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Background: Diabetic nephropathy (DN) is the leading cause of end-stage renal disease, 
but it remains relatively underdiagnosed.
Objective: In this study, we aimed to explore the key regulatory pathways and potential 
biomarkers related to DN using integrated bioinformatics analysis and validation.
Methods: First, the microarray data of the GSE30528 and GSE96804 datasets were down-
loaded from the Gene Expression Omnibus (GEO) database, and differentially expressed genes 
(DEGs) were screened. Then, weighted gene coexpression network analysis (WGCNA), gene 
ontology (GO) annotation, gene set enrichment analysis (GSEA) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway analyses were performed to identify key pathways and 
genes. qRT-PCR and receiver operating characteristic (ROC) curves were used to validate our 
results. Furthermore, single-cell RNA sequencing (scRNA-seq) data were reanalyzed to inves-
tigate the expression specificity of C7 in DN cells. An online database search and luciferase 
reporter assay identified the target relationship between miRNAs and C7.
Results: The “complement and coagulation cascades” were significantly enriched, and 
complement C3 and C7 were candidate markers. The receiver operating characteristic 
(ROC) curve revealed that C7 had significant diagnostic value (AUC=0.865) in DN. 
Through scRNA-seq reanalysis, we found that C7 was specifically elevated in mesangial 
(MES) cells of DN. Moreover, we found that the expression of C7 was regulated by miR- 
494-3p and miR-574-5p.
Conclusion: This is the first study to reveal that C7 is specifically expressed in mesangial 
cells, is a potential diagnostic biomarker for diabetic nephropathy, and is regulated by miR- 
494-3p and miR-574-5p.
Keywords: diabetic nephropathy, mesangial (MES) cells, complement and coagulation 
cascades, complement C7, miR-494-3p, miR-574-5p, biomarker

Introduction
Diabetic nephropathy (DN) is a common microvascular complication that is both the 
most serious complication of diabetes (DM) and the most common cause of end-stage 
renal disease.1 The major pathological features of DN include glomerular vascular 
injury, glomerular sclerosis, the formation of nodular lesions and the deterioration of 
renal function, which ultimately leads to end-stage renal disease.1,2 It has been reported 
that 30–40% of diabetes cases develop into diabetic nephropathy worldwide.3,4 Due the 
complexity of metabolic disorders, once diabetes has developed into end-stage renal 
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disease, it is often more difficult to treat than other kidney 
diseases; thus, timely prevention and treatment is of great 
significance to delay diabetic nephropathy.

Weighted gene coexpression network analysis 
(WGCNA) was used to construct a free-scale gene coex-
pression network and is widely used to analyze large-scale 
data sets and identify highly associated gene modules.5,6 

Related modules have been used to identify candidate 
biomarkers or therapeutic targets in many diseases, such 
as depressive order7 and chronic kidney disease.8 Single- 
cell RNA sequencing (scRNA-seq) has emerged as an 
indispensable tool to dissect cellular heterogeneity and 
offers enormous potential for de novo discovery. Single- 
cell transcriptomic atlases provide unprecedented resolu-
tion to reveal complex cellular events and deepen our 
understanding of biological systems.9 Although RNA 
sequencing (RNA-seq) has been used in several studies 
of DN, scRNA-seq can pinpoint the cell types in which 
specific genes are differentially expressed. A recent 
scRNA-seq study performed on the patient’s kidney cortex 
revealed strong angiogenic signature changes in glomeru-
lar cell types, proximal convoluted tubules, distal convo-
luted tubules, and principal cells.10

The complement system is a mainstay of systemic 
innate immunity comprising several interacting 
components.11 C3a-mediated proinflammatory and prefi-
brotic responses in rats with type 2 diabetes mellitus 
(T2DM) aggravate renal damage,12 while inhibition of 
complement C5 could attenuate glomerular mesangial pro-
liferation and urinary protein excretion in rats,13 suggest-
ing that complement system activation is associated with 
the pathogenesis of DN. MicroRNAs (miRNAs) are an 
abundant class of noncoding RNAs that are reported to 
be important for many biological processes through the 
regulation of gene expression, including in DN.14 Studies 
have revealed that some miRNAs could be regulators of 
immune and inflammatory responses and are potential 
therapeutic targets in DN.15,16 However, there have been 
few studies on genetic variation in miRNA and comple-
ment levels in diabetic nephropathy.

