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Abstract: The wood frog, Rana sylvatica, is the best-studied of a small group of amphibian species
that survive whole body freezing during the winter months. These frogs endure the freezing of
65–70% of their total body water in extracellular ice masses. They have implemented multiple
adaptations that manage ice formation, deal with freeze-induced ischemia/reperfusion stress, limit
cell volume reduction with the production of small molecule cryoprotectants (glucose, urea) and
adjust a wide variety of metabolic pathways for prolonged life in a frozen state. All organs, tissues,
cells and intracellular organelles are affected by freeze/thaw and its consequences. This article
explores mitochondria in the frozen frog with a focus on both the consequences of freezing (e.g.,
anoxia/ischemia, cell volume reduction) and mitigating defenses (e.g., antioxidants, chaperone
proteins, upregulation of mitochondria-encoded genes, enzyme regulation, etc.) in order to identify
adaptive strategies that defend and adapt mitochondria in animals that can be frozen for six months
or more every year. A particular focus is placed on freeze-responsive genes in wood frogs that are
encoded on the mitochondrial genome including ATP6/8, ND4 and 16S RNA. These were strongly up-
regulated during whole body freezing (24 h at −2.5 ◦C) in the liver and brain but showed opposing
responses to two component stresses: strong upregulation in response to anoxia but no response
to dehydration stress. This indicates that freeze-responsive upregulation of mitochondria-encoded
genes is triggered by declining oxygen and likely has an adaptive function in supporting cellular
energetics under indeterminate lengths of whole body freezing.

Keywords: Rana sylvatica; antioxidant defenses; freezing survival; anoxia; dehydration; mitochondrial
genes; ATP 6/8; ND4

1. Introduction

Every species on Earth is endowed with a set of biochemical and physiological strate-
gies that can optimize their survival and reproductive capacity in the face of biotic and
abiotic stresses. One of the most amazing survival strategies in the animal kingdom is freeze
tolerance, the capacity of numerous invertebrate and a few vertebrate species to withstand
ice formation within extracellular fluid spaces of their bodies while resisting intracellular
freezing. This is a crucial adaptation for winter survival of many terrestrial ectotherms
living in seasonally cold climates [1,2]. Freeze tolerance in nature can involve continu-
ous freezing episodes lasting days, weeks or months. Some species (mainly insects) that
overwinter in exposed sites above the snowpack may also experience daily freeze/thaw
cycles. While frozen, normal physiological functions of tissues and organs are suspended
including heartbeat, breathing, nerve transmission, skeletal muscle movement, etc.

Freeze/thaw is an event comparable to ischemia/reperfusion. Ice formation in ex-
tracellular and extra-organ spaces cuts off oxygen delivery to tissues. Hence, cells must
use “survival mode” strategies including a switch to fermentable fuels (e.g., glucose, glyco-
gen), accumulation of lactate as an end product, endurance of a slow but steady decrease
in ATP levels and energy charge, and a necessary suppression of many ATP-expensive
cellular activities [1,3]. As in other ischemic events (e.g., heart attack, stroke) damage
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due to increased reactive oxygen species (ROS) generation can be high during thawing
when breathing and heartbeat resume and tissues undergo reperfusion and renewed oxy-
gen uptake [4,5]. Hence, antioxidant defenses are proving to be an important feature of
freeze tolerance.

Nowhere else in the cell is the effect of oxygen limitation felt more keenly than in
the mitochondria, where the crucial function of the organelle in oxygen-dependent ATP
production is suppressed or fully shut down in the frozen state with potentially grave
consequences for the multitude of ATP-requiring cellular functions. Furthermore, freeze-
induced disruption of mitochondrial functions can potentially trigger apoptosis. The
present article explores the role of antioxidants and the adaptive responses of mitochondria
to whole body freezing, summarizing research carried out on the primary vertebrate model
of freeze tolerance, the wood frog, Rana sylvatica.

2. Characteristics of Freeze Tolerance

Among vertebrates, freeze tolerance is most common among amphibians that live at
high latitudes or altitudes. Several species of frogs and two Siberian salamander species are
known to be freeze tolerant and capable of surviving days, weeks or months of continuous
freezing [1]. Hatchlings of a few turtle species that spend their first winter on land, typically
buried in the natal nest, are also freeze tolerant, although they hibernate under water in
subsequent winters. Among adult reptiles, freeze tolerance has been described for box
turtles (Terrepene carolina) and European common lizards (Lacerta vivipara) [1].

