ground truth yaw, pitch angles vs time (ms);(c) gaze primary angular error,
yaw error, and pitch error for each stimuli position and time point.

Table 4. Features of the gaze data collection process for building the NUIG_EyeGaze01 dataset.

Parameter Description

Data type Fixations

Data file type CSV

Eye tracker Tobii EyeX 4C with specified accuracy of 0.5 degrees.

Data collection platforms Desktop, tablet, laptop

Screen sizes and resolutions
Desktop: 22 inch diagonal, 1680 × 1050 pixels
Laptop: 14 inch diagonal, 1366 × 768 pixels
Tablet: 10.1 inch diagonal, 1920 × 800 pixels

Visual stimuli details Moving dot stopping for 3 s at 15 locations on display
screen. Stimulus dot size 10 pixels, color black.

Number of Participants Twenty for all experiments, 15 male, five female, no
glasses.

Ambient illumination Constant, 60 Lux, Indoor setup.

Chin rest Used for all sessions, Head poses measured using
webcam with real time head pose model.

Vision 2019, 3, 55 16 of 29

Table 4. Cont.

Parameter Description

Desktop data details

Gaze data for four user distances: 50, 60, 70, 80 cm

Gaze data for following head poses: Neutral, roll plus
(10, 20, 30 degree),

roll minus (10, 20, 30 degree)

Neutral, pitch plus (10, 20 degree),

pitch minus (10, 20 degree)

Neutral, yaw plus (10, 20, 30 degree),

yaw minus (10, 20, 30 degree)

Tablet data details

Gaze data for four user distances: 50,60, 70, 80 cm

Gaze data for following platform poses:

Neutral, roll plus 20 degree, minus 20 degree

Neutral, pitch plus 10 degree, plus 20 degree

Neutral, yaw plus 20 degree, minus 20 degree

Laptop data details Gaze data for four user distances: 50, 60, 70, 80 cm

Vision 2019, 3, x FOR PEER REVIEW 15 of 28

(Labelled eye gaze dataset) and is hosted in the Mendeley open data repository with the

doi:10.17632/cfm4d9y7bh.1. The link to the dataset is provided in Section 1.2. This is a new kind of

gaze data set, collected from three user platforms (desktop, laptop, tablet) under the influence of one

condition at a time. Using this dataset, the impact of different operating conditions may be observed

and quantitatively compared. The conditions include fifteen different head poses, four user

distances, nine different platform poses, and three display screen size and resolutions. Each gaze

data file is labelled with the type of operating conditions under which it was collected.

4.1. Description of the Gaze Data Collection Process

The gaze data collection setup for creating the NUIG_EyeGaze01 dataset included a commercial

eye tracker mounted on a desktop computer, a laptop and a tablet whose specifications are provided

in Table 4. A Tobii EyeX eye tracker was used for gaze estimation, and an Eyetribe tracker was used

for pilot data collection. Participants were seated in front of the tracker-screen setup, and their chin

was fixed with a chin rest (Figure 10a). Prior to each data collection session, the eye tracker was

calibrated with its own calibration software (six-point calibration). After calibration, a visual

stimulus interface (Figure 10b) was presented to the participants [4], and they were asked to gaze at

the specific stimuli targets that appeared on the display screen as their gaze was recorded by the eye

tracker. For each experiment session, the following gaze data parameters were estimated for each

user: (a) gaze positions data vs ground truth data (locations of stimuli) in pixels and millimeter (b)

gaze yaw, pitch angles vs time, and corresponding ground truth yaw, pitch angles vs time (ms);(c)

gaze primary angular error, yaw error, and pitch error for each stimuli position and time point.

(a) (b)

(c) (d)

Figure 10. (a) Positioning of a participant for an experiment session (b) layout of the stimuli points

for data collection. AOI stands for area of interest. Different (c) head poses and (d) tablet poses under

which gaze data was collected.

Table 4. Features of the gaze data collection process for building the NUIG_EyeGaze01 dataset

Parameter Description

Data type Fixations

Data file type CSV

Figure 10. (a) Positioning of a participant for an experiment session (b) layout of the stimuli points for
data collection. AOI stands for area of interest. Different (c) head poses and (d) tablet poses under
which gaze data was collected.

For gaze data collection under variable operating conditions of the eye tracker, a series of gaze
data collection experiments were done on the desktop, laptop and tablet platforms using the eye
tracker. These experiments included (a) user distance experiments where users were seated at 50, 60,
70, or 80 cm from the tracker. This was done for the desktop, laptop and the tablet platforms (b) head
pose experiments where a user had to position their head at certain fixed head pose angles while their

Vision 2019, 3, 55 17 of 29

gaze data was collected (Figure 10c). This was done only for the desktop platform (c) platform pose
experiments, where the eye tracking platform or tablet was oriented at certain fixed tablet pose angles
Figure 10d while user gaze data was collected. This was done only for the tablet platform. Further
details about the participants, experimental setup and variables may be found in Table 4. Table 5
provides the details about the contents of each CSV data file contained within the repository and a
description of the data columns.

Table 5. Columns in a gaze data file from the NUIG_EyeGaze01dataset and their meaning.

Parameter Description

“TIM REL” Relative time stamp for each gaze data point in the file (measured
during data collection)

“GTX”, “GTY” Ground truth x, y positions of stimuli in pixels
“XRAW”, “YRAW” Raw gaze data x, y coordinates in pixels

“GT Xmm”, “GT Ymm” Ground truth x, y positions in mm, converted using the pixel pitch
value

“Xmm”, “Ymm” Gaze x, y positions in mm, converted using the pixel pitch value
“YAW GT”, “YAW DATA” Ground truth and estimated yaw angles from input gaze data

“PITCH GT”, “PITCH DATA” Ground truth and estimated pitch angles from input gaze data
“GAZE GT”, ”GAZE ANG” Ground truth and estimated gaze primary angles from input gaze data

“DIFF GZ” Difference between ground truth and estimated gaze primary angles,
i.e., Gaze angular accuracy, Index of each stimulus point

“AOI_X”, ”AOI_Y” Index of each stimulus position X, Y coordinates of each stimulus
position

“MEAN_ERR”, “STD ERR” Mean and standard deviation of gaze estimation error at each stimulus
position

In Figures 11–13, samples of eye gaze data overlapped on ground truth locations of the stimuli
from each of these experiments are provided. Gaze data is in black and ground truth data are in blue.
It is seen that data from different experiments look consistent but are affected by variable levels of
outliers, which is why the outlier removal methods are provided in the GazeVisual-Lib repository.
All these data, along with time stamps, were written in comma separated values (CSV) format for
each user and each experiment session. Gaze data plots from multiple participants for the different
operating conditions may be found in Appendix B of this paper.

Vision 2019, 3, x FOR PEER REVIEW 17 of 28

In Figures 11–13, samples of eye gaze data overlapped on ground truth locations of the stimuli

from each of these experiments are provided. Gaze data is in black and ground truth data are in blue.

