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The anti-allergic cromones were originally synthesized in the 1960s by Fisons Plc, and
the first drug to emerge from this program, disodium cromoglycate was subsequently
marketed for the treatment of asthma and other allergic conditions. Whilst early studies
demonstrated that the ability of the cromones to prevent allergic reactions was due to
their ‘mast cell stabilizing’ properties, the exact pharmacological mechanism by which
this occurred, remained a mystery. Here, we briefly review the history of these drugs,
recount some aspects of their pharmacology, and discuss two new explanations for
their unique actions. We further suggest how these findings could be used to predict
further uses for the cromones.
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HISTORY OF CROMONES

The prototypical cromone, disodium cromoglycate, (cromolyn sodium) was introduced into clinical
medicine in the early 1960s by the pharmaceutical company Fisons Plc. It arose from a study of the
anti-spasmodic properties of the Egyptian medicinal herb Khellin. The experimental trail leading
to the discovery of the anti-allergic properties of this compound and its clinical validation by
the Fisons’ pharmacologist, Roger Altounyan (himself an asthmatic), which entailed considerable
self-experimentation, have become the stuff of pharmacological legend and will not be recounted
here (see Howell, 2005). Originally, disodium cromoglycate was introduced for the treatment of
mild-moderate allergic asthma. Although largely superseded by other medicines, it remains in
the allergist’s cache today and has maintained a stature as an effective drug with a good safety
margin. In 1970s, Fison’s developed nedocromil (Cairns et al., 1985), which not only shares a close
chemical resemblance to cromoglycate, but also portrays comparable or even higher efficacy in the
clinical setting. Subsequently, these drugs (often generically referred to as ‘cromones’) were also
used to treat other allergic conditions (e.g., intestinal allergies, mastocytosis, and other allergic skin
conditions).

Detailed research into the pharmacological actions of cromoglycate and nedocromil indicated
that they inhibited mast cell degranulation provoked by various stimuli and thus these drugs
were dubbed ‘mast cell stabilizers’ (Cox, 1967). In this respect, it was clear that the cromones
had a distinctive mechanism of pharmacological action. Their ‘mast cell stabilizing’ effect (Vane,
1971; Thomson and Evans, 1973; Theoharides et al., 2000; Bandeira-Melo et al., 2005; Yazid et al.,
2009) was clearly dissimilar to other drugs such as the β-agonists which, although more efficient
at inhibiting mast cell degranulation (Shichijo et al., 1998), did not share other pharmacological
characteristics of the cromones.

There are several disadvantages to using disodium cromoglycate therapeutically. It had to
be administered at frequent intervals because of its poor pharmacokinetics and short half-life.
Prophylactic treatment was essential and, for asthmatics, inhalation was the most reliable route
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of administration as this maximized the concentration in the
lung. Despite this, and whilst inferior to the glucocorticoids for
the treatment of asthma and allergies, these drugs have retained
a niche role with a reputation for being very well tolerated and
especially useful in pediatric formulations.

CROMONE PHARMACOLOGY

In addition to their effect on mast cells, several other actions
of cromoglycate-like drugs have been reported which might
be classified as ‘anti-inflammatory’. These include inhibition
of activation (Kay et al., 1987), migration (Bruijnzeel et al.,
1993; Szkudlińska et al., 1996) of polymorphonuclear (PMN)
leukocytes; macrophage activation (Joseph and Rainey, 1992),
mediator (Dahlén et al., 1989), and tachykinin action (Yamawaki
et al., 1997); eicosanoid (Mattoli et al., 1990; Radeau et al.,
1993) and cytokine release (Rusznak et al., 1996) as well as
adhesion molecule expression (Hoshino and Nakamura, 1997;
Okada et al., 1999; Sacco et al., 1999; Vural et al., 2000) and
blockade of chloride channels (Alton and Norris, 1996; Heinke
et al., 1995; Norris and Alton, 1996). It is not clear whether
their mast cell stabilizing effect alone is responsible for their
anti-asthmatic action in humans, (but it probably underlies
their anti-allergic action), however, there is a widely-accepted
notion that cromoglycate and nedocromil render their anti-
asthmatic effects due to a combination of these anti-inflammatory
actions (Cairns et al., 1985). Given that inflammatory diseases are
associated with pro-inflammatory stimuli in pathological setting,
‘mast cell stabilizing’ properties of cromones were tested not only
in the presence of Ig-E (Leung et al., 1988; Oka et al., 2012;
Yazid et al., 2013), but also using the mast cell secretagogue
such as compound 48/80 (Jeong et al., 2006; Sinniah et al.,
2016). Nonetheless, typical inducers of inflammation such as
lipopolysaccharide (LPS) (Nava and Caputi, 1999; Oka et al.,
2012; Zhang X. et al., 2016; Hughes et al., 2017), phorbol 12-
myristate 13-acetate (PMA) (Sadeghi-Hashjin et al., 2002; Yazid
et al., 2009) and TNF-α (Bissonnette et al., 1995) were also utilized
to elucidate the mechanism of action of cromone. To identify
the pharmacological actions of cromones in vivo settings, various
inflammatory models were used to assess the mast cell function
(Wyss et al., 2005; Kneilling et al., 2007; Hei et al., 2008; Liu et al.,
2009; Ramos et al., 2010; Zhang S. et al., 2016; Hughes et al.,
2017).

