
Article
A comprehensive approac
h for genome-wide
efficiency profiling of DNA modifying enzymes
Graphical abstract
Highlights
d Genome-wide, strand-specific oxidative hairpin sequencing

d Precise temporal estimation of 5mC/5hmC distribution and

Dnmt/Tet activity

d Tets presence contributes notably to DNA demethylation

d Model output validates the mutual interference of Dnmts and

Tets
Kyriakopoulos et al., 2022, Cell Reports Methods 2, 100187
March 28, 2022 ª 2022 The Authors.
https://doi.org/10.1016/j.crmeth.2022.100187
Authors

Charalampos Kyriakopoulos,

Karl Nordström, Paula Linh Kramer, ...,

Verena Wolf, Jörn Walter, Pascal Giehr

Correspondence
pgiehr@ethz.ch

In brief

Kyriakopoulos et al. develop a pipeline for

quantitative estimation of Dnmt and Tet

activity. Using double-strand methylation

information, GwEEP infers maintenance

and de novo methylation efficiency of

Dnmts as well as hydroxylation efficiency

of Tets at single-base resolution.
ll

mailto:pgiehr@ethz.ch
https://doi.org/10.1016/j.crmeth.2022.100187
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crmeth.2022.100187&domain=pdf


OPEN ACCESS

ll
Article

A comprehensive approach
for genome-wide efficiency profiling
of DNAmodifying enzymes
Charalampos Kyriakopoulos,1,8 Karl Nordström,2,9 Paula Linh Kramer,1 Judith Yumiko Gottfreund,2

Abdulrahman Salhab,2 Julia Arand,3 Fabian M€uller,4 Ferdinand von Meyenn,5 Gabriella Ficz,6 Wolf Reik,7 Verena Wolf,1

Jörn Walter,2 and Pascal Giehr2,5,10,*
1Computer Science Department, Saarland University, Campus E1.3, 66123 Saarbr€ucken, Germany
2Department of Genetics and Epigenetics, Saarland University, Campus A2.4, 66123 Saarbr€ucken, Germany
3Division of Cell and Developmental Biology, Medical University of Vienna, 1090 Vienna, Austria
4Department of Integrative Cellular Biology and Bioinformatics, Campus A2.4, 66123 Saarbr€ucken, Germany
5Department of Health Sciences and Technology, ETH Z€urich, Schorenstrasse 16, Schwerzenbach, 8603 Z€urich, Switzerland
6Haemato-Oncology, Queen Mary University of London, London EC1M 6BQ, UK
7Epigenetics Department, Babraham Institute, Cambridge CB22 3AT, UK
8Present address: Bristol Myers Squibb, Center for Innovation and Translational Research Europe, Calle Isaac Newton 4, 41092 Sevilla, Spain
9Present address: Astra Zeneca, Pepparedsleden 1, 431 50 Mölndal, Sweden
10Lead contact
*Correspondence: pgiehr@ethz.ch

https://doi.org/10.1016/j.crmeth.2022.100187
MOTIVATION Dynamic changes of DNA methylation patterns are a common phenomenon in epigenetics.
Although a stable DNA methylation profile is essential for cell identity, developmental processes require
the rearrangement of 5-methylcytosine in the genome. Stable methylation patterns are the result of
balanced Dnmts and Tets activities, while methylome transformation results from a coordinated change
in Dnmt and Tet efficiencies. Such transformations occur on a global scale, e.g., during the reprogram-
ming of maternal and paternal methylation patterns and the establishment of novel cell-type-specific
methylomes during embryonic development in vivo, but also in vitro during (re)programming of induced
pluripotent stem cells as well as somatic cells. In addition, local (de)methylation events are the key to
gene regulation during cell differentiation. A detailed characterization of Dnmt and Tet cooperation is
essential for understanding natural epigenetic adaptation as well as the optimization of in vitro (re)pro-
gramming protocols. For this purpose we developed a pipeline for quantitative and precise estimation
of Dnmt and Tet activity. Using only double-strand methylation information GwEEP infers accurate main-
tenance and de novo methylation efficiency of Dnmts as well as hydroxylation efficiency of Tets at single-
base resolution. Thus, we believe GwEEP provides a powerful tool for the investigation of methylome re-
arrangements in various systems.
SUMMARY
A precise understanding of DNA methylation dynamics is of great importance for a variety of biological pro-
cesses including cellular reprogramming and differentiation. To date, complex integration of multiple and
distinct genome-wide datasets is required to realize this task. We present GwEEP (genome-wide epigenetic
efficiency profiling) a versatile approach to infer dynamic efficiencies of DNAmodifying enzymes. GwEEP re-
lies on genome-wide hairpin datasets, which are translated by a hidden Markov model into quantitative
enzyme efficiencies with reported confidence around the estimates. GwEEP predicts de novo and mainte-
nance methylation efficiencies of Dnmts and furthermore the hydroxylation efficiency of Tets. Its design
also allows capturing further oxidation processes given available data. We show that GwEEP predicts accu-
rately the epigenetic changes of ESCs following a Serum-to-2i shift and applied to Tet TKO cells confirms the
hypothesized mutual interference between Dnmts and Tets.
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INTRODUCTION

Genetic information encoded in the DNA is regulated by epige-

netic mechanisms, such as DNA methylation (Holliday and

Pugh, 1975; Riggs, 1975; Bourc’his and Bestor, 2004; Li et al.,

1992). In mammals methylation of DNA is restricted to cytosine

and it is almost exclusively found in a palindromic CpG dinucle-

otide context (Ramsahoye et al., 2000; Ziller et al., 2011; Lister

et al., 2009). Generation of 5-methylcytosine (5mC) is catalyzed

by the DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b.

These enzymes catalyze the transfer of a methyl group from

S-adenosyl methionine to the fifth carbon atom of cytosine.

Dnmt1 is responsible for maintaining existing methylation pat-

terns after replication. Via interaction with Uhrf1 and PCNA,

Dnmt1 is tightly associated with the replication machinery (Leon-

hardt et al., 1992; Chuang et al., 1997). Furthermore, the cooper-

ation with Uhrf1 modulates Dnmt1 to be receptive for hemime-

thylated DNA generated after replication (Bostick et al., 2007;

Sharif et al., 2007) and thus the protein complex post-replica-

tively copies the methylation pattern from the inherited to the

newly synthesized DNA strand (Arita et al., 2008; Hermann

et al., 2004). Dnmt3a and Dnmt3b methylate DNA independently

of its methylation status (hemimethylated or unmethylated) and

are mainly responsible for the establishment of new methylation

patterns during development (Okano et al., 1998, 1999). How-

ever, several studies indicate that the strict separation of

Dnmt1 and Dnmt3a/b activity is not coherent and that under

certain conditions these enzymes exhibit overlapping functions

(Meilinger et al., 2009; Liang et al., 2002; Arand et al., 2012).

Once established, 5mC can be further processed by a family

of di-oxigenases, the ten-eleven translocation enzymes Tet1,

Tet2, and Tet3 (Ono et al., 2002; Lorsbach et al., 2003; Iyer

et al., 2009). These Fe(II)- and oxoglutarate-dependent enzymes

consecutively oxidize 5mC to 5-hydroxymethyl cytosine (5hmC),

5-formyl cytosine (5fC) and ultimately to 5-carboxy cytosine

(5caC) (Tahiliani et al., 2009; Ito et al., 2011). Each oxidation

step changes the chemical properties of the base and with it

its biological function (Bachman et al., 2014; Raiber et al.,

2015; Kellinger et al., 2012), albeit 5hmC is definitely the most

abundant oxidative variant found in numerous cell types (Glo-

bisch et al., 2010; Kriaucionis and Heintz, 2009; Szwagierczak

et al., 2010). Several mechanisms have been proposed in which

oxidative cytosine derivatives (oxC) serve as an intermediate

during the course of active or passive demethylation (Hashimoto

et al., 2012; Valinluck and Sowers, 2007; Ji et al., 2014; He et al.,

2011; Maiti and Drohat, 2011). Such removal of 5mC occurs

locally during cell differentiation, but also on a genome-wide

scale in the zygote or during the maturation of primordial germ

cells (Smith et al., 2012; Oswald et al., 2000; Hajkova et al.,

2010). Genome-wide loss of 5mC has also been observed in

cultivated mouse embryonic stem cells (ESCs) during their tran-

sition from Serum to 2i medium. Under classical serum/LIF

conditions ESCs exhibit DNA hypermethylation, whereas upon

transition to GSK3 and Erk1/2 inhibitors (2i) containing medium

the cells experience a gradual genome-wide loss of 5mC (Ficz

et al., 2013; Habibi et al., 2013; Walter et al., 2016).

