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Highlights
� Molecular analysis and spectral imaging evaluated

macrophages in patients with SLD.

� Druggable targets (e.g. CCR2) were significantly
increased in patients with cirrhosis.

� Recruited macrophages (Mac387+) were increased
and had enriched infiltration in SLD.

� Variation of certain phenotypes and targets corre-
lated with activity scores and fibrosis stages.

� Macrophage phenotypes/targets vary in individuals
and may affect the treatment of SLD.

Impact and implications
Appreciating individual differences within the hepatic
microenvironment of patients with SLD may be
paramount to developing effective treatments. These
results may explain why such a small percentage of
patients have responded to macrophage-targeting
therapies and provide additional support for precision
medicine-guided treatment of chronic liver diseases.
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Background & Aims: Clinical trials for reducing fibrosis in steatotic liver disease (SLD) have targeted macrophages with
variable results. We evaluated intrahepatic macrophages in patients with SLD to determine if activity scores or fibrosis stages
influenced phenotypes and expression of druggable targets, such as CCR2 and galectin-3.
Methods: Liver biopsies from controls or patients with minimal or advanced fibrosis were subject to gene expression analysis
using nCounter to determine differences in macrophage-related genes (n = 30). To investigate variability among individual
patients, we compared additional biopsies by staining them with multiplex antibody panels (CD68/CD14/CD16/CD163/
Mac387 or CD163/CCR2/galectin-3/Mac387) followed by spectral imaging and spatial analysis. Algorithms that utilize deep
learning/artificial intelligence were applied to create cell cluster plots, phenotype profile maps, and to determine levels of
protein expression (n = 34).
Results: Several genes known to be pro-fibrotic (e.g. CD206, TREM2, CD163, and ARG1) showed either no significant differ-
ences or significantly decreased with advanced fibrosis. Although marked variability in gene expression was observed in
individual patients with cirrhosis, several druggable targets and their ligands (e.g. CCR2, CCR5, CCL2, CCL5, and LGALS3) were
significantly increased when compared to patients with minimal fibrosis. Antibody panels identified populations that were
significantly increased (e.g. Mac387+), decreased (e.g. CD14+), or enriched (e.g. interactions of Mac387) in patients that had
progression of disease or advanced fibrosis. Despite heterogeneity in patients with SLD, several macrophage phenotypes and
druggable targets showed a positive correlation with increasing NAFLD activity scores and fibrosis stages.
Conclusions: Patients with SLD have markedly varied macrophage- and druggable target-related gene and protein expression
in their livers. Several patients had relatively high expression, while others were like controls. Overall, patients with more
advanced disease had significantly higher expression of CCR2 and galectin-3 at both the gene and protein levels.
Impact and implications: Appreciating individual differences within the hepatic microenvironment of patients with SLD may
be paramount to developing effective treatments. These results may explain why such a small percentage of patients have
responded to macrophage-targeting therapies and provide additional support for precision medicine-guided treatment of
chronic liver diseases.
© 2023 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction
Steatotic liver disease (SLD, previously non-alcoholic fatty liver
disease [NAFLD])1 is the leading cause of liver transplantation2

and is the most common cause of chronic liver disease world-
wide. It affects approximately 25–30% of the population, and is
commonly associated with dyslipidaemia, obesity, metabolic
disease, and type 2 diabetes.3–5 SLD is the general term that in-
cludes all causes of hepatic steatosis, including metabolic
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dysfunction, increased alcohol intake, drug-induced, and
monogenic.1 Metabolic dysfunction-associated SLD (nowMASLD,
previously NAFLD), includes patients that have hepatic steatosis
and at least one of five cardiometabolic risk factors (e.g. BMI >25,
type 2 diabetes mellitus, hypertension, or dyslipidaemia). He-
patic steatosis with evidence of associated hepatocellular injury,
such as ballooning degeneration, is termed metabolic
dysfunction-associated steatohepatitis (now MASH, previously
non-alcoholic steatohepatitis [NASH]).5 This newer multisociety
consensus nomenclature also includes a category in addition to
MASLD that allows the amount of alcohol use to be considered,
termed MetALD.1