The wood frog, Rana sylvatica (recently renamed Lithobates sylvaticus), is the best-
studied of the freeze tolerant vertebrates and the main model used to explore molecular,
biochemical and physiological mechanisms of freezing survival [1,2]. This North Amer-
ican frog has a range extending from the Appalachian mountains of southeastern USA,
northward across all of the boreal forest of Canada and into Alaska. When frozen, wood
frogs have no detectable vital signs: no heartbeat, breathing, blood circulation, muscle
movement, or detectable brain activity. They survive for weeks/months with up to 65–70%
of total body water converted into extracellular ice, much of the water drawn out of cells
so that cell and organ volumes decrease dramatically. Hence, the frozen frog must deal
with multiple freeze-induced consequences including (a) potential physical damage by ice
crystals to delicate tissues, (b) major water loss from cells into extracellular or extra-organ
ice masses, (c) hyperglycemia due to the extreme amounts of glucose mobilized to provide
cryoprotection to cells (blood and tissue glucose levels can rise as much as 50-fold), and (d)
anoxia/ischemia caused by the cessation of breathing, heartbeat and blood circulation [1].
Species that have evolved freeze tolerance appear to have done so because they are unable
to access frost-free refugia such as by digging deep underground or moving into deep
water. Among poikilothermic vertebrates freezing is usually triggered by skin contact
with environmental ice when ambient temperature falls below the freezing point of body
fluids (about −2 ◦C). Ice nucleation at mild subzero temperatures is actually beneficial for
it allows a relatively slow progression of ice formation through extracellular fluid spaces,
often requiring 15–20 h to reach maximum. Wood frogs use multiple protective measures
that aid freezing survival including (a) synthesis of ice nucleating proteins (INPs) that
help to modulate ice growth in extracellular spaces, (b) production of massive amounts
of glucose as a cryoprotectant by liver that is then exported to all other organs and taken
up to provide colligative resistance to the loss of cell water into extracellular ice, thereby
retaining a minimum cell volume, (c) metabolic rate depression to slow energy use and
suppress nonessential processes, (d) differential gene/protein expression to help ameliorate
various consequences of life in a frozen state, and (e) altered regulation of the activities and
properties of multiple enzymes [1,2].

3. Freeze Tolerance and Antioxidant Defenses

Studies of freeze tolerant animals can reveal information about how mitochondria
respond to the very long interruptions of oxygen supply and the readjustments needed
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to deal with days, weeks or months of life in a frozen state. One biochemical adaptation
that we have identified is the maintenance and/or upregulation of antioxidant defenses [6].
For example, freezing for 24 h at −2.5 ◦C strongly elevated total glutathione peroxidase
activities in all five tissues of wood frogs tested (liver, kidney, brain, heart, skeletal muscle);
activity in the liver rose by 50% and in the heart by 150% and remained high after thawing.
In addition, glutathione peroxidase activities were significantly higher (often by ~2-fold)
in R. sylvatica tissues as compared with a comparable species that winters under water in
the same locale, the leopard frog Rana pipiens. The same was true of superoxide dismutase,
glutathione S-transferase and glutathione reductase; enzyme activities in wood frog tis-
sues were generally about twice as high as in leopard frogs [6]. Furthermore, glutathione
contents (GSH, GSSG) in most tissues were markedly higher in frozen wood frogs than
in unfrozen controls and also greatly exceeded the levels in R. pipiens tissues [6,7]. These
responses by glutathione and antioxidant enzymes to freezing fit with the theory of “prepa-
ration for oxidative stress” (POS) whereby organisms may enhance antioxidant defenses
in advance of a predictable seasonal or stress event (e.g., freeze/thaw, torpor/arousal,
anoxia/reoxygenation) even though oxidative stress is a characteristic of the recovery
phase when tissue oxygenation rises rapidly again [4].

Another study assessed changes in protein levels of five antioxidant enzymes (using
a 5-plex Luminex Oxidative Stress Magnetic Bead panel) to compare responses to three
stresses (freezing, anoxia, dehydration) in the brain and heart of R. sylvatica [8]. Note that
anoxia and cell dehydration are two major component stresses of whole body freezing due
to the cessation of blood circulation and the loss of much cell water into extracellular ice
masses. In response to freezing, protein levels of cytosolic Cu/Zn superoxide dismutase
(SOD) rose ~1.4-fold in the brain of frozen frogs, whereas the mitochondrial Mn-dependent
SOD increased by the same amount in the heart [8]. Catalase protein levels in the brain
were also strongly upregulated by 3-fold under anoxia stress but were unchanged in
the heart.

Similar context-specific patterns were found using a 5-plex Heat Shock Protein panel.
Of particular interest, was the upregulation of Hsp60 (a mitochondrial HSP) in anoxic
brain by 1.7-fold in response to 4 or 24 h of anoxia and by 2.1-fold in the heart of 4 h
frozen frogs but with very little change in cytosolic HSPs [8]. Comparable data were
gathered from an immunoblotting analysis of the responses of five chaperone proteins
(Hsp110, Hsc70, Hsp60, Hsp40, Hsp10) in six tissues of wood frogs when faced with
freezing, anoxia or dehydration stresses [9]. The two mitochondrial chaperones (Hsp60 and
its partner Hsp10) were both significantly up-regulated by 1.5–2.3 fold in the liver, skin,
kidney and skeletal muscle of wood frogs during freezing with singular up-regulation of
Hsp60 in the brain and Hsp10 in the heart. Hsp60 was also up-regulated under anoxia
stress (simulating the ischemia caused by freezing) in five tissues and under dehydration
stress (simlulating water loss into extracellular ice masses) in three tissues with similar
responses by Hsp10 [9]. Overall, HSP responses to stress by liver, brain and skeletal muscle
were highest for the mitochondrial chaperones. Hence, this suggests a particular need to
protect mitochondria under stress conditions with both enhanced antioxidant defenses and
chaperones to stabilize protein structure.