Even though several studies have examined the influence of

Tets and oxCs (Gu et al., 2018; López-Moyado et al., 2019; Ginno
2 Cell Reports Methods 2, 100187, March 28, 2022
et al., 2020; Charlton et al., 2020) within the genome, the precise

contribution of Tets and oxCs toward maintaining or changing

cell-type-specific methylomes remains elusive. However, a thor-

oughunderstandingof the local and spatial connectionsbetween

Dnmts and Tets during the processes of development, cell divi-

sion and differentiation is of great importance as it can form the

basis for a structured development of novel epigenetic cancer

therapies and/or controlled reprogramming approaches in

regenerative stem cell medicine. To contribute to addressing

this complex interplay between Dnmts and Tets we developed

the following experimental and computational pipeline.
RESULTS

GwEEP (genome-wide epigenetic efficiency profiling) consists of

three major parts: (1) The construction of a hairpin oxidative bisul-

fite library - an endonuclease-based enrichment of representative

CpGs (Meissner et al., 2005), which we named reduced represen-

tation hairpin oxidative bisulfite sequencing (RRHPoxBS), (2) a

computational pipeline (HPup) which extracts the double-strand

DNA methylation values from Illumina sequencing data, and (3)

a hiddenMarkovmodel that estimates conversion error corrected

5mCand 5hmCdistributions and furthermore infers the enzymatic

efficiencies of Dnmts (maintenance and de novomethylation effi-

ciency) as well as Tets (hydroxylation efficiency). The pipeline is

outlined in Figure 1 and the details of the individual steps are

described in the STAR Methods.

We applied GwEEP on a well-established ESC system to pre-

cisely map 5mC and 5hmC across the genome in a time series

experiment and studied the enzymatic contribution of Tets and

Dnmts for the progressive genome-wide DNA (de)methylation.

To achieve this we first generated a high-resolution dataset based

on the above-described genome-wide hairpin sequencing

approach, RRHPoxBS. The design of the RRHPoxBS (combina-

tion of R.AluI, R.HaeIII, and R.HpyCH4V) approach covers around

4 million CpG dyads (16.3%–22.5% of the genome; Table S1)

located in CpG-poor and -rich regions for which we could infer

the precise distributions of 5mC and 5hmC. Following a strict

read and conversion quality control, we filtered for sufficient

sequencing depth and ended up with about 2 million CpGs per

sample for subsequent comparative modeling. To follow the dy-

namics of the enzymes over time we generated six datasets for

WT ESCs, i.e., bisulfite (BS) and oxidative bisulfite (oxBS) libraries

for three different timepoints, startingwith serum/Lif (d0), followed

by 72 h 2i (d3) and 144 h 2i (d6). For a comparison we also

generated four datasets for Tet TKO cells starting with serum/Lif

(d0) followed by 48 h in 2i (d2), 96 h in 2i (d4), and 168 h in 2i (d7).
Impaired loss of 5mC in Tet TKO ESCs
In contrast to canonical bisulfite sequencing (Ficz et al., 2013;

Habibi et al., 2013; von Meyenn et al., 2016), RRHPoxBS

allow us to additionally identify hemimethylated CpGs and

therefore precisely estimate the demethylation kinetics�
rdemðtÞ = TTðtÞ�TTð0Þ

t

�
at day t revealing that in WT ESCs the gen-

eration of unmethylated cytosine is 8% per day, while in Tet TKO

cells it drops to 4.2% per day (Figures 2C and 2F).



Figure 1. GwEEP - Pipeline overview

(A) Laboratory pipeline: (1) Genomic DNA is digested by endo nucleases followed by (2) Klenow exo-catalyzed A-tailing. (3) A-Tailed DNAmolecules are subjected

to sequencing adapter, hairpin linker ligation and (4) subsequent enrichment of hairpin-ligated molecules. (5) Half of the library is used for BS, the other half for

oxBS treatment. (6) After amplification and indexing using PCR the libraries are sequenced on an Illumina platform with minimum 100 bp in a paired-end mode

(created with BioRender.com).

(B) Computational processing: Illumina raw data are processed into base calls (FASTQ) and trimmed for adapter and hairpin linker sequences. Bisulfite reads from

the same molecules are paired to restore the genomic sequence for efficient mapping. Subsequently, the double-strand information is annotated and stored in

DSI (double strand information) files. The HMM then derives 5mC and 5hmC distributions, as well as the efficiencies of Dnmt and Tets which are stored in the IGV

file format. Both DSI and IGV files can be visualized using the IGV genome browser. (created with BioRender.com).
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Figure 2. RRoxBS and HMM results

(A) Average CpG methylation level based on uncorrected hairpin sequencing counts for WT ESCs.

(B) Average nonCpG methylation level based on uncorrected hairpin sequencing counts for WT ESCs.

(C) Demethylation rate in WT and Tet TKO cells.

(D) Average CpG methylation level based on uncorrected hairpin sequencing counts for Tet TKO ESCs.

(E) Average nonCpG methylation level based on uncorrected hairpin sequencing counts for TKO ESCs.

(F) Relative difference in demethylation rate between WT and Tet TKO cells.

(G) Estimated, and conversion error corrected, 5mC and 5hmC distribution after HMM’s application.

(H) HMM-derived maintenance methylation, de novo methylation and hydroxylation efficiencies.

(I) Integrative Genomics Viewer (IGV) snapshot across a gemoic region located at the Tet3 gene showing the distribution of CpGs across CpG-rich and -poor

regions of RRHPoxBS.
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Moreover, under primed conditions (serum/LIF) WT ESCs

show a level of 78% methylation, where 56% of CpGs are fully

methylated and 22% are found in a hemimethylated state (Fig-
4 Cell Reports Methods 2, 100187, March 28, 2022
ure 2A). Among cultivation in 2i medium the DNA becomes pro-

gressively demethylated, such that, after 6 days in 2i, only 30%

of CpGs retain a methylated state (fully or hemimethylated).
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These results agree with previously published whole genome

methylation profiles (Ficz et al., 2013) that originate from the

very same ESC sample. In addition, RRHPoxBS data show

that hemimethylation is equally distributed among both DNA

strands for all time points. Finally, we note that oxBS samples al-

ways display lower methylation levels than BS samples. This dif-

ference corresponds to the amount of 5hmC of each sample and

it is mainly detected in the hemimethylated proportion indicating

that a considerable amount of 5hmC might exist in a hemi(hy-

droxy)-methylated (5hmC/C or C/5hmC) state.

ESCs lacking Tet enzymes (Tet TKO) show only a marginal in-

crease of methylated CpG dyads, i.e., 82% fully or hemimethy-

lated, in comparison to WT under primed serum conditions.

However, TKO cells show in relation to WT a clearly higher fre-

quency of fully methylated CpGs (72%) and a reduced propor-

tion of hemimethylated CpGs (hemiCpGs) (10%) (Figure 2D),

which leads to the conclusion that in WT ESCs the enhanced

presence of hemiCpGs is directly coupled to 5mC oxidation by

Tets. All together, the above findings show that the presence

of Tets has a considerable influence on DNA demethylation

kinetics.

Tets influence nonCpG methylation levels
In addition, RRHPoxBS sequencing allowed us to accurately

determine the amount, location and distribution of nonCpG

methylation in WT and Tet TKO ESCs. For our analysis we

considered only nonCpG positions which (1) are methylated

above the conversion error, (2) show at least three methylated

reads and (3) have a coverage of R10. In both WT and TKO

we find CpA to be the most frequent methylated nonCpG motif

(Figure S2A). Over time nonCpGmethylation becomes gradually

reduced upon cultivation in 2i. In WT ESCs the number of meth-

ylated nonCpGs was identical in BS and oxBS libraries, indi-

cating that nonCpGs are not a substrate for Tet oxidation

(Figure 2B). In Tet TKO cells the number of methylated nonCpGs

is approximately doubled as compared with WT ESCs. Since

nonCpG methylation is strictly dependent on the presence of

de novo methylation activities by Dnmt3a/b (Arand et al.,

2012), the higher nonCpG methylation in TKO cells both under

primed (=2%) and naive (=0.6% after 168 h 2i) conditions (Fig-

ure 2E) points clearly toward an increased de novo methylation

activity by Dnmt3a/b in the absence of Tet enzymes.

Tets affect de novo and maintenance machinery
The HMM-predicted uncorrected methylation levels for WT and

Tet TKO ESCs fit well to the hairpin methylation data (Fig-

ure S3D), indicating a high prediction accuracy of our model.

The HMM (Figure 3A) estimates a notable amount of 5hmC at

all time points in WT ESCs. In Figure 2G the displayed amount

of 5hmC refers to the sumof all possible 5hmC states. Ourmodel

estimates the majority of 5hmC to appear either paired with C

(5hmC/C, C/5hmC) or 5mC (5hmC/5mC, 5mC/5hmC), while

only a small proportion, mainly in regulatory regions, is present

in a 5hmC/5hmC symmetric state (Figure 4B). The highest

amount of 5hmC is observed at d3 meaning that WT ESCs

display a transient increase of 5hmC after cultivation in 2i.