Under normal conditions, Kupffer cells maintain homeostasis
and repair the liver after injury. However, in patients with
steatohepatitis, Kupffer cell activation causes the recruitment of
bone marrow-derived macrophages by the interaction of CCR2/
CCL2 and CCR5/CCL5, promoting inflammation and the devel-
opment of fibrosis.6 Guillot et al.7 recently reported that
monocyte-derived macrophage accumulation is strongly associ-
ated with increased ductular reaction and was the most promi-
nent immune-mediator of fibrosis progression, not only in
patients with SLD, but also in those with primary sclerosing
cholangitis and alcohol-related liver disease. Advanced fibrosis is
the most critical histologic feature of SLD that independently
predicts poor clinical outcomes and can lead to end-stage liver
disease (ESLD) and hepatocellular carcinoma (HCC).8,9 A recent
analysis of normal liver using single-cell RNA sequencing
revealed two CD68+ macrophage populations, one proin-
flammatory with increased Mac387 expression, and the other
with immunoregulatory/tolerogenic functions and increased
CD163 expression.10 CD68 primarily identifies resident Kupffer
cells, while Mac387 identifies recruited macrophages that infil-
trate after injury in a CCL2-dependent manner.11,12 CD163 has
been reported as the prototypical ‘M2’ or pro-fibrotic macro-
phage marker that increases in number during hepatic fibrosis
progression.13 Activated hepatic stellate cells cause infiltration
and differentiation of pro-fibrotic CD163+ macrophages via the
CCL2/CCR2 pathway.13 Circulating monocytes that enter the liver
have also been characterised as inflammatory or anti-
inflammatory based on the expression of CD14 or CD16,
respectively.14,15 However, less is known about these markers on
human intrahepatic macrophages, although a CD14+CD16+
population has been shown to increase in the liver of mice with
progression of fibrosis as a result of SLD.16

Therapies that target or inhibit pro-fibrotic macrophages
have been used in clinical trials (e.g., CENTAUR, AURORA,
TANDEM, and GR-MD-02). Certain drugs, such as CCR2/CCR5
inhibitors (e.g. cenicriviroc) and galectin-3 (Gal3) antagonists
(e.g. GR-MD-02), have shown promise in decreasing fibrosis in
SLD.6,17,18 For cenicriviroc, data from the CENTAUR study’s year
1 analysis showed fibrosis improvement without impact on
steatohepatitis in �20% of patients when compared with pla-
cebo. However, continued improvement in fibrosis was not
observed at the end of year 2.6,19,20 Previously, we showed that
multispectral imaging can characterise numerous phenotypes
of macrophages in patients with chronic liver diseases,
including SLD.21 For this study, we focused on fibrosis attrib-
utable to SLD and wanted to determine if certain patients
had more numerous recruited macrophages in the liver and
evaluated the expression of drug targets, such as CCR2 and
galectin-3.
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Materials and methods
Patients and liver biopsies
Studies were conducted on de-identified, archived liver biopsies
from 2006 to 2022 and were approved by the University of Texas
Medical Branch Institutional Review Board (IRB#13-0511 and 22-
0223). Patients met the criteria to be included in the study if they
had biopsy-proven SLD and a BMI of at least 25. For experiments
where minimal and advanced fibrosis were compared, patients
were matched by age, sex, and BMI. Minimal fibrosis included
stages 1/4, and advanced fibrosis included stages 4/4. Inflam-
matory activity and fibrosis stages were determined by a board-
certified pathologist using established criteria.22 The number of
patients included in each study are shown in Fig. 1 (Study Patient
Sets 1–4). Demographics, clinical data, NAFLD activity scores
(NAS), fibrosis stages, cardiometabolic criteria (CMC), and follow-
up data (when available) are shown in the supplementary data
file. Liver biopsies that showed minimal histopathologic find-
ings and no steatosis that were collected from patients with
normal liver enzymes at the time of the biopsy were used as
controls.