It is seen that data from different experiments look consistent but are affected by variable levels of

outliers, which is why the outlier removal methods are provided in the GazeVisual-Lib repository.

All these data, along with time stamps, were written in comma separated values (CSV) format for

each user and each experiment session. Gaze data plots from multiple participants for the different

operating conditions may be found in Appendix B of this paper.

(a) (b) (c) (d)

Figure 11. Data from user distance experiments: Desktop (a) 50 cm, (b) 60 cm, (c) 70 cm, and (d) 80

cm.

(a) (b) (c) (d)

Figure 12. Data from head pose experiments: (a) neutral, (b) roll +30, (c) pitch +20, and (d) yaw +30

degrees.

(a) (b) (c) (d)

Figure 13. Tablet pose experiment data: (a) neutral, (b) roll +20, (c) pitch +20, and (d) yaw +20

degrees.

4.2. Organization of the NUIG_EyeGaze01 Gaze Dataset on Mendeley Data

The NUIG_EyeGaze01 dataset hosted on Mendeley is shown in Figure 14. It contains gaze and

ground truth data in CSV files distributed under multiple folders and subfolders which are depicted

in Figure 15. Each CSV file in the dataset contains 21 columns (Figure 16) with multiple gaze data

variables estimated from the raw gaze coordinates. The variables are computed from the raw gaze

data using the methods described in reference [4]. Other than the raw gaze data, inputs for

calculating the variables are resolution, pixel pitch of the display where gaze was tracked, and user

distance from the tracker.

Figure 11. Data from user distance experiments: Desktop (a) 50 cm, (b) 60 cm, (c) 70 cm, and (d) 80 cm.

Vision 2019, 3, 55 18 of 29

Vision 2019, 3, x FOR PEER REVIEW 17 of 28

In Figures 11–13, samples of eye gaze data overlapped on ground truth locations of the stimuli

from each of these experiments are provided. Gaze data is in black and ground truth data are in blue.

It is seen that data from different experiments look consistent but are affected by variable levels of

outliers, which is why the outlier removal methods are provided in the GazeVisual-Lib repository.

All these data, along with time stamps, were written in comma separated values (CSV) format for

each user and each experiment session. Gaze data plots from multiple participants for the different

operating conditions may be found in Appendix B of this paper.

(a) (b) (c) (d)

Figure 11. Data from user distance experiments: Desktop (a) 50 cm, (b) 60 cm, (c) 70 cm, and (d) 80

cm.

(a) (b) (c) (d)

Figure 12. Data from head pose experiments: (a) neutral, (b) roll +30, (c) pitch +20, and (d) yaw +30

degrees.

(a) (b) (c) (d)

Figure 13. Tablet pose experiment data: (a) neutral, (b) roll +20, (c) pitch +20, and (d) yaw +20

degrees.

4.2. Organization of the NUIG_EyeGaze01 Gaze Dataset on Mendeley Data

The NUIG_EyeGaze01 dataset hosted on Mendeley is shown in Figure 14. It contains gaze and

ground truth data in CSV files distributed under multiple folders and subfolders which are depicted

in Figure 15. Each CSV file in the dataset contains 21 columns (Figure 16) with multiple gaze data

variables estimated from the raw gaze coordinates. The variables are computed from the raw gaze

data using the methods described in reference [4]. Other than the raw gaze data, inputs for

calculating the variables are resolution, pixel pitch of the display where gaze was tracked, and user

distance from the tracker.

Figure 12. Data from head pose experiments: (a) neutral, (b) roll +30, (c) pitch +20, and (d) yaw
+30 degrees.

Vision 2019, 3, x FOR PEER REVIEW 17 of 28

In Figures 11–13, samples of eye gaze data overlapped on ground truth locations of the stimuli

from each of these experiments are provided. Gaze data is in black and ground truth data are in blue.

It is seen that data from different experiments look consistent but are affected by variable levels of

outliers, which is why the outlier removal methods are provided in the GazeVisual-Lib repository.

All these data, along with time stamps, were written in comma separated values (CSV) format for

each user and each experiment session. Gaze data plots from multiple participants for the different

operating conditions may be found in Appendix B of this paper.

(a) (b) (c) (d)

Figure 11. Data from user distance experiments: Desktop (a) 50 cm, (b) 60 cm, (c) 70 cm, and (d) 80

cm.

(a) (b) (c) (d)

Figure 12. Data from head pose experiments: (a) neutral, (b) roll +30, (c) pitch +20, and (d) yaw +30

degrees.

(a) (b) (c) (d)

Figure 13. Tablet pose experiment data: (a) neutral, (b) roll +20, (c) pitch +20, and (d) yaw +20

degrees.

4.2. Organization of the NUIG_EyeGaze01 Gaze Dataset on Mendeley Data

The NUIG_EyeGaze01 dataset hosted on Mendeley is shown in Figure 14. It contains gaze and

ground truth data in CSV files distributed under multiple folders and subfolders which are depicted

in Figure 15. Each CSV file in the dataset contains 21 columns (Figure 16) with multiple gaze data

variables estimated from the raw gaze coordinates. The variables are computed from the raw gaze

data using the methods described in reference [4]. Other than the raw gaze data, inputs for

calculating the variables are resolution, pixel pitch of the display where gaze was tracked, and user

distance from the tracker.

Figure 13. Tablet pose experiment data: (a) neutral, (b) roll +20, (c) pitch +20, and (d) yaw +20 degrees.

4.2. Organization of the NUIG_EyeGaze01 Gaze Dataset on Mendeley Data

The NUIG_EyeGaze01 dataset hosted on Mendeley is shown in Figure 14. It contains gaze and
ground truth data in CSV files distributed under multiple folders and subfolders which are depicted
in Figure 15. Each CSV file in the dataset contains 21 columns (Figure 16) with multiple gaze data
variables estimated from the raw gaze coordinates. The variables are computed from the raw gaze
data using the methods described in reference [4]. Other than the raw gaze data, inputs for calculating
the variables are resolution, pixel pitch of the display where gaze was tracked, and user distance from
the tracker.

Vision 2019, 3, x FOR PEER REVIEW 18 of 28

Within the NUIG_EyeGaze01(Labelled eye gaze dataset) data repository, the data CSV file

names are labelled with the participant number, platform name and operating condition. Name of

each gaze data file has the convention: USERNUMBER_CONDITION_PLATFORM.CSV (e.g.,

us01_80_desk.csv). The data files can be downloaded, and respective column values can be read to

directly use or visualize them using Python or any CSV reading program. A detailed documentation

of the data is also provided within the repository.

Figure 14. Snapshot of the NUIG_EyeGaze01 repository on Mendeley data.

Figure 15. Dataset organization in the NUIG_EyeGaze01 repository on Mendeley data.

Figure 14. Snapshot of the NUIG_EyeGaze01 repository on Mendeley data.