The enzymatic efficiencies estimated by GwEEP (Figure 2H)

illustrate a mean maintenance methylation of about 61.4% at
d0, which remains almost constant over time (60.1% at d6). In

contrast, de novo methylation efficiency shows a strong

decrease, from 14.1% to 4.5% at d6, and the hydroxylation effi-

ciency an increase, from 22.2% at d0 to 29.1% at d6, over time.

These estimations are in agreement with previous observations,

which demonstrated a reduction in RNA and protein levels of

Dnmt3a/b in 2i, but an increased expression of Tet1/2 on a

genome-wide level (Ficz et al., 2013; von Meyenn et al., 2016).

In Tet TKO cells maintenance efficiency (58.8% at d0) lies at

very similar levels with WT ESCs and remains stable over time

(58.6% at d7) as well. On the other hand, de novomethylation ef-

ficiency exhibits the most pronounced difference between WT

and Tet TKO cells. More specifically in Tet TKO de novomethyl-

ation efficiency begins from 20.3% at d0 and exhibits only a

slight decrease over time (16.2% at d7). This prediction of our

model is nicely substantiated by the elevated nonCpG methyl-

ation levels observed in Tet TKO data.

Finally, the model output also confirms the reduced demethy-

lation rate in Tet TKO cells, previously observed in the hairpin

sequencing data and suggests a substantial contribution of

5hmC and the Tet enzyme on DNA demethylation. In fact, the

model favors a scenario in which 5hmC is less well recognized

(probability of non-recognition equals on average p = 0.66) by

the maintenance machinery after replication, promoting a faster

demethylation process.

Redistribution of 5mC in the absence of Tets
Next, we related themodel estimates to genomic, enzymatic and

epigenetic features first focusing on Dnmt and Tet enzyme effi-

ciencies across large genome segments with distinct methyl-

ation states. We used MethylSeekR (Burger et al., 2013) to parti-

tion the genome into four states: highly methylated regions

(HMRs), partially methylated domains (PMDs), low methylated

regions (LMRs), and unmethylated regions (UMRs). The segmen-

tation was performed on whole-genome bisulfite sequencing

(WGBS) data from WT ESCs cultivated under serum/Lif condi-

tions (Ficz et al., 2013) on the identical cell batch used for our

study. We found that the majority of the WT ESC genome

(58.1%) consists of large HMRs and PMDs (38.9%), while short

LMRs andUMRs account for 0.02%and 2.8%, respectively (Fig-

ures 4A and 4C). The estimated methylation levels (sum of 5mC

and 5hmC) for WT ESCs by our model fully agreed with those

derived from WGBS (Figure 4E). This not only confirmed the ac-

curacy of our model output but also denoted that we can use the

precise WGBS segmentation for further analysis.

We assigned 5mC and 5hmC modification levels, their distri-

bution, and the corresponding Dnmt/Tet enzyme efficiencies

determined by our model to CpGs of individual segments (Fig-

ures 4B, 4D, and 4F). All segments show a more pronounced

loss of DNA methylation in WT compared with Tet TKO cells,

where a higher frequency of fully methylated CpGs is retained

across all time points (Figure 4D). Moreover, in HMRs and

PMDs we observe a transient increase of 5hmC and hemiCpGs

in WT ESCs, while the frequency of hemiCpGs in Tet TKO re-

mains almost constant between d3 and d6 within all segments

(Figures 4B and 4D). In contrast, WT ESCs exhibit a constant

decrease in 5hmC and hemiCpGs in LMRs and UMRs over

time. The increase of hemiCpGs in HMRs and PMDs (WT and
Cell Reports Methods 2, 100187, March 28, 2022 5
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Figure 3. Model and computational methods

(A) Transitions betweenmethylation states of a single CpG dyad; u indicates an unmethylated,m amethylated, and h a hydroxylated state of a CpG. md describes

the efficiency of de novo methylation, mm the efficiency of maintenance methylation and h the hydroxylation efficiency. l represents the overall methylation

efficiency (maintenance + de novo) that is defined as l = mm +md � mm,md . The parameter p describes the probability that maintenance methylation does not

consider hemihydroxylated sites.

(B) Possible conversion errors during bisulfite and oxidative bisulfite sequencing.

(legend continued on next page)
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TKO) is a clear sign of impairedmaintenancemethylation in naive

ESCs linked to both the reported temporal increase in Tet

expression and loss of Dnmt1 activity (Ficz et al., 2013; von

Meyenn et al., 2016). Surprisingly, in HMRs and PMDs Tet TKO

cells show a higher number of unmethylated CpGs as compared

with WT ESCs under primed conditions (d0).

Tets prevent the spreading of DNA methylation
As expected, our model predicts high maintenance methylation

efficiency in HMRs (69%) and PMDs (61%), but lowmaintenance

efficiency in LMRs (32%) and UMRs (26%) (Figure 4F). In addi-

tion, we observe a relatively high de novo methylation efficiency

at HMRs (18%) in primed ESCs. De novo methylation efficiency

is negligible in UMRs and LMRs and clearly decreases upon

cultivation in 2i for HMRs and PMDs. Finally, hydroxylation effi-

ciency is high in UMRs (63%) and LMRs (55%), but low in

HMRs (13%) and PMDs (24%). In Tet TKO, we observe a strong

change in Dnmt efficiencies. Maintenance methylation efficiency

shows a reduction in HMRs and PMDs of TKO cells, while it

clearly increases in LMRs and UMRs, resulting in almost equal

maintenance activity across all segments. In the case of de

novo methylation efficiency, we observe a more stable and

slightly increased activity in all segments.

An independently performed k-error clustering analysis (Fig-

ure 3D) returns two separate clusters and corroborates the hy-

pothesis of distinct regions of opposing enzymatic activity (Fig-

ure S4C). Cluster 1, which displays high maintenance and low

hydroxylation activity, contains the majority of CpGs assigned

to HMRs and PMDs, while cluster 2 displays the opposite enzy-

matic profile and contains the majority of CpGs located in LMRs

and UMRs (Table S4). To further quantify the opposing relation-

ship between Dnmts and Tets we derived a spatial correlation

measure between the efficiencies across the whole genome

(Figures 3E and S5). Interestingly, in agreement with its apparent

misregulation under the absence of Tets, maintenance autocor-

relation almost disappears in Tet TKO cells, while the activity

area of de novo methylation seems not to be affected in Tet

TKO. Together, these results indicate regional differences and

a clear antagonistic behavior between Dnmts and Tets.

Tets regulate Dnmts at TSSs and TFBSs
The genome-wide antagonistic effects of Dnmts’ and Tets’ activ-

ity across segments and clusters prompted us to plot, using

DeepTools (Ramırez et al., 2014), the enzymatic efficiencies of

CpGs across genes, histone marks, and ChIP profiled transcrip-

tion factor binding sites (TFBSs) to investigate regularities and

general local dependencies. The predicted efficiency profiles

for maintenance methylation, de novo methylation, and hydrox-

ylation correspond nicely to previously published Uhrf1 (GEO:

GSE77779), Dnmt3a/b (GEO: GSE57413) and Tet1 (GEO:

GSM659799) ChIP profiles, respectively (Figure 5A). In WT cells

the efficiencies across genes and TFBSs show once more an
(C) Metropolis-Hastings update step: Assuming each efficiency is a linear time fu

two consecutive steps. Step 1: ample the intercept yi�1 from the truncated norm

truncated normal distribution with mean xi and bounds ½ai ;bi �, which depend on

(D) Clustering of estimated enzymatic efficiency with intercept b0 and gradient b

(E) Spatial auto- and cross-correlations of maintenance methylation, de novo me
opposing behavior. At transcription start sites (TSSs) and TFBSs

high hydroxylation efficiency is coupled to reducedmaintenance

and almost absent de novo efficiency, with the inverse behavior

persisting also upon 2i cultivation. Notably, under primed condi-

tions de novo methylation has a strong presence in the gene

body which disappears only after the transition to 2i (Figure 5B).

In Tet TKO ESCs the TSS-associated drop in maintenance

methylation is much less pronounced and almost absent at d6/

d7. In addition, de novo methylation exhibits almost no reduction

upon 2i cultivation and is clearlymaintained across the genebody.

Regulatory regions marked by Sox2, H3K4me3 and Tet1 enrich-

ment show a strong hydroxylation activity in WT cells, which is

once more inversely linked to an impaired maintenance and de

novo methylation activity. Interestingly, the lack of Tet activity in

TKO cells does not change de novomethylation, but only mainte-

nance methylation activity across these regions (Figure 5C).