RNA extraction and NanoString analysis
RNA was extracted from three unstained formalin-fixed,
paraffin-embedded (FFPE) liver biopsy slides (cut at 3 lm) using
the High Pure FFPET RNA Isolation kit (Roche, Mannheim, Ger-
many). This kit is designed for isolating RNA from archived FFPE
tissue blocks. RNA Concentrations were measured with a Qubit
2.0 fluorometer (Thermofisher, Waltham, MA, USA). To assess the
quality of the extracted RNA, a bioanalyzer was used (RNA6000
pico-assay, Agilent, Santa Clara, CA, USA). Samples with a DV300
(a measure of RNA fragment size distribution) greater than 50%
were selected for further analysis. This pre-analytic step ensured
that the RNA was of sufficient quality for downstream process-
ing. RNA samples (50 – 150 ng) were used for hybridization with
expression profiling of �40 housekeeping genes and 730
immuno-oncology-related targets (PanCancer Immune Panel;
NanoString Technologies, Seattle, WA, USA), including macro-
phage-related genes. The raw data (RCC files) were imported into
nSolver software (NanoString Technologies), which performed
comprehensive quality control checks on all the imported data
generated throughout the protocol. The software assesses
various aspects, including Imaging QC, Binding Density QC, and
overall assay efficiency. As part of the nSolver analysis, positive
controls were employed to evaluate assay performance. These
controls serve as reference points for assessing the quality and
reliability of the data obtained. Since the nCounter platform by
NanoString is optimized for FFPE tissues, they have also con-
ducted studies on different ages of specimens and found no
differences, including whether fresh or FFPE tissues were used.23

Data was then normalized and converted into log2-transformed
data.

Multispectral analysis
Tissue blocks were stored at room temperature and sectioned
immediately before multiplex staining, whenever possible.
Slides that were unable to be stained within 1 week were stored
at −80 �C in slide storage boxes with desiccant and wrapped
with parafilm (to reduce moisture exposure). Multiplex panels
(CD68/CD163/Mac387/CD14/CD16/DAPI); (CCR2/galectin-3/
CD163/Mac387/DAPI) were optimised as previously described.21

Staining was conducted manually or with the Ventana Discovery
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Fig. 1. Molecular and spectral imaging workflow. (A) Archived liver biopsy blocks from controls or patients with various stages of fibrosis attributable to SLD
were selected. (B) Next, RNAwas extracted from unstained slides for nCounter analysis. (C) For spectral imaging, slides were stained and scanned with the Vectra
3 Automated Quantitative Pathology Imaging system. Multicomponent TIFFs were analysed using Visiopharm to generate t-SNE plots and phenotype profile
maps, and cell_seg files were used for UMAP, G-function, and Giotto analyses in collaboration with the University of Michigan. The table shows the number of
patients included in each experiment. Created with BioRender.com. IHC, immunohistochemical; NAS, NAFLD activity scores; SLD, steatotic liver disease; t-SNE, t-
distributed stochastic neighbour embedding; UMAP, uniform manifold approximation and projection.
Ultra (Roche Diagnostics, Indianapolis, IN, USA) as shown in
Table S1. Images were acquired using the Vectra3 Quantitative
Pathology Imaging system (Akoya Biosciences, Marlborough, MA,
USA). Regions of interest (ROIs) were obtained from at least 50%
of the surface area of each liver biopsy. Stamped areas for
acquisition were 2 × 2 (1,338 lm × 1,000 lm) at a resolution of
0.5 lm (20×). Phenotypes were calculated as the percentage of
the total cell population identified across all ROIs collected from
each patient’s liver biopsy (based on the nuclear stain DAPI) and
included cells that were negative for all the markers.
Imaging and spatial analyses
For data analysis, first, multi-component TIFF images were
exported from InForm (Akoya Biosciences) and analyzed with
Visiopharm software (Visiopharm, Hoersholm, Denmark) using
custom tissue detection, tissue segmentation, nuclear detection,
and multiplex phenotyping applications and deep learning al-
gorithms. Phenotype maps were used to determine location of
phenotypes within the hepatic microenvironment and corre-
sponding t-distributed stochastic neighbour embedding (t-SNE)
plots were generated. Batch analysis was used to directly
compare the minimal fibrosis group to the advanced fibrosis
group, and then a separate algorithm was used to compare dif-
ferences in the individual patients within each group.
JHEP Reports 2024
Second, cell coordinates and intensity characteristics were
extracted as cell_seg_data text files and provided to the im-
aging bioinformatics group at the University of Michigan. The
heterogeneity and distribution of various cell phenotypes were
determined using Uniform Manifold Approximation and Pro-
jection for Dimension Reduction (UMAP), a dimensional
reduction technique similar to t-SNE for the visualization of
high dimensional data.24 Implementation and visualization of
this workflow was done using MATLAB 2020a (MathWorks
Inc., Natick, Massachusetts).25 The spatial G-function is a
nearest-neighbor-type cumulative distribution function used
to quantify mixing and/or infiltration of a cell of interest
around a reference cell.26 Mathematically, it can be expressed
as follows:

Gðx;yÞðrÞ¼ 1−e−jynr
2

Where the subscripts ‘x’ and ‘y’ indicate that the spatial distri-
bution of cell type ‘y’ relative to cell type ‘x’ is being computed,’
r’ refers to the distance from the reference cell type, and jy is
the overall density of cell type ‘y’ on the slide. Cell_seg files
were also used for Giotto enrichment analysis. This was con-
ducted first using cell locations to create a k-nearest neighbor
graph, where k =4. In the neighbor graph, each node represents
a cell, and edges between nodes indicate "interaction" between
3vol. 6 j 100958
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the cells. Each cell is connected to its 3 nearest neighbors.
Nodes are assigned to cell types based on the image data. To
identify enriched or depleted interactions between cell type
pairs, Giotto created a random permutation distribution by
shuffling cell labels on the graph. It then calculated a p value for
each cell-type pair by observing how often the simulated
occurrence of edges between those cell types occurred in
comparison to simulations. The G function and Giotto analysis
were implemented using the spatstat and Giotto packages in R
(R core team, 2021).27

Statistical analyses
Between-group analyses were performed using GraphPad Prism
9.5.0. Normal distribution of data was determined using D’Ag-
ostino-Pearson normality test. An unpaired t-test or Mann-
Whitney test, as appropriate, with Holm-Sidak correction for
multiple comparisons was used to compare the differences be-
tween two groups. A one-way ANOVA with Tukey’s post-hoc test
was used to compare the differences between three groups. A
Pearson or Spearman test, as appropriate, was used for correla-
tion assessments. The AUC of the computed G-function at
selected ‘r’ values was computed to characterize infiltration. This
workflow was implemented and visualised using R software.28

Boxplot figures visualising the differences in significant groups
were plotted in R using ggplot2.29 p values <0.05 were consid-
ered statistically significant.
Results
The workflow is shown in Fig. 1. For the first set of analyses, we
extracted RNA from whole liver tissue using unstained slides to
determine differences in the expression of macrophage- and
therapy-related genes relevant to the development of fibrosis
and recent clinical trials.6,11,13,18,30 Clinical data are shown in
Table S2. Gene expression in matched patients with minimal and
advanced fibrosis due to SLD are shown in the heatmap (Fig. 2A)
and Table S3. Even though previous studies of other chronic liver
diseases showed that CD68 significantly increased,11 this study
showed no significant difference in expression between controls
or patients with minimal or advanced fibrosis due to SLD. Several
genes that are known to be increased in hepatic fibrogenesis13,31

showed no significant difference between the groups (e.g. CD206,
TREM2) or significantly decreased with advancing fibrosis (e.g.
CD163 and ARG1) (Fig. 2B). Targets of cenicriviroc (CCR2 and
CCR5) and galactoarabino-24-rhannogalaturonan/GB1211
(galectin-3/LGALS3), as well as CCL2 and CCL5, were significantly
increased in the patients with advanced fibrosis when compared
to those with minimal fibrosis (Fig. 2B and Table S3). An impor-
tant observation was the marked variability in the Log2 levels in
the individual patients with SLD, especially in the groups with
cirrhosis (Fig. 2B). These unexpected results prompted us to
further evaluate macrophage phenotypes and expression of
these targets in situ in the hepatic microenvironment with
spectral imaging, an approach that preserves architecture and
spatial context.

Archived blocks from patients with biopsy-proven SLD were
again separated into minimal or advanced fibrosis groups and
compared with controls. Clinical data at baseline biopsy are
shown in Table S4. Representative multiplex images are shown in
Fig. 3A–C. Visiopharm combines deep learning and artificial in-
telligence to provide accurate cell segmentation and multiplex
phenotyping of tissue microenvironments. A phenotyping
JHEP Reports 2024
module analysed the cell population across all samples and
fluorescent marker of interest to identify a unique cellular
phenotype corresponding to a different colour for each cell
(Fig. 3D–F). From these phenotypes, t-SNE plots (Fig. 3G–I) and
phenotype profiles (Fig. 3J) were generated to compare different
phenotypes in each group. The t-SNE plots showed unique
phenotypic patterns in the different groups which were better
identified and quantified in the corresponding phenotype profile
map (Fig. 3J). We identified 25 different phenotypes with a
prevalence greater than zero (cut-off: 0.1%) from the multiplex
spectral images. Patients with advanced fibrosis due to SLD had
significantly increased Mac387+ macrophages when compared
with controls. However, no significant differences were observed
between patients with minimal or advanced fibrosis. Several
populations that included the presence of CD14 were signifi-
cantly decreased in SLD. Again, no significant differences in these
populations were observed in the patients with minimal or
advanced fibrosis. Absolute numbers and details of the statistical
comparisons are shown in Tables S5 and S6.