Despite earlier studies led to the notion that the cromoglycate-
like drugs acted largely on mast cells (Cox, 1967, 1970; Cox
and Altounyan, 1970; Cox et al., 1970; Orr, 1989) to inhibit
the release of mediators, current evidence suggest that this is
unlikely to be their sole target of action and that these drugs
do exert pharmacological effect in non-allergic settings. Indeed,
work from our own group (Yazid et al., 2010b) have shown
that cromones inhibit neutrophil recruitment onto vascular
endothelium, further suggesting that these drugs could play a
role in diseases such as gouty arthritis and vasculitis, which
are steered by excessive PMN activation. Clearly, it could be
argued that cromones impede PMN trafficking by inhibiting the
release of mediators from mast cells, however, a study by Furuta

et al. (1998), have shown that there is a separate and direct
effect of cromones on PMN, which does not require mast cell
participation. Interestingly, cromoglycate-like drugs also targets
inhibition of eicosanoids release (Mattoli et al., 1990; Radeau
et al., 1993; Yazid et al., 2009) and cytokine production (Kimata
et al., 1994; Devalia et al., 1996; Yazid et al., 2013), which further
reiterates the concept that cromones’ actions are not only limited
to allergic inflammation.

POTENTIAL THERAPEUTIC
MECHANISMS

Early investigations of cromoglycate action on mast cell
degranulation highlighted several unusual features. The
cromones appeared to exhibit strong tachyphylaxis (Sung et al.,
1977a,b; Church and Hiroi, 1987) and the timing of the drug
administration relative to the degranulating agent was also crucial
in determining their pharmacological effect (Shichijo et al., 1998).
Tachyphylaxis is so prominent that the blocking effect of the drug
often cannot be repeated within a defined time-frame (Thomson
and Evans, 1973) and if the drug was administered too far in
advance of the degranulating stimulus, it was ineffective. These
observations have led to speculations that cromoglycate released
a substance, which once exhausted, required replenishment
before the next challenge could be effective (Thomson and
Evans, 1973). Other incongruities observed with these drugs
were connected with the optimal concentration required for
the inhibition of mast cell degranulation in vitro, since there
were discrepancies amongst species and between mast cell
subtypes, in their response to cromones (Church and Hiroi,
1987; Kay et al., 1987; Pearce et al., 1982). One group has even
questioned whether cromoglycate, which is highly active in
the rat, has any efficacy in the mouse (Oka et al., 2012). An
interesting observation has shown that cromoglycate induced
the phosphorylation of a 78kD mast cell protein, which inhibits
mast cell activation (Wells and Mann, 1983). However, in the
presence of phorbol esters, these drugs loses this ability, and
render inactive (Cox et al., 1998). This phenomenon further
suggests that cromoglycate is involved in an endogenous control
mechanism that switches off the release of mediators.