DISCUSSION

In this study we provide a comprehensive approach for

measuring genome-wide DNA methylation and epigenetic effi-

ciency profiling. GwEEP allowed us to infer how the activity of

Dnmts and Tets contribute tomodify CpGs and nonCpGs across

the genome in a functional context. It is important to note that

technically our RRHPoxBS data resemble and corroborate the

overall methylation dynamics observed by classical RRBS and

WGBS (Ficz et al., 2013; von Meyenn et al., 2016). However,

RRHPoxBS data provide three important novel features: (1) A

genome-wide representation of up to 4 million CpGs distributed

across the genome, (2) a precise determination of 5mC and

5hmC levels at a single CpG dyad, and (3) a precise mapping

of hemimethylated states and positions of nonCpG methylation.

Compared with previous models (Ginno et al., 2020; Äijö et al.,

2016a, b; Qu et al., 2013) the combination of RRHPoxBS and

HMM allows us to calculate accurate 5mC and 5hmC levels by

considering the conversion errors through BS and oxBS and,

furthermore, to simultaneously infer the genome-wide effi-

ciencies of maintenance methylation, de novo methylation as

well as hydroxylation efficiencies.

The overall evaluation of our RRHPoxBS data showed that in

mouse ESCs, as described previously for somatic cells (Arand

et al., 2012), hemiCpGs are almost equally distributed on both

DNA strands following the behavior of symmetric CpG methyl-

ation. This suggests that hemimethylation is most likely the result

of (strand-) undirected de novomethylation or active and passive

demethylation events, respectively. Furthermore, we detect

more hemimethylation in WT compared with Tet TKO cells,

which indicates that Tet enzymes enhance the passive loss of

5mC. Indeed, our model predicts that 5hmC is probably less

well recognized by Dnmt1 after replication, such that hydroxyl-

ation enhances passive demethylation, which is in agreement

with recent in vitro studies (Hashimoto et al., 2012; Valinluck
nction, each next value is sampled using two truncated normal distributions in

al with mean xi�1 and bounds [0, 1]. Step 2: sample the gradient yi from the

the sampled intercept yi�1 of Step 1.

1 for CpGs A, B, C, D using k-means versus k-error algorithm.

thylation and hydroxylation efficiencies over the whole genome.
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Figure 4. DNA methylation segmentation

(A) Percentages of HMRs, PMDs, LMRs, and UMRs across the genome based on WBGS data derived from WT ESC by Ficz et al. (2013).

(B) HMM estimated 5hmC distribution across the distinct segments based on RRHPoxBS of WT ESCs.

(C) Size distribution of the individual segment types based on WBGS data derived from WT ESCs by Ficz et al. (2013).

(D) HMM estimated methylation distribution of HMRs, PMDs, LMRs, and UMRs (methylation levels of the individual segment types for WT and Tet TKO ESCs).

(E) Methylation level of HMRs, PMDs, LMRs, and UMRs based on WBGS data derived from WT ESC by Ficz et al. (2013).

(F) Estimated HMM enzyme efficiencies in HMRs, PMDs, LMRs, and UMRs for WT and Tet TKO ESCs based on RRHPoxBS.
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and Sowers, 2007). In contrast to equally distributed hemimethy-

lation we observe a slight increase in the minus strand presence

of nonCpG methylation. We cannot find a simple biological

(sequence context) or technical (calling/mapping) explanation

for this bias. NonCpGmethylation is always occurring in close vi-

cinity to CpG methylation (Arand et al., 2012), but in contrast to

CpGs we find that nonCpGs are not a substrate for Tet enzymes,
8 Cell Reports Methods 2, 100187, March 28, 2022
i.e., we do not find any indication of 5hmC in the nonCpG

context. The amount of nonCpG methylation, however, is

strongly enhanced in the absence of Tet enzymes, suggesting

an increase of Dnmt3a and 3b efficiency in the absence of

Tets. Our model provides strong evidence that Dnmts and Tets

do not act independently at a given CpG, but clearly in an

opposed manner. Generally, we observe a high maintenance
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Figure 5. Enzymatic profiles across genes and TFBSs

(A) Comparison betweenChIP profiles of epigenetic writers and estimated enzymatic efficiencies inWT ESCs at day 0 (serum/LIF) across expressed and low/non-

expressed genes.

(B) Estimated enzymatic efficiencies in WT and Tet TKO ESCs across genes.

(C) Estimated enzymatic efficiencies of WT and Tet TKO ESCs at Sox2-, Tet1-, and H3K4me3-enriched regions obtained from ENCODE.
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and de novo methylation efficiencies at the majority of the

genome, i.e., HMRs and PMDs (or inter-/intragenic regions),

while the activity of Tet enzymes is highest at UMRs and

LMRs, such as promoters, TFBSs (Sox2, Pou5f1), and TSSs.

Recent studies based on chromatin immunoprecipitation sup-

port our findings revealing binding of Dnmt3a/b at the gene

body and HMRs, whereas Tet1 binding was observed across

methylation valleys (LMRs and UMRs) (Gu et al., 2018; Baubec

et al., 2015).

The impairment of maintenance methylation has been identi-

fied so far as the main driver of 2i induced DNA demethylation

(von Meyenn et al., 2016) and a role for Tet or oxidative cytosine

forms, on the other hand, has only been recognized for selected

loci (Ficz et al., 2013; von Meyenn et al., 2016). The comparison

of WT and Tet TKO ESCs in this study, however, discloses a

notable reduction within the demethylation rate of Tet TKO,

compared with WT ESCs. On average, we detect a reduction

in the demethylation rate of almost 50% from around 8%–4%

loss per day. This indicates that Tets and their oxidized cytosine

products are essential for an effective demethylation during the

Serum-to-2i shift and probably other biological demethylation

processes with similar enzymatic compositions.

The loss of Tet enzymes is naturally expected to result in an

impaired removal of 5mC and it does at least for CpGs located

in LMRs andUMRs, where we observe a notable increase in their
methylation level. Nevertheless, under primed conditions and

within HMRs we paradoxically observe more unmethylated

CpGs (hypomethylation) in Tet TKO ESCs compared with WT

ESCs. Recently, a systematic investigation of genome-wide

methylation profiles from various cell types carrying distinct Tet

KO genotypes (López-Moyado et al., 2019) has detected, similar

to our observations, a pronounced loss of DNA methylation in

heterochromatic compartments, i.e., PMDs of Tet TKO mouse

ESCs. Lopez-Moyado et al. propose amutual exclusive localiza-

tion of Dnmts and Tets in WT ESCs, while in Tet KO cells Dnmts

invade domains that were previously occupied by Tets. Indeed,

in the absence of Tets our model predicts a clear misregulation in

both maintenance and de novo methylation efficiency. In Tet

TKO ESCs we see an increase in maintenance methylation effi-

ciency, but at the same time a reduction in HMRs and PMDs.

In addition, Tet TKO cells exhibit a more stable, almost persis-

tent, de novomethylation under naive conditions, which is further

supported by the increased nonCpG methylation detected by

RRHPoxBS and shows that in the absence of Tets ESCs fail to

effectively downregulate de novo methylation in 2i. Taken

together, these findings indicate a displacement of Dnmt1 and

Dnmt3a/b, which fits to the hypothesized model by Lopez-

Moyado et al.

Overall, we summarize that Tet enzymes work against methyl-

ation in three ways: (1) They guarantee an efficient conversion of
Cell Reports Methods 2, 100187, March 28, 2022 9
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5 mC at accessible regions and act against its establishment

during a cell replication, either via passive or active demethyla-

tion, (2) they inhibit the effectiveness of themaintenancemachin-

ery over regions that should remain unmethylated, and finally (3)

they ensure an efficient downregulation of the de novo enzymes

that cannot be observed in their absence.

Conclusions
WedescribeGwEEP, a combination of experimental and compu-

tational approaches, to investigate the contributions of Tets and

Dnmts to the establishment of distinctive DNA methylation pat-

terns across the genome. In GwEEPwe generate strand-specific

(hydroxy)methylation data and, using a sophisticated HMM, we

infer the distribution of 5mC and 5hmC at individual CpGs across

the genome and, furthermore, derive accurate efficiency profiles

of Dnmts (de novo and maintenance) and Tets (hydroxylation).