As no significant differences were observed in phenotypes
between the groups of patients with minimal and advanced
fibrosis attributable to SLD (Fig. 3), we hypothesised that het-
erogeneity may exist between individual patients. The preva-
lence of recruited monocyte-derived macrophages (Mac387+)
was heterogeneous in both groups, with higher prevalence
observed in a couple of patients within each group (Fig. 4). In the
minimal fibrosis group, patients 27 and 29 had greater per-
centages of Mac387+ macrophages when compared with the
other patients. Control 13 was the only patient that had a
number above the cut-off we used in the generation of the Vis-
iopharm heatmap. In the advanced fibrosis group, patient 32 had
the highest percentage of CD14+ expression. Patient 34 had the
greatest number of unique phenotypes, many of which were not
present in the other patients in this group.

Next, instead of quantifying the different macrophage phe-
notypes in each of the patient groups, we evaluated their spatial
relationships in the hepatic microenvironment. First, UMAPs, a
dimension reduction tool, was used to visualise large, high-
dimensional datasets and their local and global variations in
cell biomarker expression (Fig. 5A–C). UMAP combines data from
all images in each group while preserving the innate local and
global relationships. Differential distribution of CD68+ and
Mac387+ macrophages was observed with advanced fibrosis
(Fig. 5D and E). Fig. 5F shows a representative G-function curve,
where a steeper slope indicates more infiltration of the cell of
interest near the reference phenotype at the given distance of
observation. Fig. 5G compares the AUC of G-function curves for
the Mac387+ vs. CD68+ phenotype pair. This was the only rela-
tionship for which a significant difference (p <0.01) was detected
in the infiltration curves between the groups, with a bigger value
indicative of increased infiltration of MAC387+ at smaller dis-
tances from CD68+. We also compared the interaction of phe-
notypes within the hepatic microenvironment using Giotto.
Using X, Y coordinates of cell centroids and prior information
about cell phenotypes, Giotto creates a nearest neighbour graph
in the different groups using a custom-designed algorithm that
allowed generation of a spatial analysis matrix plot (Fig. 5H). The
y-axis shows each of the phenotype interactions detected and
the x-axis (at the top) shows the different patient groups. Cell-
pair enrichment interactions are shown in red, while cell-pair
depletion interactions are shown in blue. Several enrichments
were increased in patients with advanced fibrosis and these
4vol. 6 j 100958
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Fig. 2. nCounter analysis did not detect differences in several macrophage markers but showed significant differences in therapy-related markers. (A)
Heatmaps with gene expression profiles from the different groups of liver biopsies showed independent clustering. Orange = high expression; blue = low
expression. The panels to the right show macrophage-related gene expression. (B) Analyses between groups showed significant upregulation of CD9, CCR2,
LGALS3, CCL2, and CCL5, and significant downregulation of CD14, CD163, and ARG1 with disease progression (see also Table S3). A one-way ANOVA with Tukey’s
correction was used to compare the groups; *p <0.05; **p <0.01; ***p <0.001; ****p <0.0001. A value of p <0.05 was considered significant. (See Tables S2 and S3 for
additional details.) Adv, advanced fibrosis; Ctrl, controls; Min, minimal fibrosis.
included CD68+ and Mac387+ (Fig. 5H, red arrows). Three
depletion interactions were identified in patients with advanced
fibrosis when compared with those with minimal fibrosis
(Fig. 5H, blue arrows). Next, we wanted to determine if certain
patients had unique spatial interactions and evaluated each
JHEP Reports 2024
patient individually using Giotto. In Fig. 6A–D, each of the col-
oured dots represents a different macrophage phenotype and red
or blue lines indicate cell-pair interactions. The phenotypes
compared are shown in the color dots and the figure legend. Red
lines indicate cell-pair interactions that were enriched, whereas
5vol. 6 j 100958
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blue lines indicate cell-pair interactions that were depleted. In-
dividual patients in both the minimal and advanced fibrosis
groups had varied macrophage interactions. In the first com-
parisons (Fig. 6A and B), patients 27 and 29 were the only pa-
tients with minimal fibrosis that had enrichment of Mac387+
cells with Mac387+ cells (red arrows). In the advanced fibrosis
group, patients 31 and 34 had more enrichment interactions
than the group of patients with minimal fibrosis and the
JHEP Reports 2024
remaining patients in this group. Overall, patients with advanced
fibrosis had more enrichment interactions, particularly patients
31, 32, and 34, who had several phenotypes enriched, more than
other patients within this group, whereas patients 31, 33, and 34
had enrichment of Mac387+ (black arrows). In the second set of
phenotype comparisons (Fig. 6C and D), patients 27 and 29 again
showed enrichment of Mac387+ with Mac387+ macrophages.
Follow-up data for these patients are shown in Table S4. Patients
6vol. 6 j 100958
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Fig. 4. Individual patients with SLD have variations in intrahepatic macrophage populations. Visiopharm algorithms were used to compare the prevalence of
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27 and 29 later developed evidence of portal hypertension,
including splenomegaly, thrombocytopaenia, and elevated par-
tial thromboplastin time approximately 7.6 and 9.4 years later,
respectively. Two of the patients with advanced fibrosis died
approximately 3 and 4 years later, patient 32 from ESLD, and
patient 34 from ‘bowel rupture’. Patient 31 had compensated
cirrhosis with features of portal hypertension.