The responses of NF-κB, an oxygen-sensitive transcription factor, to wood frog freezing
also support the proposal that enhanced antioxidant defenses contribute to cell protection in
the frozen state. Under normal unstressed conditions, NF-κB is held in the cytoplasm by its
inhibitory protein, IκB, but when ROS levels rise, IκB is phosphorylated, ubiquitinated and
targeted for degradation, leaving NF-κB free to translocate into the nucleus and upregulate
antioxidant genes [10]. Protein expression of both the p50 and p65 subunits of NF-κB was
up-regulated by 2–2.7 fold in the liver and skeletal muscle of wood frogs after 4 and/or
24 h of freezing at −2.5 ◦C [11]. Phospho-IκB levels also rose in the liver indicating greater
transcriptional activity of NF-κB and two proteins under NF-κB transcriptional control,
ferritin heavy chain and manganese superoxide dismutase (MnSOD), showed 1.5–2-fold
increases in the liver and skeletal muscle in the frozen state. Transcript levels of ferritin
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heavy chain were also elevated in the liver of 24 h frozen frogs but did not change in
muscle. MnSOD is the isozyme found in mitochondria and its upregulation would supply
enhanced protection from superoxide radicals generated in the shrunken cells of frozen
animals. Freeze-triggered changes in antioxidants under NF-κB control would also enhance
cellular antioxidant potential in anticipation of high oxidative stress when tissue perfusion
restarts during thawing.

Upregulation of antioxidant defenses is also crucial for endurance of environmental
stress in turtles to deal with anoxia/hypoxia stress in adult turtles during diving or un-
derwater hibernation [12] or freezing stress among hatchling turtles that spend their first
winter of life in their natal underground nests [13]. NF-κB responded to oxygen limitation
in anoxia-tolerant adult red-eared slider turtles (Trachemys scripta elegans) with upregula-
tion of both transcript and protein levels of the p50 and p65 subunits. The response was
particularly strong after 5 h of anoxic submergence but returned to near baseline after 20 h
submergence [12]. DNA-binding activity of NF-κB also increased by ~2-fold in the liver
after 5 h anoxic submergence and remained high after 20 h anoxia. Downstream targets of
NF-κB action (ferritin heavy chain, MnSOD, Cu/Zn SOD) were all significantly elevated
by 1.5–2.5 fold after both 5 h and 20 h anoxia exposures [12]. MnSOD showed the largest
increase in transcript levels (2.5 fold within 5 h), further indicating a crucial need to protect
mitochondria under oxygen-limiting conditions.

The action of another transcription factor involved in antioxidant defense, Nrf2, re-
sponded to whole body freezing in hatchling painted turtles (Chrysemys picta marginata).
Both transcript and protein levels of Nrf2 were elevated in several tissues after 5 h of freez-
ing of hatchlings and six isozymes of glutathione S-transferase (GSTP1, GSTM1, GSTM3,
GSTK1, GSTA3 and GSTT1) increased significantly (by 1.5–2.5 fold) in selected tissues,
primarily in the brain [13]. However, neither freeze/thaw nor anoxia/reoxygenation expo-
sures of wood frogs had a substantial effect on Nrf2 levels in frog liver or skeletal muscle
but Nrf2 binding capacity to DNA increased significantly in both tissues of 24 h frozen frogs
as compared with unfrozen or 8 h thawed frogs [14]. Furthermore, protein levels of the
MafG binding partner of Nrf2 rose strongly in response to 24 h anoxia in wood frog liver
(by 2.5-fold) and muscle (by 6-fold) and remained high after 4 h aerobic recovery [15]. Both
of these responses point to crucial roles for MafG and DNA binding capacity in mediating
wood frog responses to Nrf2 under freezing or anoxia stresses. Indeed, Nrf2 belongs to the
Cap ‘n’ Collar family of transcription factors that are unable to bind DNA on their own
and, hence, dimerization with MAF proteins is obligatory in order to activate gene tran-
scription [16]. This places stress-responsive changes in MafG levels as central to mediating
changes in the expression of genes under Nrf2 control.