In the present study, we selected the GSE30528, 
GSE96804, GSE9006, GSE131882 and GSE161884 data-
sets from the GEO database to identify a potential biomarker 
gene for the early diagnosis of DN and to pinpoint the cell 
types that specifically express the biomarker. First, we per-
formed WGCNA, GO analysis, KEGG analysis and GSEA 
to identify several candidate genes. Then, qRT-PCR and 
single-cell RNA sequencing reanalysis were used to confirm 

and explore the results. The miRNA targets of C7 were 
predicted by online databases and further validated by qRT- 
PCR and luciferase reporter gene assays.

Materials and Methods
Collection of Clinical Samples
Serum from total of 31 DN patients and 30 healthy donors 
was collected at Chu Hsien-I Memorial Hospital (Tianjin, 
China). All the samples were stored at −80°C until RNA 
extraction was performed. The research protocol for this 
study was approved by the Ethics Committee of Chu 
Hsien-I Memorial Hospital. Informed consent was obtained 
from all the participants. We adhered to the principles of the 
1983 Declaration of Helsinki for all experiments.

We selected 31 patients (16 males and 15 females) with 
diabetic nephropathy who were hospitalized at the Chu Hsien- 
I Memorial Hospital (Tianjin, China) from January 2020 to 
December 2020. The patients had an average disease course of 
10.4±5.5 years and an average body mass index (BMI) of 25.6 
±3.8. Patients with acute cardiovascular and cerebrovascular 
events, infections, stress states, other endocrine and metabolic 
diseases, recent ketoacidosis, or hyperosmolar nonketotic 
coma were excluded. The 2012 K-DOQI standard of the 
American Kidney Disease Foundation was adopted to diabetic 
nephropathy disease. Patients with extensive albuminuria or 
microalbuminuria with diabetic retinopathy or type 1 diabetes 
with a disease course of more than 10 years with microalbu-
minuria can be diagnosed with DK. According to UACR 
staging, there were 14 patients with microalbuminuria 
(UACR 30~300 mg/g) and 17 patients with massive albumi-
nuria (UACR>300 mg/g). In addition, 30 healthy people who 
received a physical examination at the center during the same 
period served as a healthy control (HC) group.

Cell Line
Human mesangial cells were purchased from American 
Type Culture Collection (ATCC) and cultured in 
Dulbecco’s modified Eagle’s medium (DMEM) media 
supplemented with 10% fetal bovine serum (Invitrogen), 
penicillin (100 U/mL), and streptomycin (100 μg/mL). For 
the experiments, cells were serum starved for 24 h before 
supplementing the media with 0,5,10 mM glucose.

Data Collection
The expression profiles of RNAs were screened from the 
National Center of Biotechnology Information Gene 
Expression Omnibus (http://www.ncbi.nlm.nih.gov/gds/). 
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The GSE3052817 dataset is composed of 22 mRNA 
expression data of human kidney samples, including 9 
DN patients and 13 healthy controls. For dataset 
GSE96804,18 there are 61mRNA expression data from 
human kidney samples including 41 DN patients and 20 
healthy controls. The R software package was used to 
process the downloaded files and to convert and reject 
the unqualified data. The data were calibrated, standar-
dized, and log2 transformed. For dataset GSE131882,10 

there are three controls and three DNs’ single-cell sequen-
cing data from human kidney samples.

Differential Expression Analysis
The differently expressed mRNAs between Diabetic 
Human Kidney and Control Human Kidney groups were 
screened using Limma package, with the criterion of |log 2 

(fold change [FC]| > 1.5 and p-value < 0.05).