Vision 2019, 3, 55 19 of 29

Vision 2019, 3, x FOR PEER REVIEW 18 of 28

Within the NUIG_EyeGaze01(Labelled eye gaze dataset) data repository, the data CSV file

names are labelled with the participant number, platform name and operating condition. Name of

each gaze data file has the convention: USERNUMBER_CONDITION_PLATFORM.CSV (e.g.,

us01_80_desk.csv). The data files can be downloaded, and respective column values can be read to

directly use or visualize them using Python or any CSV reading program. A detailed documentation

of the data is also provided within the repository.

Figure 14. Snapshot of the NUIG_EyeGaze01 repository on Mendeley data.

Figure 15. Dataset organization in the NUIG_EyeGaze01 repository on Mendeley data.
Figure 15. Dataset organization in the NUIG_EyeGaze01 repository on Mendeley data.Vision 2019, 3, x FOR PEER REVIEW 19 of 28

Figure 16. A screenshot of the data format in each comma separated values (CSV) file in the gaze

dataset.

The NUIG_EyeGaze01 data repository is published under CC BY-NC 3.0 license. According to

this license, Licensees may copy and distribute the material if they give the licensor the credits

(attribution). Licensees may distribute derivative works only under a license identical to the license

that governs the original work. The license also specifies that Licensees may use the data only for

non-commercial purposes and there is also the condition that Licensees may copy, distribute,

display, and perform only verbatim copies of the work, not derivative works of it.

There remain possibilities for extending this gaze dataset by collecting gaze data under other

challenging conditions. For example, calibration could be done with a fixed head pose, and then

gaze data be collected from the subject in another head pose. Then, this data could be compared with

that from fixed head pose and its specific calibration. Another scenario could be collecting gaze data

when head pose and eye tracker pose change together, e.g., in an automotive environment.

4.3. Using Data from the NUIG_EyeGaze01 Repository

Users can read gaze data and other variables from any of the CSV data files present in the

NUIG_EyeGaze01 repository on Mendeley Data using Python and the Pandas library (after

downloading the files to their computer). Figure 17 shows such a code snippet that can be used for

reading data from a gaze data CSV file and plotting the gaze error variable as a function of time.

Figure 17. Python code snippet to read data from a gaze data file from NUIG_EyeGaze01 repository.

Figure 16. A screenshot of the data format in each comma separated values (CSV) file in the gaze dataset.

Within the NUIG_EyeGaze01(Labelled eye gaze dataset) data repository, the data CSV file names
are labelled with the participant number, platform name and operating condition. Name of each gaze
data file has the convention: USERNUMBER_CONDITION_PLATFORM.CSV (e.g., us01_80_desk.csv).
The data files can be downloaded, and respective column values can be read to directly use or visualize
them using Python or any CSV reading program. A detailed documentation of the data is also provided
within the repository.

The NUIG_EyeGaze01 data repository is published under CC BY-NC 3.0 license. According to this
license, Licensees may copy and distribute the material if they give the licensor the credits (attribution).
Licensees may distribute derivative works only under a license identical to the license that governs
the original work. The license also specifies that Licensees may use the data only for non-commercial
purposes and there is also the condition that Licensees may copy, distribute, display, and perform only
verbatim copies of the work, not derivative works of it.

There remain possibilities for extending this gaze dataset by collecting gaze data under other
challenging conditions. For example, calibration could be done with a fixed head pose, and then gaze
data be collected from the subject in another head pose. Then, this data could be compared with that
from fixed head pose and its specific calibration. Another scenario could be collecting gaze data when
head pose and eye tracker pose change together, e.g., in an automotive environment.

Vision 2019, 3, 55 20 of 29

4.3. Using Data from the NUIG_EyeGaze01 Repository

Users can read gaze data and other variables from any of the CSV data files present in
the NUIG_EyeGaze01 repository on Mendeley Data using Python and the Pandas library (after
downloading the files to their computer). Figure 17 shows such a code snippet that can be used for
reading data from a gaze data CSV file and plotting the gaze error variable as a function of time.

Vision 2019, 3, x FOR PEER REVIEW 19 of 28

Figure 16. A screenshot of the data format in each comma separated values (CSV) file in the gaze

dataset.

The NUIG_EyeGaze01 data repository is published under CC BY-NC 3.0 license. According to

this license, Licensees may copy and distribute the material if they give the licensor the credits

(attribution). Licensees may distribute derivative works only under a license identical to the license

that governs the original work. The license also specifies that Licensees may use the data only for

non-commercial purposes and there is also the condition that Licensees may copy, distribute,

display, and perform only verbatim copies of the work, not derivative works of it.

There remain possibilities for extending this gaze dataset by collecting gaze data under other

challenging conditions. For example, calibration could be done with a fixed head pose, and then

gaze data be collected from the subject in another head pose. Then, this data could be compared with

that from fixed head pose and its specific calibration. Another scenario could be collecting gaze data

when head pose and eye tracker pose change together, e.g., in an automotive environment.

4.3. Using Data from the NUIG_EyeGaze01 Repository

Users can read gaze data and other variables from any of the CSV data files present in the

NUIG_EyeGaze01 repository on Mendeley Data using Python and the Pandas library (after

downloading the files to their computer). Figure 17 shows such a code snippet that can be used for

reading data from a gaze data CSV file and plotting the gaze error variable as a function of time.

Figure 17. Python code snippet to read data from a gaze data file from NUIG_EyeGaze01 repository. Figure 17. Python code snippet to read data from a gaze data file from NUIG_EyeGaze01 repository.

4.4. Analysing Gaze Data from the NUIG_EyeGaze01 Repository

In order to study the characteristics of gaze data collected from the different eye tracker platforms
(desktop, tablet) and under different operating conditions, statistical analysis is done on the datasets
and their results are provided below. Tables 6 and 7 below present the gaze error statistical values
(mean, median absolute deviation, interquartile range, and 95% confidence intervals) from desktop
and tablet experiments respectively. The methods for calculating gaze errors and estimating statistical
metrics on gaze error values is provided in our previous paper [4]. It may be noted that the gaze data
used for this analysis is available in the NUIG_EyeGaze01 data repository, and the software codes
used for the gaze data analysis are provided in the GazeVisual-Lib GitHub repository.

Table 6. Gaze error statistics from desktop experiments (table values in degrees).

UD50 UD60 UD70 UD80 Roll 20 Yaw 20 Pitch 20

Mean 3.37 2.04 1.21 1.02 3.7 8.51 3.15
MAD 3.49 1.77 0.82 0.66 3.63 10.0 1.90
IQR 1.13 0.77 0.76 0.79 1.21 1.49 1.59

95% interval 3.15–3.59 1.90–2.18 1.15–1.26 1.16–1.24 3.30–4.09 7.60–9.43 2.83–3.47

Table 7. Gaze error statistics from tablet experiments (table values in degrees).