Adaptation of antioxidant defenses in wood frogs was also analyzed at the gene
transcript level. Multiple genes involved in antioxidant defense were identified as up-
regulated in wood frog heart in response to freezing via cDNA array screening with human
19K cDNA gene chips [17]. These included several glutathione-S-transferase isozymes,
thioredoxin, and glucose-6-phosphate dehydrogenase (the latter being key to producing
the NADPH needed to recharge glutathione or thioredoxin). Genes coding for ferritin light
chain and metallothionein 1G were also up-regulated and, together with ferritin heavy
chain (discussed above), increased levels of ferritin and metallothionein can act to minimize
metal-catalyzed oxidative stress in a situation where intracellular ion concentrations are
strongly elevated due to water exit from cells to join extracellular ice masses. Screen-
ing also indicated upregulation of the Fo subunit C of the mitochondrial ATP synthase
Fo–F1 complex as well as the mitochondrial adenine nucleotide translocator, these changes
implicating a need to readjust ATP production and ATP/ADP transport within cells in the
frozen state [17].

4. Freeze Tolerance and Regulation of Antioxidant Enzymes

Not only are the activities of various antioxidant enzymes increased in wood frog
tissues in response to freezing but enzymatic properties can also be modified by posttrans-
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lational modifications. For example, skeletal muscle catalase from frozen (−2.5 ◦C) wood
frogs showed a significantly higher Vmax (1.5-fold) and lower Km H2O2 (0.64 fold) com-
pared with catalase from control (5 ◦C acclimated) frogs [18]. These changes were also seen
during in vitro incubations that stimulated protein kinase A (PKA) or the AMP-activated
protein kinase (AMPK) whereas protein phosphatase treatment increased the Km value.
Properties of both cytoplasmic Cu/Zn-dependent superoxide dismutase (CuZn-SOD) and
mitochondrial Mn-dependent SOD (MnSOD) also changed in wood frog skeletal muscle
during freezing [19]. Cu/Zn SOD showed an increased Vmax in muscle from frozen frogs
but no significant change in kinetic parameters whereas MnSOD from muscle of frozen
frogs showed increased affinity for substrate and reduced sensitivity to urea denaturation,
as compared with controls. Total phosphorylation of MnSOD also increased ~2.8-fold for
the muscle enzyme from 24 h frozen frogs, comprised of 2.4- and 1.3-fold increases in serine
and tyrosine phosphorylation of the protein. This indicates that substantial posttransla-
tional modifications can stabilize/adapt MnSOD to deal with an altered intramitochondrial
environment in the frozen state.

Both superoxide radicals and hydroxyl radicals (a product of H2O2 breakdown) have
damaging effects on cell proteins and membrane phospholipids. However, H2O2 also
acts as a signaling molecule that is exported from mitochondria to trigger and coordinate
responses by a variety of extra-mitochondrial cell functions, both protective and destruc-
tive [20]. Hence, mitochondria are now considered as both receivers and integrators of
diverse cell signals, an action that could certainly be important for cell/organ survival in
freeze tolerant animals whose cells are cut-off from global signals (hormones, nerve stimu-
lation) throughout the freeze. Freeze tolerant animals may need to revert to dependence on
only ancient single cell mechanisms for maintaining homeostasis throughout what could
be days or months of living in a frozen state.

5. Freeze-Induced Expression of Genes/Proteins with Mitochondrial Functions

Freezing triggers the upregulation of many genes in wood frog organs whose protein
products work in multiple capacities to reorganize metabolism or protect cells/tissues
from a variety of issues. Various studies have identified genes and their protein products
that function in modulating where ice grows, mediating cryoprotectant synthesis and its
export/uptake by cells, coordinating metabolic rate suppression, defending cells from
ischemia/reperfusion injury, stabilizing membranes as cell volumes fall to low levels,
and enhancing clotting factors to deal with any bleeding issues after thawing, among
others [1,6,9,21–23]. A number of these address mitochondrial concerns.

Several freeze-upregulated genes code for proteins that function within mitochondria
or are genes that are coded on the mitochondrial genome. An example of the former
is the adenine nucleotide translocator (ANT; also called ADP/ATP translocase) that is
a highly abundant protein located in the inner mitochondrial membrane. Screening of
a cDNA library made from liver of freeze-exposed (−2.5 ◦C for 24 h) versus control
(5 ◦C-acclimated) wood frogs confirmed ANT as freeze-upregulated [24]. ANT catalyzes
adenylate exchange, moving newly synthesized ATP out of mitochondria in exchange for
ADP import from the cytoplasm. Transcript levels of aat rose 4.5-fold in the liver of wood
frogs within 8 h of freeze initiation and protein levels peaked at 24 h frozen. Furthermore,
aat transcript levels in wood frog tissues also responded to anoxia exposure, one of the
component stresses of freezing, but did not respond to dehydration [24]. This indicated
that freeze-induced ANT upregulation is linked to cellular energetics and responding to
the effect of oxygen limitation in compromising tissue ATP supply. Complementing aat
upregulation, both gene and protein expression of the inner mitochondrial membrane
inorganic phosphate carrier (PiC), that supplies the Pi needed for ATP synthesis, were
strongly upregulated by freezing in wood frog liver [25]. Overall, these adjustments to inner
mitochondrial membrane function suggest that mitochondrial ATP production is supported
for as long as possible even as oxygen delivery to tissues is increasingly restricted by rising
body ice content and reduced blood circulation. Such protective actions can support the
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crucial role of the liver in producing the glucose cryoprotectant that is synthesized and
exported to all other organs during the early minutes/hours after freezing begins. Levels
of the mitochondrial chaperone protein, HSP60, that functions to fold or refold proteins
in the mitochondria also rose by 1.5–2.2-fold in most wood frog tissues during freezing
indicating that attention is also given to stabilizing proteins in mitochondria in order
to maintain protein structure/function as freezing progresses [9]. HSP60 in wood frog
liver also responded positively to both anoxia and dehydration stresses confirming its
importance in stabilizing mitochondrial proteins in response to multiple external stresses.