Weighted Gene Co-Expression Network 
Analysis
The expression profile of 22 samples was obtained from the 
GSE30528 dataset. After validation, these data were used to 
construct a co-expression network using the WGCNA pack-
age in R (version 3.6.0). The WGCNA methodology analy-
sis was performed as a previous report.19

Gene Ontology and Pathway Enrichment 
Analysis
To assess the function of DEGs in DN, Gene Ontology 
annotation and Kyoto Encyclopedia of Genes and 
Genomes pathway analyses were performed by using the 
cluster profiler package of R software.20 P-value < 0.05 
was set as the cut-off criterion.

Gene Set Enrichment Analysis
GSEA was performed to examine critical pathways repre-
sented under different conditions.21 The estimated expres-
sion levels of all identified genes were applied to GSEA 
and then ES values were calculated according to the 
ranked-ordered gene list. As the predefined gene sets, the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
information deposited in NCBI database was analyzed 
using an in-house script.

Validation with qRT- PCR
QRT-PCR was used to confirm mRNA expression. Total 
RNA obtained from participants’ serum with Trizol 

(Invitrogen, Carlsbad, CA, USA). RNA purity was mea-
sured using the NanoDrop Spectrophotometer 
(Nanodrop™ Thermo Fisher Scientific, Vantaa, Finland). 
Then Power SYBR Green (Takara) was used to perform 
qRT-PCR. β-actin was applied as an internal reference. 
Primer sequences are summarized as follow, β-actin (F: 5′- 
CTCCATCCTGGCCTCGCTGT-3′, R: 5′-GCTGTCAC 
CTTCACCGTTCC-3′), C3 (F: 5′-GGGGAGTCCCAT 
GTACTCTATC-3′, R: 5′-GGAAGTCGTGGACAG 
TAACAG-3′), C7 (F: 5′-TGTAAAACGACGGCCAGT-3′, 
R: 5′-CAGGAAACAGCTATGACC-3′). All PCR reactions 
were conducted in triplicate. Relative expression was calcu-
lated using the 2−ΔΔCt method. miRNAs were synthesized by 
Genepharm Technologies (Shanghai, China). Sequences of 
the miRNAs used in the study are as follows: miR-494-3p 
(5′-UGAAACAUACACGGGAAACCUC-3′), miR-574-5p 
(5′-UGAGUGUGUGUGUGUGAGUGUGU-3′), miR- 
6769b-5p (5′- UGGUGGGUGGGGAGGAGAAGUGC-3′) 
and miR-18a-5p (5′- UAAGGUGCAUCUAGU 
GCAGAUAG −3′). miRNAs were transfected using 
Lipofectamine 2000 reagent.

Single-Cell RNA Sequencing Reanalysis
The Single-nucleus sequencing data from GSE131882 data-
set was downloaded from GEO database. Single nucleus 
RNA sequencing of three early human diabetic kidney sam-
ples and three controls were included.10 The single-cell data 
was visualized by Kidney Integrative Transcriptomics (K.I. 
T.) database (http://humphreyslab.com/SingleCell/), which 
was created by Ben Humphrey’s lab of Washington 
University. The database consists of RNA-seq and snATAC- 
seq to mouse and human kidney and lung.

Regulatory Predictive Analysis
The miRwalk tool22 and TargetScan 7.2 (http://www.tar 
getscan.org)23 were used to predict the candidate regula-
tory target miRNAs of C7.

Luciferase Reporter Gene Assay
The Mutant (MUT) 3ʹUTR and wild-type (WT) 3ʹUTR 
sequences of C7 were amplified and cloned into a pGL3- 
Basic reporter vector (Promega). MES cells from miR-NC, 
miR-494-3p and miR-574-5p groups were placed in 24- 
well plates and transfected with pGL3-MUT and pGL3- 
WT plasmids (Promega). After cultured for 48 h at 37°C, 
cells were collected. Firefly and Renilla luciferase activ-
ities were measured using Luciferase Assay System 
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(Promega). Firefly luciferase activity was normalized to 
Renilla luciferase activity.