A Role for PKC?
There have been dispersed reports of an association between
cromoglycate and PKC over the past 3 decades (Lucas and
Shuster, 1987; Bansal et al., 1997). A consistent finding
has been that these drugs increase the phosphorylation of
some cellular proteins. For example, cromoglycate induced
the phosphorylation of several intracellular protein substrates
including the erythrocyte band 4.1 group protein moesin
in rat mast cells (Theoharides et al., 1980; Theoharides
et al., 2000). Theoharides et al. (2000) have identified four
phosphoproteins with molecular weights of 78, 68, 59, and
42 kDa in mast cells treated with cromoglycate. The authors
suggested that the 78 kDa phosphoprotein (later cloned and
characterized as cellular cytoskeletal protein moeisin) might be
the molecular switch that regulates the degranulation process
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in mast cells, since the appearance of this protein coincide
with the secretory phase stimulated by compound 48/80. The
authors speculated that conformational changes of moesin at
differential phosphorylation sites regulates the mast cell secretory
mechanism, and PKC was identified to be the most likely kinase
to be involved in this phosphorylation process (Wang et al.,
1999).

PKC has also been associated in the action of cromoglycate in
several different models by other investigators (Sagi-Eisenberg,
1985). Some reports have shown that PKC is inhibited by
cromoglycate, however discrepancies between the time courses
and methodologies obscure clear interpretation of these results.

GPR 35 Activation
A novel mechanism of cromone action was proposed by
two groups (Jenkins et al., 2010; Yang et al., 2010), who
suggested that they act through GPR35, a G-protein coupled
receptor that modulates signaling via the Gi pathway. This
GPCR was previously regarded as an orphan receptor, and
its endogenous ligands have been identified as products of
tryptophan metabolism, such as kynurenic acid, although fairly
high concentrations of these ligands are required to activate the
receptor (Wang et al., 2006).

Yang et al. (2010) demonstrated that cromoglycate,
nedocromil and zaprinast (another non-cromone anti-allergic)
increased inositol phosphate accumulation and calcium
mobilization in HEK cells transfected with GPR35. Although
there were differences in the specificity exhibited by these drugs
when tested on human, mouse and rat GPR35, all three drugs
exerted similar potency.

Another study identified a range of ligands including
dicoumarol, cromoglycate, and zaprinast in HEK cells transfected
with human and rat GPR35, using a β-arrestin-2 interaction
assay. Dicoumarol was a partial agonist whilst cromoglycate and
zaprinast were full agonist (Jenkins et al., 2010).

GPR35 is present on human mast cells (particularly following
treatment with IgE), as well as on eosinophils and basophils.
However, its significance to asthma and allergy or to mast cell
mediator release is yet to be elucidated, thus it is unclear how
these actions of the cromones could be translated into therapeutic
effects. Nevertheless, one of the downstream effects of GPR35
activation is activation of PKC so this mechanism would certainly
contribute to the observed changes of phosphoprotein abundance
in cells.

The Anx-A1/FPR System
In recent years, our laboratory has proposed a new mechanism to
account for cromone action. According to this hypothesis, these
drugs activate an endogenous anti-inflammatory loop, the Anx-
A1/FPR system, which regulates cell activation in many cell types
(Yazid et al., 2010b; Sinniah et al., 2016). Interestingly, there are
other reports (Oyama et al., 1997; Shishibori et al., 1999) of an
association between the annexin family and cromoglycate drugs,
whereby these drugs were observed to have an affinity for S100
proteins. It is worth noting that S100 proteins are intracellular
binding partners for some members of the annexin family and

play a significant role in membrane fusion events (Rintala and
Lindahl, 2001).

Anx-A1 is a 37 kDa monomeric protein that is commonly
found in many differentiated cells, mainly those of the myeloid
lineage (Perretti and D’Acquisto, 2009). It is a member of a
superfamily of proteins, which are of ancient evolutionary origin
and which are common in most eukaryotic cells (Gerke and Moss,
2002). Structurally, annexins contain a number of homologous
core domain repeats attached to an N-terminus of differing
lengths that contributes to the various diversity between annexin
isoforms (Moss and Morgan, 2004). In mammals, there are 12
annexins and Anx-A1 (numbering corresponds to the first one
to be cloned) has four conserved repeats in the core domain.
These units has binding motifs for calcium, phosphatidylserine
and negatively charged phospholipids (Raynal and Pollard, 1994).