UD50 UD60 UD70 UD80 Roll 20 Yaw 20 Pitch 20

Mean 2.68 2.46 0.59 1.55 7.74 4.25 2.45
MAD 0.38 0.42 0.29 0.24 0.77 0.60 0.46
IQR 0.39 0.54 0.33 0.22 0.75 0.53 0.23

95% interval 2.65–2.71 2.43–2.48 0.57–0.61 1.53–1.57 7.69–7.80 4.22–4.29 2.41–2.49

In Table 6 and Figure 18a, the terms UD 50, UD60, UD70, and UD80 correspond to gaze data from
different user-distance experiments done on the desktop platform and R20, Y20, and P20 correspond

Vision 2019, 3, 55 21 of 29

to gaze data from head pose roll pitch yaw angle (20 degrees for each) experiments. All value-fields
in the table have units in degrees of angular resolution. It is seen that gaze error levels are higher
at low user distances and error reduces as user-tracker distance increases. Errors due to head yaw
are seen to have the highest magnitude and errors due to head pitch have the highest inter-quartile
range (or variability) in error magnitudes. Also, error levels due to various head poses are quite higher
compared to when head pose is neutral (UD60 values in Table 6).

Vision 2019, 3, x FOR PEER REVIEW 20 of 28

4.4. Analysing Gaze Data from the NUIG_EyeGaze01 Repository

In order to study the characteristics of gaze data collected from the different eye tracker

platforms (desktop, tablet) and under different operating conditions, statistical analysis is done on

the datasets and their results are provided below. Tables 6 and 7 below present the gaze error

statistical values (mean, median absolute deviation, interquartile range, and 95% confidence

intervals) from desktop and tablet experiments respectively. The methods for calculating gaze errors

and estimating statistical metrics on gaze error values is provided in our previous paper [4]. It may

be noted that the gaze data used for this analysis is available in the NUIG_EyeGaze01 data

repository, and the software codes used for the gaze data analysis are provided in the

GazeVisual-Lib GitHub repository.

Table 6. Gaze error statistics from desktop experiments (table values in degrees).

 UD50 UD60 UD70 UD80 Roll 20 Yaw 20 Pitch 20

Mean 3.37 2.04 1.21 1.02 3.7 8.51 3.15

MAD 3.49 1.77 0.82 0.66 3.63 10.0 1.90

IQR 1.13 0.77 0.76 0.79 1.21 1.49 1.59

95%

interval
3.15–3.59 1.90–2.18 1.15–1.26 1.16–1.24 3.30–4.09 7.60–9.43 2.83–3.47

Table 7. Gaze error statistics from tablet experiments (table values in degrees).

 UD50 UD60 UD70 UD80 Roll 20 Yaw 20 Pitch 20

Mean 2.68 2.46 0.59 1.55 7.74 4.25 2.45

MAD 0.38 0.42 0.29 0.24 0.77 0.60 0.46

IQR 0.39 0.54 0.33 0.22 0.75 0.53 0.23

95% interval 2.65–2.71 2.43–2.48 0.57–0.61 1.53–1.57 7.69–7.80 4.22–4.29 2.41–2.49

In Table 6 and Figure 18a, the terms UD 50, UD60, UD70, and UD80 correspond to gaze data

from different user-distance experiments done on the desktop platform and R20, Y20, and P20

correspond to gaze data from head pose roll pitch yaw angle (20 degrees for each) experiments. All

value-fields in the table have units in degrees of angular resolution. It is seen that gaze error levels

are higher at low user distances and error reduces as user-tracker distance increases. Errors due to

head yaw are seen to have the highest magnitude and errors due to head pitch have the highest

inter-quartile range (or variability) in error magnitudes. Also, error levels due to various head poses

are quite higher compared to when head pose is neutral (UD60 values in Table 6).

(a) (b)

Figure 18. Gaze error statistics (box plots) from (a) desktop experiments and (b) tablet experiments.

Y-axes of the plots represents gaze error in degrees. X-axis represents the different experiments from

which data was used for plotting.

Figure 18. Gaze error statistics (box plots) from (a) desktop experiments and (b) tablet experiments.
Y-axes of the plots represents gaze error in degrees. X-axis represents the different experiments from
which data was used for plotting.

In Table 7 and Figure 18b, UD 50, UD60, UD70, and UD80 correspond to gaze data from different
user-distance experiments done on the tablet platform and R20, Y20, and P20 represent data from
the tablet pose roll pitch yaw angles (20 degrees for each) experiments. It is seen that magnitudes of
gaze angular errors due to tablet pose are high, and the highest error is caused due to platform roll
variations. The error characteristics from tablet data are quite different than those from the desktop
platform, and error magnitudes are lower for tablet for all user distances. Also, magnitudes of errors
due to different platform poses (Figure 18b) are higher than errors due to head poses (Figure 18a).

Figure 19a,b below show gaze error distributions for the data (after outlier removal) from desktop
user distance and head pose experiments. The gaze error distributions are estimated using Kernel
Density Estimate [10] on gaze error values corresponding to different operating conditions, using
Gaussian Kernel and a bandwidth value of 0.2. It is seen that each operating condition leaves a definite
signature on the gaze error distributions. Distinction exists between patterns of gaze errors for different
user distances and head poses as the error distribution shifts toward higher, average, or lower error
values for different conditions. Similar observations are made for tablet data for different conditions
(Figure 19c,d). The error distributions are seen to be non-Gaussian and also do not resemble any
known statistical distribution.

Vision 2019, 3, 55 22 of 29

Vision 2019, 3, x FOR PEER REVIEW 21 of 28

In Table 7 and Figure 18b, UD 50, UD60, UD70, and UD80 correspond to gaze data from

different user-distance experiments done on the tablet platform and R20, Y20, and P20 represent

data from the tablet pose roll pitch yaw angles (20 degrees for each) experiments. It is seen that

magnitudes of gaze angular errors due to tablet pose are high, and the highest error is caused due to

platform roll variations. The error characteristics from tablet data are quite different than those from

the desktop platform, and error magnitudes are lower for tablet for all user distances. Also,

magnitudes of errors due to different platform poses (Figure 18b) are higher than errors due to head

poses (Figure 18a).

Figure 19a,b below show gaze error distributions for the data (after outlier removal) from

desktop user distance and head pose experiments. The gaze error distributions are estimated using

Kernel Density Estimate [10] on gaze error values corresponding to different operating conditions,

using Gaussian Kernel and a bandwidth value of 0.2. It is seen that each operating condition leaves a

definite signature on the gaze error distributions. Distinction exists between patterns of gaze errors

for different user distances and head poses as the error distribution shifts toward higher, average, or

lower error values for different conditions. Similar observations are made for tablet data for different

conditions (Figure 19c,d). The error distributions are seen to be non-Gaussian and also do not

resemble any known statistical distribution.