As we observed variability in macrophage phenotypes that
are known targets of emerging anti-fibrotic therapies in SLD (e.g.
Mac387), we hypothesised that these patients may also have
varied expression of therapeutic targets that could be detected.
We randomly selected four liver biopsies (fibrosis stages 2–4/4)
that were collected at our institution with confirmed SLD (one of
these was from a patient that had both HCV and SLD), and used
another multiplex panel containing CD163, galectin-3, CCR2, and
Mac387 (Table S7 and Fig. S1). CCR2 and galectin-3 are two
known druggable targets in clinical trials for the treatment of
SLD-mediated fibrosis.6,17,18 We separated all the images
collected from each patient into portal tracts and lobules and
phenotypes were calculated as the percentage of the total cell
population in each patient’s liver biopsy (based on nuclear
staining with DAPI). Varied expression of CCR2 and galectin-3
was detected in patients with SLD. The patient that had the
highest NAS (patient 37) had the highest expression of CD163
and galectin-3, while the patient with HCV in combination with
SLD (patient 39) had the highest expression of CCR2 (Fig. S1).
After this initial optimisation experiment, we ran this same panel
on more patients, including two controls and nine different pa-
tients with varying NAS grades (Table S8 and Figs. 7 and 8). Even
though we observed heterogeneity in individual patients, a
positive correlation was detected between certain macrophage
JHEP Reports 2024
phenotypes and druggable targets with increased NAS (black
asterisks) and fibrosis stages (red asterisks).
Discussion
SLD is increasing in prevalence and challenging to treat.32,33

Several antifibrotic therapies in previous or ongoing clinical tri-
als target intrahepatic macrophages (CENTAUR, AURORA, TAN-
DEM, and GR-MD-02) without knowledge of the patient’s
underlying microenvironment. Initial trials for some of the most
promising agents, such as cenicriviroc, terminated early because
of lack of efficacy. Initial results of the CENTAUR trial showed that
�20% of patients had improvement of fibrosis (>−1 stage) without
affecting steatosis or inflammatory activity associated with SLD
at the end of year 1. At the end of year 2, no further improvement
in fibrosis was observed.6 Because cenicriviroc inhibits infiltra-
tion of pro-fibrotic macrophages into the liver via antagonism of
CCR2/CCR5 and has been reported to decrease inflammation,
steatosis, and fibrosis,6,11,12,30,34,35 these results raised several
questions. Why did patients with advanced fibrosis have a more
pronounced response? Did all patients with biopsy-proven SLD
have infiltrating macrophages in their livers? Why did such a
small percentage of patients respond? Although serial liver bi-
opsies were collected from patients at baseline, end of year 1,
and end of year 2, these were only used to compare histologic
changes (i.e. NAS and fibrosis stages).6 We developed these
studies to provide clues to these questions and to improve un-
derstanding of these complex cells within the human hepatic
microenvironment.