Prior to its cloning, sequencing and characterization (Wallner
et al., 1986), Anx-A1 (also known in the older literature as
‘macrocortin’, ‘renocortin’, ‘lipomodulin’, and ‘lipocortin’) was
recognized by its characteristic biological activity (Blackwell et al.,
1980; Hirata, 1981; Russo-Marie and Duval, 1982; Pepinsky et al.,
1986). It was first detected in the conditioned media or perfusate
of tissues or cells upon treatment with glucocorticoids, and was
found to mirror the action of these drugs in numerous in vitro
and in vivo systems (Pepinsky et al., 1986). The synthesis and
release of this protein were hypothesized to account for some
of the anti-inflammatory actions of these drugs and this was
confirmed by later experiments using the highly purified r-hu-
Anx-A1 (Cirino and Cicala, 1993; Perretti et al., 1993; Wu et al.,
1995; D’Amico et al., 2000; Gavins et al., 2003; Bandeira-Melo
et al., 2005), Anx-A1-deficient transgenic animals (Roviezzo et al.,
2002; Croxtall et al., 2003; Hannon et al., 2003), neutralizing
antibodies (Croxtall and Flower, 1992; Duncan et al., 1993;
Perretti et al., 1996; Teixeira et al., 1998), and anti-sense agents
(Croxtall and Flower, 1994; Taylor et al., 1997). Anx-A1 is now
known to exert a key ‘anti-inflammatory and pro-resolution’
role in several important host defense responses including
acute inflammation (Perretti and D’Acquisto, 2009) and T-cell
signaling (D’Acquisto et al., 2008).

The mechanism by which glucocorticoids (and other factors)
promote the actions of Anx-A1 has also been investigated in
detail (Croxtall et al., 1996, 2000; Parente and Solito, 2004).
In many systems including cells of the innate immune system
(e.g., macrophages), glucocorticoids have not only been found
to promote Anx-A1 synthesis through genomic action, but
also to trigger the rapid release of pre-existing pools of Anx-
A1 from the cell cytoplasm (Croxtall et al., 2000). The latter
mechanism is modulated by PKC, whereby phosphorylation of
Anx-A1 at Ser27 and other residues initiates the translocation of
Anx-A1 to the plasma membrane and subsequently its release
from the cell (Solito et al., 2006). Anx-A1 can then interact
with its target cells in an autocrine or paracrine manner by
activating receptors of the FPR family, probably ALX/FPR2 in
man or, in the mouse, its homolog Fpr2 (Walther et al., 2000;
Dufton et al., 2010). Recent literature has shown that FPR2
and FcεR1 co-localize when mast cells are stimulated with N-
formyl-methionyl- leucyl-phenylalanine (fmlp) and IgE antigen,
leading to mast cell activation (Xue et al., 2007). This adds to
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the conundrum on how FPR could be involved in both the
activation and inhibition of mast cell degranulation? One unique
feature of FPR2 is that it recognizes both pro-inflammatory and
anti-inflammatory signals. Liganding of this receptor by Anx-
A1 causes it to dimerize, activating a downstream signaling
pathway and producing the generally inhibitory effect that Anx-
A1 has on cell activation (Cooray et al., 2013). Interestingly,
this receptor can also transduce pro-inflammatory signals: in
this case, dimerization does not occur and a different signaling
pathway is brought into play.

Proteolysis is vital in determining the extent of secreted Anx-
A1 action and disturbances of this process may be a trigger
in some diseases. In Wegener’s granulomatosis (for example),
extreme PMN activation could be trailed down to abnormal
Anx-A1 cleavage by the PR3 protease (Pederzoli-Ribeil et al.,
2010).

Mast cells, one of the principal targets of cromoglycate action
contain abundant Anx-A1 and respond rapidly to glucocorticoid
treatment with an increase in Anx-A1 mRNA (Oliani et al., 2000).
These cells also express the Anx-A1 receptor, ALX/FPR2. The
sub-cutaneous injection of the mast cell secretagogue compound
48/80 into the flank of mice produces a greater wheal in Anx-
A1 null mice compared to its wild type counterpart (Yazid et al.,
2010a). In addition, mast cells in Anx-A1 ‘knock-out’ mice are
more susceptible to degranulation, hence release more PGD2
and histamine than wild type cells in response to degranulating
stimulants (Damazo et al., 2005). The acute inhibitory action of
cromones as well as glucocorticoids on mast cell mediator release
is blocked in the presence of specific anti-Anx-A1 neutralizing
antibodies (Sinniah et al., 2016). All these observations suggest
that Anx-A1 exerts a ‘homeostatic’ inhibitory influence on mast
cell reactivity and is important in the mode of action of the
cromones.