(a) (b)

(c) (d)

Figure 19. Gaze error distribution due to (a) user distance–desktop, (b) head pose–desktop, (c) user

distance–tablet, and (d) platform pose–tablet.

5. Utility and Impact of Open Resources Toward Eye Gaze Research

The GazeVisual-lib repository described in this paper provides a set of open and standardized

methods for gaze data evaluation to the interdisciplinary eye gaze research community so that gaze

data from a variety of eye trackers, applications, or user platforms may be evaluated and compared

Figure 19. Gaze error distribution due to (a) user distance–desktop, (b) head pose–desktop, (c) user
distance–tablet, and (d) platform pose–tablet.

5. Utility and Impact of Open Resources toward Eye Gaze Research

The GazeVisual-lib repository described in this paper provides a set of open and standardized
methods for gaze data evaluation to the interdisciplinary eye gaze research community so that gaze
data from a variety of eye trackers, dynamic applications [50–53], or user platforms may be evaluated
and compared under a unified framework. While using the repository, users can fully understand
the sequence of development of the data evaluation codes, starting from raw gaze data, making
these methods adaptable to gaze data from any source. With these methods, the practical limits and
capabilities of any eye tracking system may be studied and compared quantitatively and can also be
upgraded by researchers to adapt to their individual research problems.

Since knowing the quality of gaze data is essential for ensuring the reliability of any gaze-based
application or research, the evaluation routines of the repository can be used to constantly monitor the
data quality of any eye tracker, especially during real-life operations that accompany variable setup
and user conditions. Using the GUI application tool, users can perform in depth gaze data evaluation
without the need for any detailed programming knowledge owing to its simple interface. This is
particularly important due to the inter-disciplinary nature of gaze research where eye trackers are used
widely by people from non-technological fields. The intended user group of the GazeVisual-Lib code
repository is therefore quite diverse, ranging from developers of gaze estimation algorithms to users
from fields like human-computer interaction, psychology and cognitive studies. Incidentally, gaze data
quality is a critical aspect that affects all the stages of any gaze data–based research or application, and
the open-source codes for gaze data evaluation are therefore expected to be highly useful in this respect.

Vision 2019, 3, 55 23 of 29

The experiments described in this paper have helped to develop and introduce an accessible,
diverse, and benchmark eye gaze dataset that can aid in identifying the capabilities and limits of
different eye tracking systems. Such labelled gaze datasets containing signatures of different operating
conditions that frequently affect gaze data quality on different user platforms do not exist yet, and
keeping this in mind, the NUIG-Eyegaze01 dataset has been made publicly available. The data can be
put to a wide range of uses, including modelling and comparing error patterns [54], development and
testing of gaze anomaly detection algorithms, or gaze error compensation algorithms, to name a few.
These are all sparsely explored areas in gaze research, which could benefit from our diverse and open
data repository. Further, the datasets may also be augmented using the data augmentation routines in
the GazeVisual-Lib repository. The code and data repositories are therefore complementary to each
other. A major utility of presenting the data and code repositories as open resources is that they are
meant to encourage research toward practical and realistic performance evaluation of eye trackers,
standardization of gaze research results, and building of more open-source tools for these purposes.

6. Conclusions

The open-source gaze data evaluation methods of GazeVisual-Lib could be useful for researchers,
engineers, and developers working with gaze estimation systems for the thorough assessment of their
gaze data quality. The methods could be especially beneficial for eye trackers that operate under variable
operating conditions where gaze data quality frequently becomes unreliable. Also, the GUI application
GazeVisual may be used to perform prompt and in-depth gaze data evaluation without the need for
any detailed programming knowledge. This could be particularly useful for the inter-disciplinary gaze
research community where eye trackers are used widely in non-technological fields. The potential user
group of GazeVisual-Lib is therefore quite diverse, ranging from gaze tracking system developers,
researchers using eye trackers in virtual/augmented reality, human–computer interactions, cognitive
sciences, and generic users having any consumer-grade eye tracker or gaze-based application.

The new eye gaze database NUIG_EyeGaze01 presented in this paper could be beneficial to
designers of gaze-based systems for benchmark comparison of their system performances under
challenging operating conditions such as variations of head pose, user distance, and tracker orientations.
As can be observed from the gaze data analysis results presented in Section 4.4, possible future directions
of research using these gaze datasets (in conjunction with the coding resources of GazeVisual-Lib)
include comparison of gaze error patterns from multiple eye trackers, modelling of gaze error patterns
induced by different operating conditions, studying gaze error distributions, or the development of
gaze error pattern detection algorithms. These would depend on how gaze researchers, statisticians,
and researchers working with machine learning models would prefer to use these datasets. The open
resources presented in the paper are envisioned to foster collaborative development and adoption of
even better resources toward standardized gaze data evaluation, which ultimately can strengthen the
usability and reliability of gaze estimation systems in their wide range of applications.

Supplementary Materials: The following are available online, Video S1: https://www.youtube.com/watch?v=
mPGlw711BCA. Video S2: https://www.youtube.com/watch?v=sir_qZmvGME.

Author Contributions: A.K. conceived and designed the experiments, prepared the gaze tracking setups and ran
the experiments for the collection of data. A.K. wrote the draft, and both authors discussed the contents of the
manuscript. P.C. contributed to the research idea, did supervision of the work, provided feedback on the work,
corrected the draft, and approved the final version. Conceptualization: A.K.; Data curation, A.K.; Formal analysis,
A.K.; Funding acquisition, P.C.; Investigation, A.K.; Methodology, A.K.; Project administration, P.C.; Software,
A.K.; Supervision, P.C.; Visualization, A.K.; Writing—original draft, A.K.; Writing—review & editing, P.C.

Funding: The research work presented here was funded under the Strategic Partnership Program of Science
Foundation Ireland (SFI) and co-funded by FotoNation Ltd. Project ID: 13/SPP/I2868 on “Next Generation Imaging
for Smartphone and Embedded Platforms.”

Conflicts of Interest: The authors declare no conflict of interest.

https://www.youtube.com/watch?v=mPGlw711BCA
https://www.youtube.com/watch?v=mPGlw711BCA
https://www.youtube.com/watch?v=sir_qZmvGME

Vision 2019, 3, 55 24 of 29

Appendix A.

Table A1. Python libraries to be installed for using GazeVisual-Lib and their commands.

No. Python Library Name Anaconda/Pip Command

1. matplotlib conda install -c conda-forge matplotlib pip install matplotlib

2. PIL conda install -c anaconda pil, pip install Pillow==2.2.2

3. ttk conda install -c conda-forge pyttk, pip install pyttk

4. pandas conda install -c anaconda pandas, pip install pandas

5. statsmodels conda install -c anaconda statsmodels pip install statsmodels

6. seaborn conda install -c anaconda seaborn pip install
git+https://github.com/mwaskom/seaborn.git#egg=seaborn

7 pygame conda install -c cogsci pygame pip install pygame

8. scipy conda install -c anaconda scipy pip install scipy

9. sklearn conda install -c anaconda scikit-learn pip install -U
scikit-learn

10. itertools conda install -c conda-forge more-itertools pip install
more-itertools

11. Git conda install -c anaconda git, pip install python-git

12.
Jupyter notebook (comes by
default with Anaconda
distribution)

pip install jupyter

Appendix B.