Statistical Analysis
Data analysis was performed using GraphPad prism 6.0 
(GraphPad software, San Diego, CA, USA). The data are 
expressed as means ± SEMs. Unpaired t-test was used to 
distinguish the differences between two groups. P< 0.05 
was considered as a statistically significant difference with 
2-tailed tests. Receiver operating characteristic (ROC) 
curve was used to analyze the diagnosis value, including 
the area under the curve (AUC), sensitivity, and specificity.

Results
Weighted Coexpression Network 
Construction and Key Module 
Identification
To determine the co-expression network most highly asso-
ciated with diabetic nephropathy progression, WGCNA 
was performed on the GSE30528 dataset. A total of 22 
samples with clinical data were included in the coexpres-
sion analysis (Figure 1A). In this study, a power of β =17 
(scale-free R2 = 0.85) was selected as the soft-thresholding 
parameter to ensure a scale-free network (Figure 1B and 
C). Then, Pearson correlation coefficients were calculated 
for pairwise genes to yield a similarity matrix, which was 
transformed into an adjacency matrix using the threshold 
and power values listed above. A total of 10 modules were 
identified via average linkage hierarchical clustering 
(Figure 1D). The green module was found to have the 
highest association with DN development (green, r=0.71, 
p=2e−4) (Figure 1E), and this module was selected as the 
significant module for further analysis. The correlations of 
these 10 modules are shown in Figure 1F.

Functional Enrichment Analysis
There were 35 DEGs in the green module (Table S1). The 
relative expression of these genes in normal and DN 
samples is shown in Figure 2A. To identify the biological 
function and network of the 35 DEGs, the protein–protein 
interaction was assessed by the STRING database 
(Figure 2B). We found that the expression of 34 genes 
were upregulated and only 1 gene had downregulated 
expression. Then, KEGG pathway enrichment analysis 
was used to explore the functions of the DEGs. The top 
10 most significantly enriched pathways are shown in 
Figure 2C, in which C3, C1qrs and C6, 7, 8, and 9 were 

all upregulated. This may suggest that the “complement 
and coagulation cascades” pathway is activated in DN 
(Figure 2D).

Validation by Another GEO Dataset
To confirm that the “complement and coagulation cas-
cades” pathway is significantly changed and may play 
a key role in DN development, another GEO dataset 
(GSE96804) was used. First, 126 DEGs (|log2FC|>1.5, 
p <0.05) were identified. We annotated the DEG functions 
using gene ontology (GO) analysis (Figure S1A–D). Then, 
KEGG pathway analysis based on the DEGs was per-
formed (Figure 3A). As a result, we found that the “com-
plement and coagulation cascades” pathway was 
significantly enriched. In addition, GSEA of the whole 
genes also found that this pathway was promoted in DN 
(p = 0.0039) (Figure 3B and C). All DEGs identified in the 
pathway were upregulated, including KNG, C3, CR1, 
Clqrs and C6, 7, 8, and 9. These results were consistent 
with our previous analysis of the GSE30528 dataset. 
Moreover, we compared the common DEGs between the 
GSE30528 green module and the overall GSE96804 data-
set. There were nine common DEGs, including C3 and C7 
(Figure 3D). Furthermore, the expression of these two 
genes was upregulated (Figure S2A–F) in both the 
GSE30528 and GSE96804 datasets, which agreed with 
the KEGG analysis.