To further support this notion, a complementary study in
which administration of the biomimetic Anx-A1 N-terminal
peptide Ac 2-26 inhibited IgE-induced histamine release in the
pleural cavity (Bandeira-Melo et al., 2005) strongly suggests
that Anx-A1 is also an endogenous regulator of mast cell
degranulation in an experimental model of rat allergic pleuritis.

Action of Cromones on the PP2A
Phosphatase
In view of the fact that the cromoglycate-like drugs act as mast
cell stabilizers, and that Anx-A1 is clearly implicated in mast
cell biology, an obvious hypothesis was that the cromoglycate-
like drugs could release Anx-A1, which then mediated the
pharmacological actions of these drugs. A simple model for
studying the biological actions of Anx-A1 release under closely
defined conditions was utilized to investigate this possibility
(Yazid et al., 2009).

U937 cells were used as these cells are responsive to
glucocorticoids when differentiated, contains abundant Anx-A1
and produces a convenient biochemical readout of activation.
This study concluded that thromboxane (Tx) B2 production
was suppressed when glucocorticoids such as dexamethasone
initiate the phosphorylation and release of Anx-A1, that the
phosphorylation of Anx-A1 precedes export and that PKC was

the kinase most likely responsible for this action. Occupancy of
the glucocorticoid receptor prompts PKC activation. Although
the mechanism is not well elucidated, some observations have
implicated the involvement of PIP3 kinase in this activation
(Solito et al., 2003).

Yazid et al. (2009) had speculated that some interaction
occurred between the acute effect of dexamethasone and the
action of cromoglycate, although the reason for this interaction
was unclear at that time. Analysis of Anx-A1 in U937 cells
revealed that whilst dexamethasone produced a small increase
in phosphorylated and externalized Anx-A1, the addition of
cromoglycate alone was without effect. A study of the dynamics
of the glucocorticoid-induced phosphorylation of Anx-A1 at the
Ser27 residue showed that the effect seen was very rapid with
a maximum activation of PKC and Anx-A1 phosphorylation
occurring within 5 min. Whilst the cromones alone had little
effect on Anx-A1 phosphorylation, they greatly potentiated the
effect of the glucocorticoids (see Figure 1). This was evident by
the redistribution of GFP-tagged Anx-A1 within the U937 cells,
extracellular accumulation of the protein and, dramatically, by
the observed inhibition of TxB2 generation. For example, the
inhibition of TxB2 release in U937 cells treated with 2 nM of
dexamethasone alone was only <20%, but this inhibition was
increased to almost 100% in the presence of 20 nM nedocromil
at 5 min time point. Cromolycate also has similar glucocorticoid
potentiating ability.

The regulation of PKC activity may be accomplished through
several potential mechanisms. The duration of action of PKC
is limited by phosphatases such as PP2A. PKCα (and some
other isoforms) interact with PP2A following activation in
many cell types, including macrophage (see review Sim and
Scott, 1999). PKC activation is followed by its translocation
to the plasma membrane (see Refs. Ishizuka et al., 1995; Park

FIGURE 1 | Nedocromil potentiates dexamethasone inhibition of TxB2 release
from U937 cells. The increased internalization of Anx-A1 (as assessed by
western blotting) and concomitant inhibition of TxB2 release (as assessed by
ELISA assay) produced by escalating concentrations of nedocromil
(0.2–10 nM) in the presence of a fixed concentration (2 nM) of
dexamethasone. Figure reproduced with the permission from the rights
holder, Elsevier (Yazid et al., 2009).
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et al., 2001; Qiu et al., 2003; Plotkin et al., 2007) where its
catalytic activity is terminated by the phosphatase, which limits
the duration of its biological actions (Sagi-Eisenberg, 1985;
Ricciarelli and Azzi, 1998; Boudreau et al., 2002; Faulkner
et al., 2003; Zhang et al., 2007; Lee et al., 2008). Another
possibility is modulation of diacylglycerol (DAG) activity. DAG
is the endogenous activator of PKC, but is rapidly destroyed by
DAG kinases which therefore also terminate PKC activation. It
follows that inhibitors of either of these two processes should
greatly potentiate the glucocorticoid-induced increase in Anx-A1
phosphorylation and release from cells. One possibility therefore
was that the cromones were in fact inhibitors of PP2A.