GwEEPalsoworkswith lowamountsofDNAand is therefore suit-

able for demanding samples and rare cell types. Moreover, by

combining our hairpin protocol with 5fC or 5caC detecting chem-

istry GwEEP is easily expandable for the estimation of 5fC/5caC

distribution and the inference of formylation andcarboxylation ef-

ficiencies of Tets. Our analysis of WT and Tet TKO mouse ESCs

shows that Dnmts and Tets exhibit clear antagonistic efficiencies

at individual CpGs. The comparison of WT and Tet TKO ESCs

demonstrates that Tet enzymes contribute notably to the loss

of DNA methylation in the present model system. Moreover, Tet

enzymes seem to protect unmethylated regions against both

de novo and maintenance methylation efficiency and to restrict

the activity of Dnmts within HMRs, guaranteeing the formation

and maintenance of cell-type-specific methylation patterns.
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d All original code for RRHPoxBS sequencing data analysis (HPup) and the parallel implementation of the single CpG HMM suit-

able for a multi-core environment are shared via GitHub. DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

The DNA used for this study originate from Ficz et al. 2013. Briefly, ES cells were cultured without feeders either in standard serum-

containing media (DMEM 4,500mg/L glucose, 4 mM L-glutamine, 110mg/L sodium pyruvate, 15% fetal bovine serum, 1 U/mL peni-

cillin, 1 mg/mL streptomycin, 0.1 mM nonessential amino acids, 50 mM b-mercaptoethanol, and 103 U/mL LIF ESGRO) or under 2i

culturing conditions (Ying et al., 2008) (serum-free N2B27 [Cat. DMEM/F12: GIBCO 21331; Neurobasal: GIBCO 21103; N2: Stem

Cells SF-NS-01-005; B27: GIBCO 17504-044] supplemented with 103 U/mL LIF and Mek inhibitor PD0325901 [1 mM] and Gsk3b in-

hibitor CHIR99021 [3 mM]).

METHOD DETAILS

Digestion of genomic DNA
For GwEEP we use endo nucleases (RE) in order to enrich for selected genomic regions. This increases the sensitivity of the assay

and, at the same time, reduces the sequencing costs considerably. The REmust not be sensitive against 5mC and 5hmC, in order to

avoid a bias of themethylation analysis by blocked restriction. Ideally, the recognition/restriction site of the RE should not contain any

CpGdyad. In the present protocol, we used a combination of three different REs, i.e., R.AluI, R.HaeIII and R.HpyCH4V to obtain reads

from regulatory (HaeIII) as well as inter and intra genomic regions (AluI and HpyCH4V). For the customization of GwEEP we recom-

mend cuRRBS, which determines the best suited RE(s) based on a list of regions of interest (Martin-Herranz et al., 2017).

Unless the amount of DNA is limited, we strongly advice a proper quality control using Agarose-gel-elec-trophoresis and Qubit

Fluorometer based quantification. The best results are obtained by using 300–400 ng high quality DNA per used RE. However, as

little as 6 ng per enzyme (18 ng in total) can be used. For each RE, prepare the reaction outlined in the table below and incubate

for at least 3h at the temperature optimum of the RE (here 37�C), followed by a 20 min heat inactivation at 65�C or 80�C.
Digest of genomic DNA

Component Concentration Volume [ml]

Genomic DNA 6–400 ng X

Endo Nuclease

(R.AluI, R.HaeII or R.HpyCH4V) 10 U Y

CutSmart Buffer 10x 2.0

ddH2O � ad 20.0

Total Volume 20.0
Incubation over night might increase the sensitivity of the assay when using low DNA amounts or in case of sample impurities. This

is only recommended for RE without star activity.

After inactivation the reactions are combined and subjected to a purification step using magnetic beads, i.e., SPRI� or

AmpureXP� beads. Use a sample:bead ratio of 1:2 (60mL:120mL) for clean-up, wash twice with 200 mL freshly prepared 80% ethanol

(EtOH) and elute the DNA in 17.5 mL of 1x CutSmart buffer.

At this stage we strongly recommend to add a suitable spike-in in order to calculate conversion rates of bisulfite and oxidative

bisulfite reactions independently from the biological sample. We apply 4 pg of Sequencing Spike-in Control (CEGX) per sample

(Table S1).
Addition of spike-in control

Component Concentration [ng/mL] Volume [ml]

Digested DNA - 17.5

Sequencing Spike-in Control 0.008 0.5

Total Volume 18.0
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End-repair and A-tailing
In the present study, we applied REs which generate blunt-end DNA fragments and therefore require a subsequent A-tailing. For this,

we rely on the polymerase I large (Klenow) fragment, which lacks both 50 � > 30 and 30 � > 50 exonuclease activity (Klenow exo-). The

reaction given in the table below is incubated for 30 min at 37�C and inactivated for 20 min at 75�C:
A-tailing reaction

Component Concentration Volume [ml]

Digested DNA � 18.0

Klenow exo- 5 U/mL 1.0

dATP in 2x CutSmart 1 mM 1.0

Total Volume 20.0
When using REs producing sticky-ends, end-repair and A-tailing is required.

The A-tailing prevents self-ligation of DNA fragments and facilitates the ligation of hairpin linker (HP) and sequencing adapter (SA).

Purification after heat-inactivation of Klenow exo- is not required. Instead, proceed immediately to section ligation of hairpin-linker

and sequencing adapter.

Ligation of hairpin-linker and sequencing adapter
Prior to the ligation reaction, SA and HP have to be transferred into a double stranded state. First, solve each oligo nucleotide in 1xTE

for a final concentration of 100mM. Next, join 10 mL SeqAdptTop and 10 mL SeqAdptBot in a 0.2mL reaction tube and fill 20mL of HP in

a second 0.2 mL reaction tube. Place both tubes into a thermocylcer and incubate for 5 min at 95�C followed by a slow cool-down of

about 0.3�C/sec. This will facilitate the annealing of SeqAdptTop andSeqAdptBot aswell as the proper folding of the HP (Figure S1A).

The HP comprises four distinct features, (i) a 30 T overhang complementary to the A-overhang of the DNA molecules, (ii) unmethy-

lated cytosine within the sequence, which permits the calculation of C-to-T conversion rate after sequencing, (iii) a unique molecular

identifier (UMI), which allows to identify individual original ligation events and the removal of clonal PCR amplificates and (iv) a bio-

tinylated T, for enrichment of HP containing DNA molecules after ligation. The ligation of SA and HP are catalysed by the T4 DNA

ligase following the reaction outlined below.
Ligation reaction

Component Concentration Volume [ml]

A-tailed DNA � 20.0

rCutSmart Buffer 10x 0.5

ATP 10 mM 2.5

Sequencing adapter (SA) 100 mM 0.5

Hairpin linker (HP) 100 mM 0.5

T4 DNA Ligase 2000 U/mL 1.0

Total Volume 25.0
The reaction is incubated at 16�C for 16 h and inactivated at 65�C for 10min. The ligation of SA and HP is a stochastic event, mean-

ing that three distinct types of DNA molecules will be generated: (i) molecules with SA on both ends, (ii) molecules with HP on both

ends and (iii) molecules with SA on one side and HP on the other side.

Safe stopping point. DNA can be stored for 24 h at 4�C or long term (days to weeks) at �20�C or �80�C. Avoid repeated thawing

and freezing, as this can lead to strand breaks and significantly reduces the number of usable DNA molecules.

Including other modifications such as 5mC, 5hmC, 5fC and 5caC, in the HP sequence allows to determine the conversion of non-

canonical cytosine forms during BS and oxBS treatment.

Enrichment of hairpin-DNA-adapter molecules
In order to deplete the unwanted non-HPmolecules (SA on both sides) the library is subjected to a purification step using streptavidin

coated beads. Start with an AMPure beads clean-up to remove proteins and excessive HPs that would likely saturate the streptavidin

beads. Use a sample:bead ratio of 1:2 (25mL:50mL), wash twice with freshly prepared 80% EtOH and elute in 50mL ddH2O.

1. Per library, i.e., sample, transfer 10mL of DynabeadsTM M-280 Streptavidin into a 1.5 mL reaction tube. Place the tube onto a

magnetic stand and carefully remove the supernatant without disturbing the beads.
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2. Add 1mL 1xBW buffer (5 mM TrisHCl, 0.5 mM EDTA, 1MNaCl), vortex thoroughly, place the mixture back onto the magnetic

stand and wait until the solution is clear. Carefully remove and discard the supernatant.

3. Repeat step (2) for a total of 2 wash steps. At the end of wash step three, solve the beads in 50mL 2xBW buffer per library.

4. Transfer 50 mL of beads to each library, mix briefly by flicking the tube and incubate for 20 min at room-temperature while

rotating.

5. Collect all liquid at the bottom of the tube though brief centrifugation and place the tube onto themagnetic stand.Wait until the

solution is clear and carefully remove and discard the supernatant.

6. Add 200 mL 0.1N NaOH andmix by vortexing. Spin down all liquid, place the tube back onto the magnetic stand and wait until

the solution is clear. Remove and discard the supernatant.

7. Repeat step (6) for a total of 2 wash steps.

8. Add 200 mL 0.5xTE buffer to the beads, mix by vortexing and place the tube back onto the magnetic stand. Wait until the so-

lution is clear. Remove and discard the supernatant.