Validation of C3 and C7 Expression with 
qRT-PCR and ROC Curve Analysis
To further assess the expression of C3 and C7, a total of 31 
DN patients and 30 healthy controls were enrolled as 
a validation cohort. qRT-PCR technology was used to 
confirm the differential expression levels from participant 
serum samples. Consistent with the microarray data, C7 
expression was significantly upregulated (Figure 4A) 
between DN and HC patients. However, there was no 
difference in the levels of C3 (Figure 4B). To assess the 
potential value of increased C7 expression for DN diag-
nosis, we further performed ROC curve analysis. We 
found that the ROC curve of C7 expression showed 
a significant distinguishing efficiency with an AUC value 
of 0.865 (95% CI: 0.774–0.957, ***p <0.001) (Figure 4C), 
with the best cutoff value of 3.4, a sensitivity of 90.3% and 
a specificity of 73.3%, which indicated that C7 could be 
a candidate biomarker for DN diagnosis.
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Validation of Increased C7 Levels in a 
Single-Cell RNA Sequencing Reanalysis
To explore complex cellular events and deepen our 
understanding of biological systems, we reanalyzed 
the expression of common DEGs between the 
GSE30528 and GSE96804 datasets in different cell 
groups in DN. The kidney cortex was sampled from 
three nondiabetic controls and 3 DN patients following 
nephrectomy in the GSE131882 dataset. As shown in 
Figure 5A, a total of 20 DEGs were differentially 
expressed in 9 cell groups. Notably, the upregulated 
DEGs C7, TNC, CDH6, and FN1 were specifically 
expressed in renal cells. We found that C7 expression 
was mainly significantly upregulated in mesangial 
(MES) cells. In addition, a total of 23,980 nuclei 
passed filters with an average of 2541 genes and 
6894 unique molecular identifiers per nucleus. By 
using the Kidney Interactive Transcriptomics database 

(http://humphreyslab.com/SingleCell/), eleven kidney 
cell types were identified by unsupervised clustering 
and expression analysis of lineage-specific markers 
following batch correction (Figure 5B). We also 
found that C7 expression was mainly significantly 
upregulated in the MES cells (Figure 5C–E). This 
suggested that C7 was mainly secreted by MES cells. 
In addition, the expression proportion of C7 in the 
MES cells of DN samples was much higher than that 
of the MES cells of the control samples. Similarly, we 
performed the same analysis of C3; however, C3 was 
not significantly enriched in any cell type (Figure S3A– 
D). Thus, the single-cell RNA sequencing reanalysis 
indicates that C3 may not be a biomarker of DN. 
Furthermore, we reanalyzed the GSE9006 dataset and 
found that C7 was not significantly expressed in type 1 
and 2 diabetic samples (Figure S4A–B). These results 
revealed that C7 is a potential MES cell-specific bio-
marker of DN.
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MiR-494-3p and miR-574-5p are 
Regulators of C7
To investigate the underlying regulatory mechanism of C7, 
we identified the differentially expressed miRNAs in DN 
based on the GSE161884 dataset (Figure 6A and B). Then, 
we predicted the target miRNA that regulates C7 using 
TargetScan (http://www.targetscan.org/) and miRwalk 
(http://mirwalk.umm.uni-heidelberg.de/) software. The 
common differentially expressed miRNAs and predicted 
target miRNAs were identified, including miR-494-3p, 
miR-574-5p, miR-6769b-5p and miR-18a-5p (Figure 6C). 
In the next step, we verified the expression of these four 
miRNAs in MES cells. As shown in Figure 6D, the rela-
tive expression of C7 mRNA in MES cells was dependent 
on glucose concentration. In addition, the expression of 
miR-494-3p and miR-574-5p significantly decreased as 

glucose concentration increased. Hence, we focused on 
these two miRNAs to determine their regulatory relation-
ship with the relative expression of C7 in MES cells. The 
results suggest that miR-494-3p and miR-574-5p mimic 
can downregulate the expression of C7 (Figure 6E). 
A luciferase reporter assay confirmed that C7 could bind 
to miR-494-3p and miR-574-5p (Figure 6F).