Previous experimental observations had revealed that GC
receptor ligation, perhaps acting through phosphatidylinositol
3-kinase (Solito et al., 2003), causes PKC activation and
membrane translocation and that this activity was limited
by dephosphorylation, through the Ser/Thr PP2A phosphatase
(Hansra et al., 1996). Further support for a mechanism of this
type in the U937 cell system was obtained in an experiment
with the PP2A inhibitor okadaic acid (OA). Treatment of these
cells with OA greatly potentiated the effect of dexamethasone
on Anx-A1 externalization and eicosanoid synthesis (Yazid et al.,
2009).

This hypothesis was further tested by assessing the ability
of nedocromil and cromoglycate to inhibit the endogenous

phosphatase activity found in the membrane fraction of U937
cells following treatment with dexamethasone. These drugs
strongly inhibited this phosphatase activity and similar findings
were reported when highly purified recombinant PP2A was used
as a target enzyme (Yazid et al., 2009).

PP2A is a heterotrimeric enzyme comprising one each of two
variant catalytic and structural sub-units together with one (of
a family of about twenty) modulatory/targeting sub-unit, which
determines the specificity of the assembled enzyme complex.
C-terminal carboxymethylation of the catalytic sub-unit at Leu309

activates PP2A probably by facilitating the formation of trimeric
complexes (Lee et al., 2007; Yoo et al., 2007; Ortega-Gutiérrez
et al., 2008). The enzyme may be phosphorylated on Tyr307 by
either receptor or other tyrosine kinase action (Chen et al., 1992)
which may be the way in which the phosphatase activity itself is
terminated at the membrane. However, the importance of these
post-translational modifications to enzyme activity in vitro and
in vivo is not yet entirely clear (Sim and Scott, 1999).

It is likely from the available experimental evidence that the
cromones interact with the catalytic site of the trimeric PP2A
complex. This contains Mn2+ which might possibly be a target
for the drugs which could conceivably interact with this metal
being carboxylic acids (unpublished data). Interestingly, previous
authors had already investigated the possibility that cromones
inhibited PP2A, but were unable to detect an effect in their

FIGURE 2 | The inhibition by nedocromil and ketotifen of mediator release from Cord blood derived mast cells (CBDMCs) stimulated with compound 48/80 is
dependent upon Anx-A1. CBDMCs were plated at a density of 2 × 105 cells per well and the stipulated groups were treated with 20 µg/ml Anx-A1 neutralizing
antibody or an irrelevant isotype control. Subsequently, the cells were pre-treated with either nedocromil (10 nM) or ketotifen (10 nM) for 5 min followed by
compound 48/80 (10 µg/ml) stimulation for 10 min. To assess the effects of Anx-A1 removal, the cells were incubated with the Anx-A1 neutralizing antibody (or an
irrelevant isotype control) only. Nedocromil and ketotifen produced consistent inhibition of histamine, but not control isotype matched non-neutralizing mAb. Data are
expressed as mean ± SEM from n = 3 experiment and were analysed using one-way analysis of variance (ANOVA), followed by a Bonferroni post hoc test,
∗p < 0.05, ∗∗∗p < 0.001 vs unstimulated). Figure reproduced with the permission from the rights holder, Elsevier (Sinniah et al., 2016).
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system (Wang et al., 1999). However, some groups had noted
a link between the action of these drugs in vivo and inhibition
of alkaline phosphatase in a rat passive cutaneous anaphylaxis
model (Schwender, 1981; Schwender et al., 1982).

Increased Anx-A1 release reflected the inhibitory actions of
combined nedocromil and dexamethasone treatment (Sinniah
et al., 2016). An additional interesting observation from this study
was that depletion of Anx-A1 in vitro completely reversed the
inhibitory actions of these drugs (see Figure 2). This mechanism
was also observed to operate in vivo. Using Anx-A1 null mice, the
ability of nedocromil to inhibit leukocyte migration in a model of
peritoneal inflammation in mice was lost whilst they were fully
active in the wild type (Yazid et al., 2010b).