9. Repeat step (8) for a total of 2 wash steps. At the end of the second wash step, remove TE buffer completely, but do not let the

beads dry fully.

10. Resuspend the beads in 50 mL 1xTE with 1% SDS.

11. Lock the tube and incubate the mixture for 5 min at 100�C in order to dissolve the the biotin-streptavidin-interaction. Place on

ice for 2 min.

12. Briefly spin down and place the tube onto the magnetic stand. Wait until the solution is clear and transfer the supernatant

containing the DNA into a new 1.5 mL DNA low-bind reaction tube.

Using 1.5 mL DNA-low-bind reactions tubes might increase the final yield of the library. This relevant when working with low input

samples.

Safe stopping point. DNA can be stored for 24 h at 4�C or long term (days to weeks) at �20�C or �80�C. Avoid repeated thawing

and freezing, as this can lead to strand breaks and significantly reduces the number of usable DNA molecules.

BS and oxBS treatment
For bisulfite and oxidative bisulfite treatment, we rely on the TrueMethyl�oxBS Module from TECAN. Here, we will provide a short

summary of the individual steps of the protocol.

DNA purification

Bring the Magnetic Bead Solution 1 (TrueMethyl Kit) and the Binding Buffer 1 (TrueMethyl Kit) to room temperature. Mix bead and

buffer according to manufacturer’s instruction. To 50 mL DNA (in 1x TE and 1% SDS), add 100 mL bead-buffer solution and mix

well by pipetting. Incubate at room temperature for 20 min. Transfer the solution onto the magnet and wait until the solution is clear

(5 min). Carefully remove and discard the supernatant and wash 3x with 200 mL freshly prepared 80% acetonitrile. Let the beads dry

for 5 min until all acetonitrile has evaporated. Remove the reaction tube from the magnet and solve the beads in 18 mL denaturation

solution (TruMethyl Kit). Elute and denature the DNA at 37� C for 5min. Put the tube back onto themagnet andwait until the solution is

clear.

DNA oxidation

Transfer 9 mL into two 0.2mL reaction tubes, respectively. To the tube intended for BS, add 1 mL ultrapure water (TrueMethyl Kit) in the

other, meant for oxBS, add 1 mL oxidant solution. Mix both reactions by vortexing and immediately incubate at 40�C for 10 min.

Centrifuge at 14000 x g for 10 min. A black precipitate will form at the bottom of the tube of the oxBS reactions. The supernatant

should remain orange. Any other color (yellow, brown, transparent) indicates impurity of the sample and in our experiments indicates

failing of the 5hmC oxidation. Transfer the supernatant from oxBS samples into a new 0.2 mL reaction tube.

Bisulfite treatment

Add 700 mL of the Bisulfite Dilutent (TrueMethyl Kit) to one aliquot of Bisulfite Reagent (TrueMethyl Kit). Incubate for 15 min at 60�C
while shaking. Spin down briefly and add 30 mL of the bisulfite solution to BS and oxBS sample, respectively. Incubate the reaction

according to the temperature profile outlined in the table below.
Bisulfite conversion temperature profile

Step Number Incubation Step Temperature Time

1 Denaturation 95�C 05:00 min

2 Sulfonation 60�C 20:00 min

3 Denaturation 95�C 05:00 min

4 Sulfonation 60�C 40:00 min

5 Denaturation 95�C 05:00 min

6 Sulfonation 95�C 45:00 min

7 Hold 20�C % 16:00:00 h
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Prepare Magnetic Bead Solution 2 by mixing 2.4 mL Magnetic Beads Solution (TrueMethyl Kit) with 200 mL Binding Buffer 2

(TrueMEthyl Kit). Mix well by vortexing. Add 160 mL bead solution to 40 mL BS and 40 mL oxBS reaction, respectively. Mix well by

pipetting and incubate for 5 min. Place the reaction onto an magnetic stand, wait until the solution is clear and discard the superna-

tant. Wash the beads with 200 mL freshly prepared 70% ethanol and resuspend the beads in 200 mL Desulfonation Buffer (TrueMethyl

Kit). Incubate for 5min, remove the supernatant and wash the beads twice with 200 mL 70%ethanol. Let the beads dry completely for

15 min and elute the DNA in 12.5 mL Elution Buffer (TrueMethyl Kit).

Enrichment-PCR
The enrichment PCR amplfies the library molecules and at the same time introduces the remaining part of the sequencing adapter,

i.e., indices (i5 and i7) as well as the sequences required for flow cell binding (P5 and P7). The following table depicts the reaction

conditions and the temperature profile of the enrichment PCR, respectively.

Safe stopping point. DNA can be stored for 24 h at 4�C or long term (days to weeks) at �20�C or �80�C. Avoid repeated thawing

and freezing, as this can lead to strand breaks and significantly reduces the number of usable DNA molecules.
Enrichment PCR

Component Conc. Vol. [ml]

BS or oxBS DNA � 10.0

HotStarTaq Buffer 10x 5.0

MgCl2 25 mM 2.0

dNTPs 10 mM 4.0

EnPrimerFor 10 mM 0.8

EnPrimerRev 10 mM 0.8

HoStarTaq DNA Polymerase 5 U/mL 0.7

ddH2O � 26.7

Total Volume 50.0

Enrichment PCR temperature profile

PCR Step Temp. Time # of Cycles

Initial Denaturation 95�C 5:00 min 1

Denaturation 94�C 0:30 min

Annealing 58�C 1:00 min 7–18

Elongation 72�C 1:00 min

Final Elongation 72�C 7:00 min 1

Hold 4�C N 1
After amplification, libraries are purified using AMPureXP�beads with a sample:bead ratio of 1:1 (50mL:50mL), wash twice with

freshly prepared 80% EtOH and elute in 10mL ddH2O or 0.1xTE. QC is performed by quantification of 2 mL of the library using Qubit

HS Fluorometer and fragment size distribution is determined by loading 1 mL using the Agilent Bioanalyzer HS assay. In our case, the

average library size lies by about 400bp. The library size might vary depending on the used restriction enzymes. A typical Bioanalyzer

profile of RRHPoxBS libraries is given in Figure S1D.

Sequencing
The library is suited for any Illumina sequencing device and does not require custom sequencing primer. For larger genomes e.g.

human or mouse, we recommend sequencing on an Illumina NextSeq, HiSeq or NovaSeq platform using R 2x100bp paired-end

mode. Note that longer reads allow more frequent detection of the HP and thus more accurate estimation of the duplication rate

(Table S1). The indicated enzyme combination requires sequencing of 40–50 million reads to obtain an average coverage of about

10x. We recommend using 10–20%PhiX as a spike-in for the final library pool. See also Illumina guidelines for sequencing of bisulfite

libraries, i.e., low complexity libraries.

Preparation of low-input-libraries
For the generation of Hairpin-RRBS libraries using 18 ng of genomic DNA, we performed three individual restriction reactions (R.AluI,

R.HaeIII and R.HpyCH4V) in 1x CutSmart buffer with 6 ng ofmouse ES cell DNA (72h 2i) each. 5 U of restriction enzymewere used in a
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total reaction volume of 10 mL. Reactions were incubated at 37�C for 3 h. After heat inactivation at 80�C for 20 min, reactions were

pooled and 0.5 mL of CEGX spike-in control (1 pg/mL) were added. A-tailing was performed by adding 1 mL of 10X CutSmart buffer,

1 mL of 1 mMdATP, 2.4 mL of 5 U/mL Klenow exo- (NEBM0212S) and 5.1 mL ddH2O for a total reaction volume of 40 mL. Reaction was

incubated at 37�C for 30min and heat inactivated at 75�C for 20min. For ligation of HP and SA, 0.5 mL of 100 mMHP, 0.5 mL of 100 mM

SA, 5 mL of 10 mM ATP and 2 mL of 2000 U/mL T4 DNA Ligase (NEBM0202T) were added for a total volume of 48 mL, ligation reaction

was incubated at 16�C over night. Depletion of unbound HP using AMPure XP beads, enrichment of HP-DNA using Dynabeads,

oxidation reaction and bisulfite conversion (both according to TECAN Methyl� oxBS Module manual), enrichment PCR and QC

were done similarly to our protocol outlined in the above methods section. Sequencing was carried out in a 2x 150 bp mode on

the Illumina MiSeq using MiSeq Reagent Nano Kit v2 (300-cycles).