Discussion
To date, several factors, including urinary albumin levels, 
have been considered for assessing DN. However, the 
diagnosis of DN greatly depends on assumptions, and 
newer specific markers for DN, especially for early-stage 
disease, are urgently needed.24 To date, several studies 
have revealed that C7 can be used as a potential biomarker 
of DN,17,25 but there is a lack of comprehensive analysis 
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Figure 2 The functional analysis of DEGs in GSE30528 dataset. (A) Heatmap of the DEGs in green module by WGCNA of GSE30528 dataset. (B) The protein-protein 
interaction network of the DEGs in green module. (C) The top 10 significant KEGG pathways. (D) The pathway map of Complement and coagulation cascades. The red 
squares represent upregulated genes.
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based on multiple data sets and a lack of further explora-
tion at the cellular level. WGCNA is a commonly used 
bioinformatics analysis tool used to identify the key mod-
ules and genes associated with specific clinical traits.26 

Single-cell RNA sequencing is a precise way to detect 
molecular changes in diseases, provides deep insights 
into cell-to-cell variation in the tumor and microenviron-
ment, allows high-resolution dissection of the pathogenic 
mechanisms of diseases, and affords potential clinical 
utilities.27 This approach has been increasingly used in 
disease research.9

In this study, we performed a WGCNA, a single-cell 
sequencing analysis and other analyses to detect a new 
potential biomarker for DN diagnosis. To further verify 
C7 as a novel biomarker of DN with the ability to 
distinguish it from other nephropathies, four datasets 
(GSE30528, GSE96804, GSE9006, and GSE131882 data-
sets) with different control samples were selected. 
Through a series of bioinformatics analyses, we found 
that complement and coagulation cascades were signifi-
cantly enriched in DN. This may suggest that the com-
plement cascade plays an important role in DN 
development. The complement system is a proteolytic 

cascade in the blood plasma and a mediator of innate 
immunity, a nonspecific defense mechanism against 
pathogens.28 There are three pathways of complement 
activation: the classical pathway, the lectin pathway, and 
the alternative pathway.29 All these pathways generate 
crucial enzymatic activity that, in turn, drives the activa-
tion of effector complement molecules. The main conse-
quences of complement activation are the opsonization of 
pathogens, the recruitment of inflammatory and immuno-
competent cells, and the direct killing of pathogens.30 In 
cancer, the complement system plays a major and com-
plex role in killing antibody-coated tumor cells, support-
ing local chronic inflammation, or hampering antitumor 
T cell responses favoring tumor progression.31 The com-
plement system is also involved in various autoimmune 
diseases, such as primary biliary cholangitis (PBC), pri-
mary sclerosing cholangitis (PSC) and autoimmune hepa-
titis (AIH).32 While the complement cascade is an 
important component of the innate immune system, 
uncontrolled activation can cause severe disease. In 
a recent review, excessive complement activation in aty-
pical hemolytic uremic syndrome caused renal failure if 
untreated.33

A B

C D

Figure 3 Complement and coagulation cascades was significantly activated in DN. (A) The top 10 significant KEGG pathways in GSE96804 dataset. (B) GSEA analysis of 
GSE96804 dataset. (C) The pathway map of Complement and coagulation cascades. The red squares represent upregulated genes. (D) The Venn map of common DEGs 
between GSE30528 green module and GSE96804 dataset.
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C7 encodes a serum glycoprotein that forms 
a membrane attack complex (MAC) together with comple-
ment components C5b, C6, C8, and C9 as part of the 
terminal complement pathway of the innate immune 
system.34 This protein initiates membrane attack complex 
formation by binding the C5b-C6 subcomplex and inserts 
into the phospholipid bilayer, serving as a membrane 
anchor.35 A previous study showed that C7 might be 
a potential tumor suppressor.36 C7 is also a critical com-
ponent of the terminal pathway of complement 
activation.35 C7 is expressed in endothelial cells as a trap 
for assembling MACs. MAC deposition has been reported 
in smooth muscle,37 dermatomyositis 
microvasculature38,39 and in the mechanism of advanced 
diabetic kidney disease.40 Thus, MAC formation will 
increase the expression level of C7. In our study, qRT- 