Changes in the proteome of wood frog liver between summer and winter have also
been identified using liquid chromatography coupled with tandem mass spectrometry
quantitative isobaric peptide mapping [26]. Proteins that were more abundant in winter
included some involved in glycogen metabolism (phosphorylase, protein phosphatase-1),
glycolysis (pyruvate kinase, glyceraldehyde-3-P dehydrogenase), heat shock proteins, and
the antioxidant peroxiredoxin 6 (PRDX6). Importantly, PRDX6 is known to translocate
into mitochondria and does so as a response to ischemia/reperfusion stress or reactive
oxygen species generation [27–29]. Within the mitochondria PRDX6 is involved in con-
trolling oxidative stress with respect to PINK1/Parkin-mediated mitophagy [28]. Hence,
upregulation of PRDX6 provides another indication that wood frog cells actively enhance
antioxidant defenses, particularly within the mitochondria, to protect themselves dur-
ing the ischemia/reperfusion events of natural freeze/thaw. DNA array screening also
revealed freeze-responsive changes in gene expression in the liver and heart of freeze-
tolerant hatchling painted turtles, C. picata marginata. Upregulation of several proteins
associated with antioxidant defense (by 1.6- to 3.5-fold) was identified for iron binding
proteins (ferritin heavy and light chains, and transferrin receptor) and antioxidant enzymes
(glutathione peroxidase, glutathione-S-transferase, peroxiredoxin) [13], further supporting
the proposal that strong antioxidant defenses are key to freeze tolerance.

6. Enzymatic Controls on Mitochondrial Metabolism in Frozen Frogs

The above sections dealt mainly with measures that can protect or stabilize mito-
chondria during freezing in wood frogs. However, adaptive regulation of the activities of
mitochondrial enzymes also deserve consideration. Although oxygen depletion will ulti-
mately halt or strongly restrict oxygen-dependent mitochondrial functions (e.g., electron
transport chain, oxidative phosphorylation, and beta-oxidation of fatty acids), regulatory
controls on selected enzymes could still mediate or mitigate other metabolic functions
of mitochondria.

For example, various aspects of amino acid metabolism continue in the frozen frog.
Cellular energetics are supported by anaerobic metabolism in frozen frogs with the ac-
cumulation of both L-lactate and L-alanine as glycolytic end-products [3,30]. Alanine
production from pyruvate reduces the acidic consequences of lactic acid accumulation,
an advantage in a closed system such as frozen tissues. Indeed, alanine accumulation
in wood frog tissues (particularly skeletal muscle) was inversely related to decreases in
aspartate, glutamate and glutamine levels [3], these three amino acids being readily able to
participate in transaminase or deaminase reactions to produce alanine.

Wood frogs also build up urea in tissues during freezing and this small molecule
supplements glucose as a colligative cryoprotectant. Urea is a known osmoprotectant in
amphibians that undergo dehydration stress. In particular, numerous frogs and toad species
enter a hypometabolic state called estivation in the hot dry summer months. During this
time they undergo progressive muscle atrophy as they catabolize muscle protein for fuel
while utilizing the amino groups released to produce urea that is retained as a colligative
deterrent to water loss [31]. Hence, it is not surprising that urea accumulation is also
triggered in amphibian cells undergoing dehydration as a consequence of cell water loss
into extracellular ice masses [32,33].

A key player in amino acid catabolism and urea synthesis is glutamate dehydrogenase
(GDH), its reversible reaction allowing GDH to act as both a nitrogen donor and acceptor.
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Catabolism of several amino acids (glutamate, glutamine, histidine, arginine, proline)
ends via GDH with the product, alpha-ketoglutarate (α-KG), funneled into the Krebs
cycle and the ammonium ion either excreted or used for urea synthesis. An analysis of
purified wood frog liver GDH showed multiple properties that could promote amino
catabolism in support of urea synthesis. For example, when assayed at 22 ◦C in the
direction of glutamate catabolism (glutamate + NAD+ → α-KG + NH4

+ + NADH + H+),
the liver enzyme from frozen frogs, compared with controls, showed a 39% higher activity
of GDH. Km values for glutamate and NAD+ were both ~60% lower (indicating greater
affinity for these substrates) and inhibition by GTP was greatly reduced [34]. Hence,
the enzyme from frozen liver appeared poised for amino acid catabolism and for NH4

+

production to feed urea synthesis. GDH from liver of control versus frozen frogs also
differed in posttranslational modifications with the enzyme from liver of frozen frogs
showing reduced acetylation and ADP-ribosylation but elevated lysine methylation as
compared with controls [34]. These differential modifications could contribute to altering
multiple features of GDH function or localization; for example, the maximum velocity of
the enzyme in the glutamate catabolizing direction was 25% higher for liver GDH from
frozen frogs when assayed at 5 ◦C as compared with the enzyme from control frogs.