Other Drugs Which May Operate Using
the Anx-A1/FPR Pathway
Several other drugs, including some non-cromone anti-
allergic/anti-histamines (including azelastine, pemirolast, and
olopatidine) exhibit cross-tachyphylaxis, or share a similar
pharmacology, with cromones (Cook et al., 2002).

One such drug is the second-generation H1 antagonist
ketotifen. When tested, ketotifen was found to have the same
effect on the Anx-A1 system as nedocromil and cromoglycate

suggesting a commonality of mechanisms of action (Sinniah
et al., 2016). An important speculation is that all H1 antagonists
with this additional action may have a secondary pharmacology
as PP2A inhibitors and, if so, this could be a beneficial therapeutic
screen to evaluate this property.

The Future of Cromone Pharmacology
The demonstration by our group that the cromones potentiate
the acute effect of glucocorticoids on Anx-A1 release could have
some clinical implications as Anx-A1 has been implicated in
the regulation of bronchial hyper-reactivity and asthma, at least
in animals (Ng et al., 2011). It begs the question of whether
using a mixture of the two drugs would augment the response
to glucocorticoids perhaps permitting a reduction in the dose
required to achieve a therapeutic effect. An understanding of the
mechanism of action of these drugs will enable – for the first
time – the creation of a simple biochemical screen or readout
for testing future cromone or other derivatives with presumed
anti-allergic properties.

Of course, Anx-A1 is not the sole substrate for PKC, so other
PKC-dependent phosphorylation events might be potentiated in
the presence of the cromones. We have already mentioned an
early observation that increases in the phosphorylation of moesin

FIGURE 3 | Schematic illustration of the role of Anx-A1 in mast cell degranulation and cromone action. (A) In the untreated, ‘resting’ mast cell, there is an
intracellular pool of Anx-A1, a small proportion of which is externalized exerting a low-level tonic inhibitory influence on cell activation. (B) During stimulation by (e.g.,
Cpd 48/80) granule contents are released but Anx-A1 is also phosphorylated and released as a result of PKC activation. This provides some feedback control over
the extent of degranulation. (C) In the presence of neutralizing anti-Anx-A1 mAbs, this feedback control is lost and degranulation is more extensive. (D) In mast cells
pre-treated with nedocromil or cromoglycate, Anx-A1 is already externalized and fully engaged with inhibitory FPR receptors. This suppresses degranulation in
response to degranulating stimuli (E) by inhibiting the activation response and ‘stabilizing’ the mast cell. (F) In the presence of the neutralizing mAb, however, this
inhibitory influence is removed and extensive degranulation occurs.
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and several other proteins have been observed in the presence
of these drugs. What other targets might there be in the cell?
One significant target may be the glucocorticoid receptor. Whilst
the acute increase in Anx-A1 secretion we have observed is due
entirely to an increased secretion of the protein, we are aware
that the glucocorticoid receptor itself is phosphorylated upon
liganding, possibly by PKC, and that PP2A (which is associated
with the receptor complex) plays a key role in terminating its
activation after an appropriate time period (Kobayashi et al.,
2017). One might predict changes in glucocorticoid receptor
behavior in the presence of cromones although how this would
play out in terms of their therapeutic action will have to be
investigated.

The possible mechanism of action by cromone in mast cells is
summarized in Figure 3.

CONCLUSION

To conclude, we have reviewed evidence supporting the
hypothesis that Anx-A1 is indeed a crucial endogenous regulator
of mast cell function, which might reciprocally inhibit mast cell
activation. Anx-A1 is secreted in increased amounts parallel

with mediators during mast cell activation and thus, acts to
control the extent of mast cell degranulation and activation
response.

We also described a different, GPR35-dependent mechanism,
which could also transduce some of the effects of the cromones.
In trying to reconcile these two ideas, it is worth noting that the
effects on the Anx-A1 system that was reported here was very
rapid (within 5 min) and that we have not looked at other actions
of the cromones that may require a longer latent period, which
could be mediated by an alternative GPR35 mechanisms.
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