Gaze data (on-screen x, y coordinates) of five participants (P1–P5) belonging to different desktop
and tablet-based experiments are presented below along with ground truth data (GT, in black). By
ground truth we mean the screen location (x, y coordinates) of the stimuli dots as they appear on
the screen while the user looks at them. The gaze data collection procedure has been discussed in
detail above in Section 4.1. During experiments, a visual stimulus in the form of a black moving dot
sequentially moves over a grid of (5 × 3) locations over the display screen (of desktop or tablet). The
screen locations traced by the stimulus dot are shown as the black lines in plots B.1 and B.2 which is
our ground truth data. The gaze data comprises of a participant’s gaze coordinates on the display as
they follow the stimuli dots. It may be noted that our Tobii tracker operates at 30 fps and therefore
cannot register rapid eye movements like drifts, saccades. and micro-saccades.

https://github.com/mwaskom/seaborn.git#egg=seaborn

Vision 2019, 3, 55 25 of 29

Appendix B.1. Gaze Data from Desktop Experiments

Vision 2019, 3, x FOR PEER REVIEW 24 of 28

B.2 which is our ground truth data. The gaze data comprises of a participant’s gaze coordinates on

the display as they follow the stimuli dots. It may be noted that our Tobii tracker operates at 30 fps

and therefore cannot register rapid eye movements like drifts, saccades. and micro-saccades.

Appendix B.1. Gaze Data from Desktop Experiments

Figure A1. Gaze data from desktop-based user distance and head pose experiments.

Appendix B.2. Data from Tablet Experiments

Figure A1. Gaze data from desktop-based user distance and head pose experiments.

Vision 2019, 3, 55 26 of 29

Appendix B.2. Data from Tablet ExperimentsVision 2019, 3, x FOR PEER REVIEW 25 of 28

Figure A2. Gaze data from tablet-based user distance and tablet pose experiments.

References

1. Holmqvist, K.; Nyström, M.; Mulvey, F. Eye tracker data quality: What it is and how to measure it. In

Proceedings of the ETRA’12, Santa Barbara, CA, USA, 28–30 March 2012; ACM: New York, NY, USA, 2012;

pp. 45–52.

2. Ooms, K.; Lapon, L.; Dupont, L.; Popelka, S. Accuracy and precision of fixation locations recorded with the

low-cost Eye Tribe tracker in different experimental set-ups. J. Eye Mov. Res. 2015, 8, 1–24.

Figure A2. Gaze data from tablet-based user distance and tablet pose experiments.

Vision 2019, 3, 55 27 of 29

References

1. Holmqvist, K.; Nyström, M.; Mulvey, F. Eye tracker data quality: What it is and how to measure it.
In Proceedings of the ETRA’12, Santa Barbara, CA, USA, 28–30 March 2012; ACM: New York, NY, USA, 2012;
pp. 45–52.

2. Ooms, K.; Lapon, L.; Dupont, L.; Popelka, S. Accuracy and precision of fixation locations recorded with the
low-cost Eye Tribe tracker in different experimental set-ups. J. Eye Mov. Res. 2015, 8, 1–24.

3. Kar, A.; Corcoran, P. A Review and Analysis of Eye-Gaze Estimation Systems, Algorithms and Performance
Evaluation Methods in Consumer Platforms. IEEE Access 2017, 5, 16495–16519. [CrossRef]

4. Funke, G.; Greenlee, E.; Carter, M.; Dukes, A.; Brown, R.; Menke, L. Which eye tracker is right for your
research? Performance evaluation of several cost variant eye trackers. In Proceedings of the Human Factors
and Ergonomics Society 2016 Annual Meeting, Washington, DC, USA, 19–23 September 2016; pp. 1239–1243.

5. Gibaldi, A.; Vanegas, M.; Bex, P.J.; Maiello, G. Evaluation of the Tobii EyeX Eye tracking controller and
Matlab toolkit for research. Behav. Res. Methods 2017, 49, 923–946. [CrossRef] [PubMed]

6. MacInnes, J.J.; Iqbal, S.; Pearson, J.; Johnson, E.N. Wearable Eye-tracking for Research: Automated dynamic
gaze mapping and accuracy/precision comparisons across devices. Neuroscience 2018, 299925. [CrossRef]

7. Kasprowski, P.; Harezlak, K. SoftwareX ETCAL—A versatile and extendable library for eye tracker calibration.
Digit. Signal Process. 2018, 8, 71–76.

8. Kar, A.; Corcoran, P. Performance Evaluation Strategies for Eye Gaze Estimation Systems with Quantitative
Metrics and Visualizations. Sensors 2018, 18, 3151. [CrossRef]

9. Špakov, O. iComponent-Device-Independent Platform for Analyzing Eye Movement Data and Developing
Eye-based Applications. Dissert. In Interactive Technology; University of Tampere: Tampere, Finland, 2008;
Volume 9.

10. Dalmaijer, E.S.; Mathôt, S.; Van der Stigchel, S. PyGaze: An opensource, cross-platform toolbox for
minimal-effort programming of eye tracking experiments. Behav. Res. Methods 2014, 46, 913–921. [CrossRef]

11. Tula, A.; Kurauchi, A.T.N.; Coutinho, F.L.; Morimoto, C.H. Heatmap Explorer: An interactive gaze data
visualization tool for the evaluation of computer interfaces. In Proceedings of the ACM IHC ’16, New York,
NY, USA, 4–7 October 2016; Article 24. pp. 1–9.

12. Van Renswoude, D.R.; Raijmakers, M.E.J.; Koornneef, A.; Johnson, S.P.; Hunnius, S.; Visser, I. Gazepath: An
eye-tracking analysis tool that accounts for individual differences and data quality. Behav. Res. Methods 2018,
50, 834–852. [CrossRef]

13. Voßkühler, A.; Nordmeier, V.; Kuchinke, L.; Jacobs, A.M. OGAMA (Open Gaze and Mouse Analyzer):
Open-source software designed to analyze eye and mouse movements in slideshow study designs. Behav.
Res. Methods 2008, 40, 1150–1162. [CrossRef]

14. Kar, A.; Corcoran, P. GazeVisual—A Practical Software Tool and Web Application for Performance Evaluation
of Eye Tracking Systems. IEEE Trans. Consum. Electron. 2019, 65, 293–302. [CrossRef]

15. Canessa, A.; Gibaldi, A.; Chessa, M.; Paolo, S. The Perspective Geometry of the Eye: Toward Image-Based
Eye-Tracking; IntechOpen: London, UK, 2012; pp. 1–30.