Crucial first steps of the urea cycle also take place in the mitochondria catalyzed by
carbamoyl phosphate synthetase 1 (CPS1) and ornithine transcarbamylase (OTC). Differ-
ential regulation of CPS1, the rate-limiting enzyme of urea synthesis, was detected in the
liver of control (5 ◦C) versus frozen (−2.5 ◦C) wood frogs [35]. This enzyme catalyzes
the first step of the cycle by trapping NH4

+ in an ATP-driven ligation with bicarbonate
and phosphate to form carbamoyl phosphate (CP). CP is then attached to ornithine via
OTC to form citrulline and exported to the cytoplasm where the remaining reactions of
cycle are completed, ending in urea output. Purified CPS1 from liver of frozen versus
control frogs showed significant changes in properties including a higher maximal activity,
greater affinity for NH4

+, reduced sensitivity to urea inhibition and, in the presence of
high glucose, greater affinity for ATP and the obligate CPS1 activator, N-acetylglutamate.
CPS1 from control and frozen frogs also differed in posttranslational modification by lysine
glutarylation that was significantly reduced on the enzyme from frozen frogs [35]. These
results indicate that urea cycle activity is maintained and differentially regulated during
freezing and that CPS1 activation during freezing has an important contribution to make
to cryoprotection by increasing the osmotic resistance (via facilitating urea accumulation)
against cell water loss into extracellular ice. These enzymatic studies show that, despite the
frequent focus on cellular energetics as the crucial role of mitochondria, these organelles
have other functions to contribute to achieve biochemical adaption to environmental stress.

7. The Mitogenome of Freeze Tolerant Frogs

The mitochondrial genome is a small closed circular molecule (typically about 16,000 bp)
and contains 13 protein-coding genes (ATP6/8, CytB, COX1-3, ND1-6 and ND-4L), 22 tRNAs,
2 rRNA genes and a noncoding control region [36]. It is widely used as a tool to assess
phylogenetic relationships between species due to its simplicity, maternal inheritance, and
high evolutionary rate. The wood frog mitochondrial genome has been sequenced and
shows the typical vertebrate content (GenBank accession number KP222281) [37]. No
unusual features were noted and the genome sequence was almost identical to that of the
North American bullfrog, Lithobates catesbeianus (that winters underwater), and three ranid
species found in northeastern Asia. The mitochondrial genome of another freeze tolerant
frog, the North American treefrog Hyla versicolor (recently renamed Dryophytes versicolor)
has also been sequenced and Figure 1 shows the genome map of this species that is typical
of vertebrates [38].
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Figure 1. The mitochondrial genome of the freeze tolerant North American gray treefrog, Dryophytes
versicolor (formerly Hyla versicolor). The outer ring shows the gene map with protein coding genes,
rRNAs, tRNAs and the AT-rich region. Genes seen on the outer ring are coded on the heavy (majority)
strand whereas genes on the inner ring are coded on the light (minority) strand. Other circles show
GC content and GC skew as shown in the color-coded legend. From [38].

8. Freeze Responsive Expression of Wood Frog Mitochondria-Encoded Genes

A search for mitochondria-encoded genes that were freeze-responsive in wood frog
tissues revealed up-regulation of several genes. Screening of a wood frog brain cDNA
library via Northern blotting using 32P-labeled cDNA probes and poly(A)+ mRNA from
brain of control frogs (5 ◦C acclimated) vs. frozen frogs (−2.5 ◦C, 24 h) revealed enhanced
expression of ATP synthase 6/8 and 16S rRNA genes during freezing [39]. In addition,
screening of a liver cDNA library highlighted up-regulation of the NADH-ubiquinone
oxidoreductase subunit 4 gene (ND4) [39].

Several nuclear-encoded genes were also identified as up-regulated from these same
screens including ribosomal protein L7, acidic ribosomal phosphoprotein P0, phospho-
glycerate kinase 1 (PGK1), and a novel protein that was named Li16 [40–44]. These have
all proven to play valuable roles in freezing survival. P0 is part of a 5-protein ribosomal
complex P0(P1-P2)2 and upregulation of P0, enhancing complex formation, can exert in-
hibitory control on ribosome assembly under low oxygen conditions [45]. Hence, in wood
frogs, freeze-responsive upregulation of P0 can potentially contribute to energy savings
by limiting protein translation in the anoxic frozen state. PGK1 is one of two glycolytic
enzymes that produce ATP. Its expression is under the control of the hypoxia-inducible
transcription factor-1 [46]. PGK1 up-regulation during freezing can lead to enhanced
anaerobic ATP production in the frozen state, as evidenced by the accumulation of lactate
and alanine as glycolytic end products in organs of frozen frogs [3,30]. Studies of Li16 and
another freeze responsive novel protein identified earlier, FR10 [44], indicate that these can
interact with the plasma membrane on the inner versus outer sides, respectively [42]. Their
action can potentially help to stabilize membranes as cell volume shrinks due to water exit
into extracellular ice crystals. A recent study also showed the ability of FR10 to inhibit ice