First, we compared a group of matched patients with biopsy-
confirmed SLD (Table S2) using NanoString nCounter (Fig. 2).
7vol. 6 j 100958
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Gadd et al.36 reported that CD68+ macrophages were increased
in the portal tracts of patients with NAFLD and were one of the
earliest changes detected and another study using digital spatial
profiling revealed greater mRNA expression of CD68 in patients
with advanced fibrosis caused by SLD.37 However, we did not
detect significant increases in several profibrotic macrophage-
related genes (e.g. CD68, CD206, CD163, or ARG1). Several
genes associated with macrophage-targeting therapies (e.g.
CCL2, CCL5, CCR2, CCR5, and galectin-3/LGALS3) were signifi-
cantly increased in patients with advanced fibrosis. Although
results showed variability in both log2 levels (Fig. 2) and protein
expression of several of these markers in situ in the hepatic
microenvironment in patients with SLD (Figs. 7 and 8), molecular
analysis still showed significantly higher expression in patients
with advanced fibrosis (Fig. 2). However, homogenisation of liver
tissue is unable to detect important differences in individual
patients, phenotype percentages in the context of hepatic ar-
chitecture, or significant spatial relationships. A recent study by
Jiao et al.38 showed that expression of pSTAT3 on segmented
non-hepatocyte areas played a key role in fibrogenesis and re-
sults were dependent on spatial context. Guillot et al.7 also
recently spatially resolved the hepatic microenvironment and
determined that loss of hepatocytes and ductular reaction were
associated with monocyte-derived macrophage infiltration and
fibrosis progression in several chronic liver diseases, including
NAFLD/SLD. Because of these results, additional experiments
were conducted using spectral imaging; an approach that can
analyse macrophage populations in situ with preservation of
hepatic architecture.

As cenicriviroc resulted in a more pronounced response in
patients with advanced fibrosis,6 we hypothesised that patients
with bridging fibrosis/cirrhosis would have increased prevalence
of infiltrating macrophages, enhanced spatial relationships,
enrichment of macrophage phenotypes, and higher expression of
treatment targets, such as CCR2. As a small percentage of patients
with SLD showed improvement after cenicriviroc treatment, we
also predicted that there would be variability in prevalence of
certain phenotypes and marker expression between individual
patients. Interestingly, both groups of patients with SLD showed
significantly increased percentages of recruitedmacrophages, but
significant upregulation (i.e. the Mac387+ phenotype) was only
seen in patients with advanced fibrosis compared to controls.
Moreover, no significant differencewasobservedbetween the two
groups of patients with SLD because of the presence of substantial
heterogeneity in individual patients (Figs. 3 and 4). CD68+ and
Mac387+ phenotypes have also been shown to be increased in
patients with chronic liver disease when compared with con-
trols.11 Although we expected to see some variability in the
prevalenceofMac387expression in the individualpatients,wedid
not expect two patientswithminimal fibrosis (patients 27 and 29)
to have a higher prevalence of infiltratingmacrophages thanmost
patients with advanced fibrosis (see Fig. 4).

As spatial analysis of the tumour microenvironment has
predicted drug efficacy and clinical outcome in patients with
HCC and cholangiocarcinoma, respectively,39,40 we applied
showed a positive correlation with NAS scores and fibrosis stages. Pearson or Spe
and fibrosis stages in the different regions. Red asterisks = correlation with fibrosis
of p <0.05 was considered significant. Created with GraphPad Prism (See Table S
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similar approaches to patients with SLD. We used UMAP, G-
function, and Giotto to quantify mixing and/or infiltration of
macrophage phenotypes. The interaction of Mac387+ and CD68+
cells, either with each other or with other markers, was signifi-
cantly increased in the patients with advanced fibrosis (see
Fig. 5). Huang et al.11 showed that these two phenotypes increase
in patients with chronic liver disease. It seems obvious that cells
that are increased in number in a tissue site will have more
opportunities to be near one another. However, we evaluated
spatial relationships of all 25 phenotypes identified in this study,
and only the interaction between Mac387+ and CD68+ macro-
phages reached statistical significance (see Fig. 5).