QUANTIFICATION AND STATISTICAL ANALYSIS

Processing sequencing data
In a first instance, the sequenced reads are subjected to a hairpin sequencing pipeline (HPup) that will restore the double strand in-

formation and output the methylation counts (uncorrected) for CpGs, GpCs and CpHs dyads. For this, the sequencing data was pro-

cessed similarly to what has been previously described by Porter et al. (Porter et al., 2015). We used the Ruffus pipeline framework

(Goodstadt, 2010) for the implementation of our workflow. In an initial step sequencing adapter and low quality base calls (Q < 20)

were trimmed from the ends of each read (FastQ files) using TrimGalore! (Krueger, 2019). Next, all reads were screened and purged

from the hairpin linker sequence using cutadapt (Martin, 2011). The hairpin linker sequence is stored in an additional file and used to

calculate the C-to-T conversion rate during (oxidative) bisulfite treatment and furthermore, can be used to identify redundant reads

generated by PCR.

Trimmed read pairs (read 1 and read 2 from paired-end-sequencing) were locally aligned with the Smith-Waterman algorithm. We

allow for G-to-A and C-to-T mismatches to cope with bisulfite treatment. After aligning the bisulfite sequence of the read pairs, we

can reconstitute the genomic sequence, which allows for a faster, more efficient and precise mapping of the reads to the reference

genome. In addition, the pipeline determines the methylation state of each cytosine and classifies symmetric dyads, i.e., CpGs and

GpCs into fully-methylated (both DNA strands are methylated), hemi-methylated (only one strand is methylated) at the plus strand,

hemi-methylated on the minus strand and unmethylated (both strands are unmethylated). The resulting sequences were aligned to

the mouse genome (mm10) with GEM-mapper (beta build 1.376) (Marco-Sola et al., 2012), after which the methylation information

was reintroduced with a custom pileup function based on HTSJDK and ratios for the four methylation states were calculated for each

cytosine. Our pipeline is suited for read mapping against any reference genome, i.e., species.

The hairpin pipeline comes with a configuration file in which all required parameters can be defined by the user. This includes the

path to the input/output directory and to the adapter and hairpin linker sequences for trimming. The library generates three output

files per sample: (i) a log file, containing the information about the individual processing steps (parameter, success and duration

of individual steps). (ii) a statistic file which provides the read count after each processing step (raw reads, trimmed, paired, aligned)

as well as the conversion rates of C, 5mC, 5hmC and 5fC, calculated based on hairpin linker and spike-in sequence. Lastly, (iii) a DSI-

file (double strand information), which stores the methylation information of each cytosine is generated.

The DSI-file is a header-less, tab-separated text-file and contains in total 11 columns. Columns 1 to 7 contain general information:

(1) the chromosome number, (2) the genomic location of the analyzed cytosine, (3) the strand of the analyzed cytosine, (4) total num-

ber of reads, (5) number of methylated reads, (6) number of unmethylated reads and (7) sequence context of the cytosine (CG, GC or

nonCpG). Columns 8 to 11 contain double strand specific methylation information: (8) counts of fully methylated dyads (CpG or GpC;

NA = nonCpG), (9) counts of plus-strand methylated dyads, (10) counts of minus strand methylated dyads and (11) count of unme-

thylated dyads. DSI-files can be visualised in the Integrative Genomics Viewer (IGV). Each sample will be displayed as bar diagram-

track, in which each cytosine is represented by a stacked bar summarizing the frequency of the methylation states (fully = orange,

hemi-plus = dark-green, hemi-minus = light-green and unmethylated = blue). Hovering the mouse cursor above the bar will show

the entire 11-column information of the DSI-file for the given position.

Hidden Markov modelling of single CpG methylation
Weprovide the DSI-files containing the BS and oxBS counts for each sequenced CpG as input to an HMM. Incorporating additionally

the conversion rates of the measurement process (Figure 3B) we link the HMMs, describing the oxidative and the non-oxidative

hairpin bisulfite sequencing, to accurately determine (hydroxy)methylation levels and the efficiencies of the involved enzymes

over time.

The computational core of our estimation is the model previously described in (Giehr et al., 2016; Kyriakopoulos et al., 2017). This

HMM combines the processes of cell division, i.e., DNA replication, methylation (de novo andmaintenance), as well as hydroxylation

(Figure 3A). In addition, given the BS and oxBS counts of a single CpG we use here a Bayesian inference framework (Figure 3C) to

estimate the distribution of methylation states and to determine the posterior distribution of the corresponding methylation

efficiencies.

The advantage of our Bayesian inference scheme compared to alternative approaches such as Maximum Likelihood Estimation is

that it yields useful estimates also in case of relatively small read counts. We apply the Metropolis-Hastings (MH) algorithm to sample
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from the posterior distribution of the Dnmts’ and Tets’ efficiencies that best explain the DNA methylation levels of a single CpG at

three available time points. Finally, ourmodel also provides an estimate for themaintenance of 5hmCduring replication, i.e., the prob-

ability p that a given 5hmC is not recognized by Dnmt1 as a ’’methylated’’ state after replication.

Hidden and observable states

The hidden states of the model, S = fu;m; hg2; correspond to the different modifications, e.g. the cytosines (C) on both strands are

unmethylated or the C on the upper strand is methylated, while the C on the lower strand is unmethylated, etc. The observable states,

Sobs = fT;Cg2; are those that wemeasure after bisulfite (BS) or oxidative bisulfite (oxBS) hairpin sequencing. Let the vector pðtÞ be the
hidden states distribution at time t and let pði; tÞ=PðXðtÞ = iÞ represent the entry of pðtÞ that corresponds to state i˛S. The transition

matrix of the hidden states is defined as PðtÞ=DðtÞ,MðtÞ,HðtÞ; where DðtÞ describes the modifications due to cell division, MðtÞ the
modifications due to methylation, and HðtÞ the modifications due to hydroxylation.

Note that forDðtÞwe can omit the time parameter t since it is time-independent, while the other twomatrices depend on t:Note also

that the HMMs of BS and oxBS experiments have both the same distribution pðtÞ for the hidden states (as for both experiments the

same cell population is used), but different emission probabilities and that pðtÞ is given by pðtÞ=pð0Þ,Qt
k = 1PðkÞ: Let the vectors

pbsðtÞ;poxðtÞ be the observable states distribution at time t, with entries pbsðj; tÞ and poxðj; tÞ, j˛Sobs; for the BS and oxBS

experiments, respectively. We get then pbsðtÞ=pðtÞ,EbsðtÞ and poxðtÞ=pðtÞ,EoxðtÞ; where the entries of the emission matrices

EbsðtÞ and EoxðtÞ are given in Table S2.

Initial distribution

Let nbsðj; tÞ and noxðj; tÞ be the number of times that state j˛Sobs has been observed during independent hairpin bisulfite (BS) and

oxidative hairpin bisulfite (oxBS) measurements out of a certain number of reads (mean coverage of all samples z 20x) at time t:

Since we assume that t = 0 is the time of the first measurement, we have observations at t = 0 and can estimate the unknown initial

distribution over the hidden states using maximum likelihood estimation (MLE). For this, we have to solve the optimization problem:

pð0Þ� = arg maxpð0ÞL1ðpð0ÞÞ; subject to the constraint
P
i˛S

pði; 0Þ= 1; where L1ðpð0ÞÞ =
Q

j˛Sobs

pbsðj; 0Þnbsðj;0Þ,poxðj;0Þnoxðj;0Þ:

Estimation of the efficiencies

Let v= ðbmm

0 ;b
mm

1 ;b
md

0 ; b
md

1 ;bh0;b
h
1;pÞ˛Rv; be the vector of seven, i.e., v = 7; unknown parameters. We assume here that the efficiencies

are linear functions of time (except for p) and so v contains the coefficients of these functions, e.g., mmðtÞ = b
mm

0 + t,bmm

1 . After deter-

mining pð0Þ we define the likelihood

L2ðvÞ =
Y

t˛Tobsyf0g

Y
j˛Sobs

pbsðj; tÞnbsðj;tÞ,poxðj; tÞnoxðj;tÞ; (Equation 1)

assuming that the cells divide every 24 hours, t ranges over all days at which measurements were made after d0, and that all obser-

vations are independent. The independence assumption is well justified since during the measurement only a very small fraction of

cells is taken out of a large pool and hence it is unlikely that we pick two cells with a common descendant. Since the efficiencies are

probabilities we have the constraint that for all time points in Tobs and all efficiencies we have 0%b0 + b1 , t% 1 and 0% p% 1:

Finally, considering the forward Kolmogorov equation for the HMM and the first and second partial derivatives w.r.t. v we can effi-

ciently estimate v� = argmaxvL2ðvÞ as well as confidence intervals for a MLE, as has been shown in detail in (Giehr et al., 2016).