Antioxidants 2021, 10, 543 9 of 13

recrystallization, suggesting that it also acts to minimize physical damage by extracellular
ice crystals [23], a potentially critical action to minimize ice damage to delicate organs or
capillaries. Whether Li16 or other proteins also act to stabilize membranes of intracellular
organelles during cell volume changes associated with freeze/thaw is still unknown.

Freeze-upregulated mitochondria-encoded genes of R. sylvatica were also identified
with interesting results. The mitogenome encodes two subunits (ATP synthase 6 and
8) of the mitochondrial Fo complex (the transmembrane proton channel of the inner
mitochondrial membrane) that is part of the FoF1 ATP synthase, also known as complex
V of the electron transport chain. These two genes share an unusual characteristic, a
46 nucleotide overlap of their sequences, with ATP8 being coded via the +1 reading frame
whereas ATP6 gene is read on the +3 reading frame. Hence, the genes are typically referred
to as ATP 6/8. The ATP 6/8 transcript retrieved from a wood frog brain cDNA library (clone
Br3, RNA size ~1.05 kb) [39] showed ~2-fold up-regulation in response freezing exposure
(24 h at −2.5 ◦C) in both brain and liver, as assessed by Northern blotting, in comparison
with control frogs held at 5 ◦C (Figure 2A,B). However, ATP 6/8 transcript levels were
unaffected in skin, heart and skeletal muscle.

Figure 2. Expression of mitochondrial ATP 6/8 genes under freezing, anoxia and dehydration stresses in wood frog tissues,
as assessed by Northern blotting. (A). Equal amounts of total RNA (15 µg) were loaded onto formaldehyde agarose gels
followed by electrophoresis for 1.5 h at 80 V. The ATP6/8 band was detected at ~1.05 kb and band densities were quantified
(using Imagequant v3.22) and standardized against densities of corresponding 18S rRNA bands (detected by ethidium
bromide staining). Labels are: C: samples from control, cold-acclimated frogs (5 ◦C for 2 weeks), and F: cold-acclimated
frogs subjected to freezing at −2.5 ◦C for 24 h. (B). Histogram showing mean band densities ± SEM for n = 3–5 Northern
blots from control vs. frozen frogs; a -significantly different from the corresponding control, p < 0.05. (C,D). Histograms
showing mean band densities ± SEM for n = 3 determinations of ATP 6/8 expression under control (Con), 24 h frozen (Fr),
anoxia exposure for 1, 4 or 12 h at 5 ◦C (A), and dehydration to 40% of total body water lost at 5 ◦C (D). For more details of
experimental procedures, see [39–41].

ATP 6/8 expression was also independently assessed in tissues from wood frogs ex-
posed to two component stresses of freezing: anoxia (frogs given 24 h under a nitrogen
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gas atmosphere at 5 ◦C) and dehydration (frogs held at 5 ◦C in dry containers until evap-
orative loss of 40% of total body water was reached). Both of these individual stresses
are fully survivable by wood frogs [1]. Transcript levels of ATP 6/8 responded robustly
to anoxia rising within 1 h by ~2.5-fold in the brain (Figure 2C) and ~1.5 fold in the liver
(Figure 2D) and remaining high over time. However, the response to whole body dehydra-
tion was organ-specific, brain showing suppressed levels of ATP 6/8 transcripts (reduced to
~40% of controls; Figure 2C) whereas liver transcript levels rose to ~1.9-fold over controls
(Figure 2D). These data suggest that the impact of freezing on mitochondria-encoded gene
expression is largely a response to oxygen restriction (not cell volume reduction). This is
not surprising given the central role of mitochondria in oxygen-dependent ATP synthesis.
Responses to dehydration were tissue-specific and in the brain may reflect metabolic rate
depression to reduce energy demand. By contrast, the liver has a major metabolic role to
play under dehydrating conditions, since the wood frog liver also synthesizes and exports
high quantities of glucose and urea as osmoprotectants (comparable to the response to
freezing) to help sustain viable cell volumes as well as retard evaporative water loss across
the skin [1]. Hence, the metabolic response to dehydration in the liver (that occurs under
aerobic conditions) appears to include upregulation of mitochondrial electron transport
and ATP production capacity.