PCR validation and ROC curve analysis were applied to 
evaluate the diagnostic value of C7. ScRNA-seq analysis 
revealed that C7 was specifically highly expressed in the 
MES cells in DN. These findings showed that in the early 
stages of diabetes, there is increased expression of C7 in 
DN. C7 is released into circulation and is reflected as high 
levels of C7 in the blood. These findings are supported by 
those of other studies, in which vascular deposition of 
complement proteins has been reported.17,25 For example, 
Falk41 reported complement deposition in the kidneys of 
diabetic patients. Sircar et al25 reported that C7 expression 
was upregulated in DN, but did not describe a specific 
mechanism. Although the upregulation of C7 expression in 
DN has been reported, the specific cell type that expresses 
C7 is unknown. Single-cell sequencing has paved the way 
for further research on C7. C7 is released into circulation 

Figure 4 RT-qPCR analysis of C7 and C3. (A) Validation the expression level of C7 (**p< 0.01). (B) Validation the expression level of C3 (p>0.05). (C) The receiver 
operating characteristic curve of C7 in distinguishing DN. 
Abbreviations: DN, diabetic nephropathy; HC, healthy control.
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Figure 5 The scRNA-seq analysis validation of C7. (A) The expression of common DEGs between GSE30528 and GSE96804 datasets in different types of cell groups in DN 
were predicted. PCT, proximal convoluted tubule; CFH, complement factor H; LOH, loop of Henle; DCT, distal convoluted tubule; CT, connecting tubule; CD, collecting 
duct; PC, principal cell; IC, intercalated cell; PODO, podocyte; ENDO, endothelium; MES, mesangial cell; LEUK, leukocyte. The yellow diamond represents the cell type, red 
represents up-regulation, blue represents down-regulation, and the circle size is based on Degree. (B) DN and control samples were integrated into a single dataset. (C) The 
distribution of C7 in different cells between healthy controls and DN. (D) The relative expression level of C7 in identified cell types between healthy controls and DN. (E) 
The percent expression of C7 in identified cell types between healthy controls and DN.
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and is reflected as high levels of C7 in the blood. Our 
results showed that as a biomarker, C7 was not signifi-
cantly expressed in type 1 and 2 diabetic samples, which 
was in accordance with a previous study.41 This is the first 
study to reveal that elevated C7 gene and gene products in 
MES cells is a potential biomarker for early diabetic 
nephropathy.

MiRNAs are noncoding RNAs that can inhibit the 
expression of RNA through translation inhibition or mes-
senger RNA degradation.42,43 In recent years, studies have 
revealed that some miRNAs could be regulators of 
immune and inflammatory responses and are potential 
therapeutic targets in DN.15,16 Single nucleotide poly-
morphisms of miRNA-related genes can affect the produc-
tion, expression, and function of mature miRNAs, thus 
affecting disease susceptibility and the immune response. 
We identified the differentially expressed miRNAs in DN 
using the GSE161884 dataset. Bioinformatics retrieval and 
luciferase reporter assays confirmed that miR-494-3p and 
miR-574-5p could be regulators of C7 in DN. C7 is the 
direct target of miR-494-3p and miR-574-5p, and these 

miRNAs can negatively regulate its expression level. This 
is the first study to reveal that the elevated C7 gene 
expression level in MES is regulated by miR-494-3p and 
miR-574-5p in early diabetic nephropathy.

Taken together, our findings indicate that C7 might 
represent a novel biomarker that is specifically expressed 
in MES cells in diabetic nephropathy that can be used for 
diagnosis and that C7 expression levels are regulated by 
miR-494-3p and miR-574-5p. However, several questions 
need to be addressed in future studies, such as determining 
the functions of C7 at the cellular level and in animal 
models and investigating and why C7 expression is upre-
gulated in MES cells in DN.
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