16. Balasubramanyam, A.; Hanna, L.; Pavan, K.B.N.; Chai, Y. Calibration Techniques and Gaze Accuracy
Estimation in Pupil Labs Eye Tracker. TECHART J. Arts Imaging Sci. 2018, 5, 38–41.

17. Sogo, H. GazeParser: An open-source and multiplatform library for low-cost eye tracking and analysis.
Behav. Res. Methods 2013, 45, 684–695. [CrossRef] [PubMed]

18. Krassanakis, V.; Filippakopoulou, V.; Nakos, B. EyeMMV toolbox: An eye movement post-analysis tool
based on a two-step spatial dispersion threshold for fixation identification. J. Eye Mov. Res. 2007, 7, 1–10.

19. Berger, C.; Winkels, M.; Lischke, A.; Hoeppner, J. GazeAlyze: A MATLAB toolbox for the analysis of eye
movement data. Behav. Res. Method 2012, 44, 404–419. [CrossRef]

20. EMA Toolbox. Available online: https://sourceforge.net/projects/ema-toolbox/ (accessed on 28 June 2019).
21. PyTrack. Available online: https://github.com/titoghose/PyTrack (accessed on 28 June 2019).
22. Smith, B.A.; Yin, Q.; Feiner, S.K.; Nayar, S.K. Gaze locking: Passive eye contact detection for human-object

interaction. In Proceedings of the 26th annual ACM UIST symposium on User interface software and
technology, St. Andrews, UK, 8–11 October 2013; pp. 271–280.

http://dx.doi.org/10.1109/ACCESS.2017.2735633
http://dx.doi.org/10.3758/s13428-016-0762-9
http://www.ncbi.nlm.nih.gov/pubmed/27401169
http://dx.doi.org/10.1101/299925
http://dx.doi.org/10.3390/s18093151
http://dx.doi.org/10.3758/s13428-013-0422-2
http://dx.doi.org/10.3758/s13428-017-0909-3
http://dx.doi.org/10.3758/BRM.40.4.1150
http://dx.doi.org/10.1109/TCE.2019.2912802
http://dx.doi.org/10.3758/s13428-012-0286-x
http://www.ncbi.nlm.nih.gov/pubmed/23239074
http://dx.doi.org/10.3758/s13428-011-0149-x
https://sourceforge.net/projects/ema-toolbox/
https://github.com/titoghose/PyTrack

Vision 2019, 3, 55 28 of 29

23. Weidenbacher, U.; Layher, G.; Strauss, P.-M.; Neumann, H. A comprehensive head pose and gaze database.
In Proceedings of the 3rd IET International Conference on Intelligent Environments (IE 07), Ulm, Germany,
24–25 September 2007; pp. 455–458.

24. McMurrough, C.D.; Metsis, V.; Rich, J.; Makedon, F. An eye tracking dataset for point of gaze detection.
In Proceedings of the Symposium on SDN Research—SOSR’16, Santa Barbara, CA, USA, 28–30 March 2012;
p. 305.

25. Sugano, Y.; Matsushita, Y.; Sato, Y.; Matsushita, Y.; Sato, Y. Learning-by-Synthesis for Appearance-Based 3D
Gaze Estimation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition,
Institute of Electrical and Electronics Engineers (IEEE), Washington, DC, USA, 23–28 June 2014; pp. 1821–1828.

26. Zhang, X.; Sugano, Y.; Fritz, M.; Bulling, A. Appearance-based gaze estimation in the wild. In Proceedings of
the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Institute of Electrical and
Electronics Engineers (IEEE), Boston, MA, USA, 7–12 June 2015; pp. 4511–4520.

27. He, Q.; Hong, X.; Chai, X.; Holappa, J.; Zhao, G.; Chen, X.; Pietikäinen, M. OMEG: Oulu Multi-Pose Eye
Gaze Dataset. In Lecture Notes in Computer Science; Image Analysis, SCIA; Paulsen, R., Pedersen, K., Eds.;
Springer: Cham, Switzerland, 2015; Volume 9127.

28. Li, N.; Busso, C. Evaluating the robustness of an appearance-based gaze estimation method for multimodal
interfaces. In Proceedings of the 15th ACM on International conference on multimodal interaction (ICMI
’13), New York, NY, USA, 9–13 December 2013; pp. 91–98.

29. Funes Mora, K.A.; Monay, F.; Odobez, J.M. EYEDIAP: A Database for the Development and Evaluation
of Gaze Estimation Algorithms from RGB and RGB-16 T. In ACM Symposium on Eye Tracking Research and
Applications; Fischer, H.J., Chang, Y., Demiris, D.C., Eds.; ACM: Safety Harbor, FL, USA, 2014; pp. 255–258.

30. Erdogmus, N.; Marcel, S. Spoofing in 2D face recognition with 3D masks and anti-spoofing with Kinect.
In Proceedings of the 2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and
Systems (BTAS), Institute of Electrical and Electronics Engineers (IEEE), Arlington, VA, USA, 29 September–2
October 2013; pp. 1–6.

31. Asteriadis, S.; Soufleros, D.; Karpouzis, K.; Kollias, S. A natural head pose and eye gaze dataset. In Proceedings
of the International Workshop on Affective Aware Virtual Agents and Social Robots AFFINE 09, Boston, MA,
USA, 6 November 2009; ACM Press: New York, NY, USA, 2009; pp. 1–4.

32. Martinikorena, I.; Cabeza, R.; Villanueva, A.; Porta, S. Introducing I2head database. In Proceedings of the
ACM 7th Workshop on Pervasive Eye Tracking and Mobile Eye-Based Interaction (PETMEI ’18), New York,
NY, USA, 15–16 June 2018; Article 1. p. 7.

33. Hadizadeh, H.; Enriquez, M.J.; Bajic, I.V. Eye-Tracking Database for a Set of Standard Video Sequences. IEEE
Trans. Image Process. 2012, 21, 898–903. [CrossRef]

34. Bovik, A.; Cormack, L.; Van Der Linde, I.; Rajashekar, U. DOVES: A database of visual eye movements. Spat.
Vis. 2009, 22, 161–177. [CrossRef]

35. Hickman, L.; Firestone, A.R.; Beck, F.M.; Speer, S. Eye fixations when viewing faces. J. Am. Dent. Assoc. 2010,
141, 40–46. [CrossRef]

36. Kootstra, G.; De Boer, B.; Schomaker, L.R.B. Predicting Eye Fixations on Complex Visual Stimuli Using Local
Symmetry. Cogn. Comput. 2011, 3, 223–240. [CrossRef]

37. Li, J.; Levine, M.D.; An, X.; Xu, X.; He, H. Visual Saliency Based on Scale-Space Analysis in the Frequency
Domain. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 996–1010. [CrossRef]

38. Judd, T.; Ehinger, K.; Durand, F.; Torralba, A. Learning to predict where humans look. In Proceedings of
the IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009;
pp. 2106–2113.