Analysis of individual patients with minimal fibrosis showed
that only two patients had increased enrichment of Mac387+
macrophages (Fig. 6A and C, patients 27 and 29), and these
patients later developed portal hypertension (see Fig. 6 and
Table S4). Patients 33 and 34 with advanced fibrosis also had a
higher prevalence of Mac387+ cells when compared with other
patients (Fig. 4). Patient 32 was deceased because of ESLD and
baseline biopsy did not show increased prevalence of the
macrophage phenotypes evaluated. Patient 34 had a high
prevalence of numerous phenotypes within the liver and was
reported deceased from a bowel rupture attributable to un-
derlying ischaemic colitis, 4.9 years after baseline biopsy (see
Fig. 4 and Table S4). These interactions deserve further inves-
tigation since Mac387+ cells are known to mediate hepatic
fibrosis and are one of the main targets of drugs such as
cenicriviroc.

The amount of heterogeneity among individual patients
with SLD, particularly with phenotypes known to be pro-
fibrotic (e.g. Mac387+ and CD163+), prompted us to evaluate
the next four patients diagnosed with SLD by liver biopsy. We
conducted spectral imaging analysis in addition to routine NAS
grading and fibrosis staging (Table S7 and Fig. S1). Analysis of a
larger group of patients showed similar results with increased
expression correlating with increased NAS and fibrosis stages
(Figs. 7 and 8, Table S8, Fig. S2, and Table S9). However, PD-L1+
host cells within the hepatic microenvironment are more likely
to respond to immunotherapy against this target, and a recent
study by Lu et al.41 in Gut reported that selective modulation of
macrophages restores antitumoral properties in patients with
HCC. If macrophages can be ‘selectively modified’ in the livers of
patients that already have cancer, they most certainly can be
modified earlier in the course of the disease where poor out-
comes such as cirrhosis and HCC have a chance of being
prevented.

A major strength of this study is that we analysed the human
liver microenvironment in situ in biopsies from real patients with
SLD. Many studies of the hepatic microenvironment and immune
response have been conducted in vitro and in mouse models,
including several that led to cenicriviroc therapy for SLD.42 It is
well known that mice differ from humans.43,44 An elegant
comparative study by Jiang et al.44 compared mouse, human, and
humanised mouse livers in fatty liver disease, and showed that
gene expression in mice and humans is quite different, with only
arman tests were used, accordingly, to correlate phenotypic markers with NAS
; black asterisks = correlation with NAS. *p <0.05; **p <0.01; ***p <0.001. A value
9 and Fig. S2 for additional details.) SLD, steatotic liver disease.
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Fig. 8. Individual patients with SLD have unique phenotypes that express CCR2 and galectin-3 (Gal3). A custom Visiopharm algorithm compared the prev-
alence of phenotypes in the patients from Fig. 7. Although individual variability was observed among patients, certain phenotypes and druggable targets showed a
correlationwithNAS scores andfibrosis stages. Pearson or Spearman testswereused, accordingly, to correlatephenotypicmarkerswithNAS andfibrosis stages in the
different regions. Red asterisks = correlationwith fibrosis; black asterisks = correlationwith NAS. *p <0.05; **p <0.01; ***p <0.001. A value of p <0.05 was considered
significant. Created with GraphPad Prism (See Table S9 and Fig. S2 for additional details.) NAS, NAFLD activity scores; SLD, steatotic liver disease.
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1,524 genes commonly regulated. In addition, it takes years to
develop cirrhosis and HCC when you have chronic liver disease,
so replicating the duration of the disease is not feasible when
using animal models. Studies in humans, although more trans-
lational and often more clinically relevant, also pose challenges.
First, mechanistic studies are nearly impossible, whereas they
are common in mouse models. Second, as we observed in these
patients, macrophages within the hepatic microenvironment
JHEP Reports 2024
vary substantially and each patient has their own unique
populations.

In summary, if we can learn how to modulate the hepatic
microenvironment earlier during disease before cirrhosis or HCC
develop, we may be able to prevent poor outcomes before it is
too late to intervene. We hope the results of this study will
inspire development of more targeted, translational approaches
for the treatment of SLD and other chronic medical liver diseases.
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