Bayesian inference for whole genome data
After QC there is available double stranded single base pair resolution data fromBS and oxBS for 3;022;903CpGs inWT cells and for

3;151;985 CpGs from BS data in Tet TKO cells (Figure S3B). In case of each of 1;464;801 CpGs in WT and of 1;352; 297 in Tet TKO

with only one or two observation time points available we predict only (hydroxy)methlation levels by performing aMLE as described in

the initial distribution section. In case of a CpG with three observation time points (1; 558;102 in WT and 1; 799; 688 in Tet TKO) we

apply the HMM for estimating the (hydroxy)methylation efficiencies. Using a computer cluster consisting of 32 machines with 16

physical kernels each, we are able to efficiently parallelize the computations for large batches of CpGs.

Due to the low depth sequencing per time point and experiment (40x for BS, 29x for oxBS in WT, and 14x coverage for BS in Tet

TKO on average) we expect the asymptotic properties of the MLE around the true parameter value not to hold (Braunstein, 1992;

Long and Freese, 2006), especially close to the boundary constraints (Schoenberg, 1997). For this reason, we use a Bayesian Infer-

ence (BI) approach to get the posterior distribution of themodel parameters, i.e., the efficiencies over time. For all CpGswe choose as

prior distribution the multivariate normal distributionNðm;SÞ; where the mean m is the average of the estimated efficiencies in (Giehr

et al., 2016) and S is the average of the corresponding covariance matrices.

Metropolis-Hastings

We apply BI by sampling from the multi-dimensional posterior PðvjdataÞ= L2ðdatajvÞPðvÞR
v
Pðdata;vÞ : To avoid approximating the normalizing factorR

v

Pðdata; vÞ; we make use of a Metropolis-Hastings MCMC approach using an asymmetric and truncated proposal distribution. The

bounds of the truncation are determined s.t. the constraints for the efficiencies constantly hold for the time span of the observations,

i.e., efficiencies are in ½0; 1� for all t˛½0; tmax�:Hence, in every state x˛Rv of the MCMCwe generate the next sample from a product of

truncated univariate normalsNðyÞ=Q
i

fðyi
��xi; s2i =c; ai;biÞ; around the current MCMC point x; where xi refers to the i� th entry of the
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parameter vector for i = 1;.;7, s2i =c is the univariate normal variance and ai;bi are the truncation bounds for parameter xi. Consider

position i where yi refers to the gradient of an efficiency and yi�1 to the corresponding intercept. We sample the next value for

each efficiency by sampling first the intercept yi�1 value from the truncated normal distribution within the interval ½ai�1;bi�1�= ½0;1�
and based on this realization we sample the gradient yi value from the truncated normal in ½ai;bi�; where ai = � yi�1=tmax; bi =

ð1�yi�1Þ=tmax (Figure 3C). The bounds of probability p are set as those of an intercept, i.e., ½ai;bi� = ½0; 1�:
Note that the variance of parameter xi we used for the proposal distribution is the same as the variance of the prior distribution s2i =

Si;i normalized by a scale factor c: Because the efficiency of Metropolis-Hastings algorithm crucially depends on the scaling of the

proposal density, we empirically choose a c= 50 to normalize the standard deviation of the proposal distribution s.t. the average

MCMC acceptance ratio is around 25% of the total number of generated samples (Roberts et al., 1997). As final estimators of the

BI method we get the sample mean of the posterior distribution and we build credible intervals using the corresponding sample

covariance.

Fit of whole genome data & uncertainty estimation
We compare the levels of CC, TT and CT-TC CpG dyads for the whole genome data in WT and Tet TKO experiments with the prob-

abilities of the observable states predicted by the two HMMs using MLE or BI (Figures S3C and S3D). To quantify the goodness of fit

we computed the average Kullback-Leibler divergenceDKLðPjjQÞ=P
i

PðiÞln PðiÞ
QðiÞ between the data distribution P and the distributionQ

predicted by the model (Table S3). Even though the average KL divergence between the data and the model is smaller for MLE than

for BI for bothWT and Tet TKO, the uncertainty around theML estimates is much higher. We quantified this by computing the volume

of the hyper-ellipse of a multivariate-normal distribution

V =
2pv=2

vGðv=2Þ
�
c2
crit

�v=2jSv� j1=2;

Where v is the number of parameters, jSv� j is the determinant of the estimators’ covariance matrix, c2
crit is the critical value for c2ðvÞ

and GðxÞ is the gamma function. For WT data the average volume of the hyper-ellipse in case of MLE is 0.0024 while the average

hyper-ellipse volume in BI is 3:5162,10�5: In Tet TKO the average volume of the hyper-ellipse for ML estimates is 0.0480 while in

case of BI only 9:6,10�4.

k-error clustering
The k-error clustering is a smart modification of the k-means algorithm taking additionally into account the uncertainties of each data

point (Kumar and Patel, 2007). Let v1;.; vN˛Rv be i.i.d. estimated parameter vectors andS1;.;SN˛Rv3v their estimated covariance

matrices for all input CpGs. We assume that each parameter vector follows a v� variate normal distribution with one of k possible

means q1;.; qk ; that is vi � Npðmi;SiÞ; where mi˛fq1;.; qkg for i = 1;.N: Our goal is to find the clusters C1;.;Ck such that all

the parameter vectors having the same mean mi = qj belong to the same cluster Cj; for j = 1.;k:

Let Sj = fi��vi ˛Cjg; hence mi = qj for j = 1.k andci˛Sj:Given N parameter vectors v= ðv1;.; vNÞ and their error matrices S1;.;SN

we search for a partition S= ðS1;.;SkÞ and q= ðq1;.; qNÞ that maximizes the likelihood: LcðvÞ=
Qk

j = 1

Q
i˛Sj

1
2p

p=2jSij�1=2

e�1=2ðvi�qjÞS�1
i ðvi�qjÞu ; where jSij is the determinant of matrix Si for i = 1;.;N: It can be shown that maximizing the above likelihood

is equivalent asminimizing the total squaredMahalanobis distance of the points that belong to a cluster from the cluster centroid, i.e.,

min
S

Xk
j =1

X
i˛Sj

ðvi � bq jÞS�1
i ðvi � bq jÞ;

Where bq j is theML estimate of qj given by bq j =
 P

i˛Sj

S�1
i

!�1 P
i˛Sj

viS
�1
i

!
for j = 1;.; k:Note that the estimated centroid bq j is a weighted

mean of the point in cluster Cj; i.e., the Mahalanobis mean of Cj:

After randomly choosing an initial set of k centroids (Forgy method) the k-error algorithm follows as an iteration over the next two

steps until no change happens to the assignment of the points.

1. Assign each data point xi to the cluster whose centroid is the closest using the squared Mahalanobis distance, i.e.,
 !

argmin

j

di;j = argmin
j

ðxi � bq jÞS�1
i ðxi � qjÞu: (Equation 2)

2. For clusters C1;.;Ck compute the new cluster centroids bq1;.; bqk as the Mahalanobis means of the clusters.
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To identify the ‘‘optimal’’ number of clusters we use Davies-Bouldin and Calinski-Harabasz criteria that maximize the overall within

over between cluster variability. As a distance function we plugin to the above criteria the squared Mahalanobis distance dðx; yÞ=
ðx � yÞuS�1

x ðx�yÞ; where Sx is the covariance matrix of point x. From both criteria we obtain two as the optimal number of clusters.

Spatial correlation of enzymatic activity
Let Xs be the discrete space random process describing the dispersion of an enzymatic activity over the whole genome at a certain

time point. For a space interval t its spatial autocorrelation is defined as RðtÞ= E½ðXs�mXs ÞðXs+ t�mXs+ t
Þ�

sXssXs+ t
: Similarly the spatial cross-corre-

lation between two random processes X;Y that describe the dispersion of two different enzymatic activities over the genome is

defined as rX;Y =
E½ðXs�mXs ÞðYs+ t�mYs+ t Þ�

sXssYs+ t
:We compute the sample spatial autocorrelation bR and the cross-correlations br for all enzymatic

processes in bothWT and Tet TKO experiments as follows. Let genome position s˛SðtÞwhen both CpGs of positions s and s+ t are

included in our data. Then

bRðtÞ = 1

jSðtÞ � 1jbsXs
bsXs+ t

X
s˛SðtÞ

ðXs �XsÞðXs+ t �Xs+ tÞ�:

In the above sample estimator Xs

�
is the sample mean, and bsXs

the sample standard deviation of all measurements Xs for which s˛
SðtÞ: In the same way we compute

brðtÞ = 1

jSðtÞ � 1jbsXs
bsYs+ t

X
s˛SðtÞ

ðXs �XsÞðYs+ t �Ys+ tÞ�:

Fixing t = 5 we plot in Figures 3E and S5 the sample autocorrelations and sample cross-correlations between all efficiencies at all

time points in WT and Tet TKO experiments. In addition, we report 95% confidence intervals following the approach of (Shen and Lu,

2006) and p-values for the null hypothesis that the auto or the cross-correlation is zero.
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