39. Judd, T.; Durand, F.; Torralba, A. Fixations on low-resolution images. J. Vis. 2011, 11, 14. [CrossRef]
40. Ramanathan, S.; Katti, H.; Sebe, N.; Kankanhalli, M.; Chua, T.S. An Eye Fixation Database for Saliency

Detection in Images. In Computer Vision–ECCV 2010; ECCV 2010; Daniilidis, K., Maragos, P., Paragios, N.,
Lecture Notes in Computer Science, Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6314.

41. Bruce, N.D.B.; Tsotsos, J.K. Saliency, attention, and visual search: An information theoretic approach. J. Vis.
2009, 9, 5. [CrossRef] [PubMed]

42. Engelke, U.; Maeder, A.; Zepernick, H.-J. Visual attention modelling for subjective image quality databases.
In Proceedings of the 2009 IEEE International Workshop on Multimedia Signal Processing, Institute of
Electrical and Electronics Engineers (IEEE), Rio De Janeiro, Brazil, 5–7 October 2009; pp. 1–6.

http://dx.doi.org/10.1109/TIP.2011.2165292
http://dx.doi.org/10.1163/156856809787465636
http://dx.doi.org/10.14219/jada.archive.2010.0019
http://dx.doi.org/10.1007/s12559-010-9089-5
http://dx.doi.org/10.1109/TPAMI.2012.147
http://dx.doi.org/10.1167/11.4.14
http://dx.doi.org/10.1167/9.3.5
http://www.ncbi.nlm.nih.gov/pubmed/19757944

Vision 2019, 3, 55 29 of 29

43. Mathe, S.; Sminchisescu, C. Actions in the Eye: Dynamic Gaze Datasets and Learnt Saliency Models for
Visual Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1408–1424. [CrossRef] [PubMed]

44. Jiang, M.; Huang, S.; Duan, J.; Zhao, Q. SALICON: Saliency in Context. In Proceedings of the 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015;
pp. 1072–1080.

45. Palazzi, A.; Abati, D.; Calderara, S.; Solera, F.; Cucchiara, R. Predicting the Driver’s Focus of Attention: The
DR (eye) VE Project. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 1720–1733. [CrossRef] [PubMed]

46. Xu, J.; Jiang, M.; Wang, S.; Kankanhalli, M.; Zhao, Q. Predicting Human Gaze Beyond Pixels. J. Vis. 2014, 14,
1–20. [CrossRef]

47. Leborán, V.; García-Díaz, A.; Fdez-Vidal, X.; Pardo, X. Dynamic Whitening Saliency. IEEE Trans. Pattern Anal.
Mach. Intell. 2017, 39, 893–907. [CrossRef]

48. Bednarik, R.; Busjahn, T.; Gibaldi, A.; Sharif, B.; Bielikova, M.; Tvarozek, J. The EMIP Dataset; Technical
Report. 2018. Available online: http://emipws.org/emip_dataset/ (accessed on 28 June 2019).

49. Harezlak, K.; Kasprowski, P.; Stasch, M. Towards Accurate Eye Tracker Calibration–Methods and Procedures.
Procedia Comput. Sci. 2014, 35, 1073–1081. [CrossRef]

50. Piumsomboon, T.; Lee, G.; Lindeman, R.W.; Billinghurst, M. Exploring natural eye-gaze-based interaction
for immersive virtual reality. In Proceedings of the 2017 IEEE Symposium on 3D User Interfaces (3DUI),
Institute of Electrical and Electronics Engineers (IEEE), Los Angeles, CA, USA, 18–19 March 2017; pp. 36–39.

51. Lee, J.; Park, H.; Lee, S.; Kim, T.; Choi, J. Design and Implementation of an Augmented Reality System
Using Gaze Interaction. In Proceedings of the 2011 International Conference on Information Science and
Applications, Jeju Island, Korea, 26–29 April 2011; pp. 1–8.

52. Biedert, R.; Dengel, A.; Buscher, G.; Vartan, A. Reading and estimating gaze on smart phones. In Proceedings
of the ACM ETRA ‘12, New York, NY, USA, 28–30 March 2012; Stephen, N.S., Ed.; 2012; pp. 385–388.

53. Chen, Y.-L.; Chiang, C.-Y.; Yu, C.-W.; Sun, W.-C.; Yuan, S.-M. Real-time eye tracking and event identification
techniques for smart TV applications. In Proceedings of the 2014 IEEE International Conference on Consumer
Electronics-Taiwan, Institute of Electrical and Electronics Engineers (IEEE), Taipei, Taiwan, 26–28 May 2014;
pp. 63–64.

54. Li, L.; Wu, Y.; Ou, Y.; Li, Q.; Zhou, Y.; Chen, D. Research on machine learning algorithms and feature
extraction for time series. In Proceedings of the 2017 IEEE 28th Annual International Symposium on Personal,
Indoor, and Mobile Radio Communications (PIMRC), Institute of Electrical and Electronics Engineers (IEEE),
Montreal, QC, Canada, 8–13 October 2017; pp. 1–5.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TPAMI.2014.2366154
http://www.ncbi.nlm.nih.gov/pubmed/26352449
http://dx.doi.org/10.1109/TPAMI.2018.2845370
http://www.ncbi.nlm.nih.gov/pubmed/29994193
http://dx.doi.org/10.1167/14.1.28
http://dx.doi.org/10.1109/TPAMI.2016.2567391
http://emipws.org/emip_dataset/
http://dx.doi.org/10.1016/j.procs.2014.08.194
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	GazeVisual-Lib: An Open Software Repository for Eye Tracker Data Evaluation
	NUIG_EyeGaze01: An Open Gaze Data Repository
	Scope and Organization of the Paper

	Previous Works on Open-Source Gaze Data Analysis Software and Gaze Datasets
	Description of the GazeVisual-Lib Code Repository
	Organization of the Repository
	Functionalities of the GazeVisual-Lib Repository Components
	“Gaze Data Pre-Processing” Folder
	“Gaze Accuracy Metrics” Folder
	“Gaze Data Visualizations” Folder
	“GazeVisual GUI Tool” Folder
	Steps for Using the Gaze Data Evaluation Methods in GazeVisual-Lib for Analysing Gaze Data
	Installing the GazeVisual-Lib Components
	Running the GazeVisual-Lib Codes and the GazeVisual GUI Application

	Description of the NUIG_EyeGaze01 Gaze Data Repository
	Description of the Gaze Data Collection Process
	Organization of the NUIG_EyeGaze01 Gaze Dataset on Mendeley Data
	Using Data from the NUIG_EyeGaze01 Repository
	Analysing Gaze Data from the NUIG_EyeGaze01 Repository

	Utility and Impact of Open Resources toward Eye Gaze Research
	Conclusions
	
	
	Gaze Data from Desktop Experiments
	Data from Tablet Experiments

	References