The mitochondria-encoded gene ND4 (NADH-ubiquinone oxidoreductase, subunit 4)
was also upregulated by freezing as determined by screening a liver cDNA library. ND4 pro-
tein is one of the seven subunits of NADH-ubiquinone oxidoreductase (complex 1 of the
electron transport chain) that are encoded on the mitochondrial genome, all of which are
hydrophobic subunits found in the transmembrane portion of the large 44 subunit ND
protein. A single band was detected on a RNA blot at ~1.4 kb when loaded with liver
total RNA samples and probed with liver clone Li39s insert [39]. Transcript levels in the
liver increased by 1.7 ± 0.1-fold after 4 h freezing at −2.5 ◦C and stabilized at 1.5-fold over
controls after 12 or 24 h frozen (as compared with 5 ◦C controls) before returning to control
values after thawing. Liver ND4 transcripts also increased strongly when frogs were under
anoxia exposure but decreased in frogs dehydrated to 40% of total body water lost. Once
again, this gives evidence that freeze-induced upregulation of a gene on the mitochondrial
genome is a response to oxygen restriction.

The mitochondrial genome is widely used by researchers investigating phylogenetic
relationships among species but equally there is interest in determining if changes in the
mitogenome aid animals in adapting to environmental pressures that could, in some cases,
ultimately define a new species. For example, for birds living at or flying over high altitude
locations, hypoxia is unavoidable and yet high rates of aerobic ATP production are needed
to power flight. As such, every step in aerobic respiration could undergo selection to
increase efficiency as illustrated for cytochrome c oxidase by Scott et al. [47] in studies of
bar-headed geese that fly as high as 9000 m to migrate over the Himalayas. Two recent
studies of adaptation to high altitude (typically characterized by both hypoxia and low
temperatures) provide further insights. Zhou et al. [48] found positive selection of ND2,
ND4 and ATP6 genes in high altitude lineages (>3000 m) of galliform birds as compared
with related lowland species. Similarly, Jin et al. [49] reported positive selection of ND2,
ND3, ND4, ND5 and ND6 among different Chinese toad-headed lizard species of the
genus Phrynocephalus that range over a 4200 m altitudinal gradient. Both of these studies
support the idea that small changes in the sequences of mitochondria-encoded proteins
(and their expression) could have a crucial impact on hypoxia tolerance and cold hardiness
among various amphibian and reptile species living in seasonally cold environments,
including those that use strategies of freeze tolerance. This is certainly an idea worth
further exploration.

The mitochondrial genome also encodes 16S and 12S ribosomal RNA genes (Figure 1)
that, together with ribosomal proteins, form the ribosomes that translate the 13 protein-
coding genes of the mitogenome, all of which are subunits of the electron transport com-
plexes found in the inner mitochondrial membrane. The mitochondrial 16S RNA gene was
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identified as upregulated in selected tissues of freeze-exposed wood frogs as determined
by Northern blotting [39]. A strong band at ~1.6 kb was detected when probed with a
brain clone (Br4) and after 24 h freezing at -2.5 ◦C, 16S rRNA transcript levels had risen
significantly by 1.6 ± 0.10-fold in the brain, 1.5 ± 0.05-fold in the liver and 2.0 ± 0.04-fold
in skeletal muscle, as compared to 5 ◦C controls. Transcripts remained high in the brain
and muscle after 24 h thawing at 5 ◦C whereas 16S rRNA levels returned to control levels
in the liver. Levels of 16S RNA in wood frog brain also responded robustly to 4 h of anoxia
exposure, rising by 4.8 ± 0.2-fold but were unaffected by dehydration stress. Hence, freez-
ing upregulates not only a range of mitochondrial encoded proteins but also triggers the
production of crucial rRNA components of mitochondrial ribosomes in order to support
the intramitochondrial synthesis of key proteins of the electron transport chain.

9. Mitochondrial Genes and the Freeze-Tolerant Gray Tree Frog

Considerable research has also been done on the biochemical adaptations to freezing
used by North American gray tree frogs, both the tetraploid Hyla versicolor (recently
renamed Dryophytes versicolor) and the closely related Cope’s gray treefrog (D. chrysoscelis)
(diploid) [1]. Both use glycerol as their cryoprotectant and D. chrysoscelis has been used for
extensive studies of glycerol import/export from cells and analysis of the aquaglyceroporin
(a modified aquaporin) that conducts this transport [50].

A study of the mitochondrial genome of H. versicolor (Figure 1) has also provided
information about the responses to stress by mitochondrial protein-coding genes [38] by
evaluating the effects of freezing (−2.5 ◦C, 24 h) and anoxia (N2 atmosphere, 5 ◦C, 24 h)
on their expression. Anoxia exposure led to a 2.4-fold increase in cytochrome c oxidase,
subunit 2 (COX2) transcript levels in H. versicolor skeletal muscle whereas ND3 transcripts
were reduced by 50%. Freezing had somewhat different effects; COX1 transcript levels were
significantly reduced to ~60% of the control value and COX2, ND3 and ATP6 transcript
levels also decreased by about 25–30%. The common factor in these stress responses was
a reduction in ND3 transcripts under both conditions, which might suggest a possible
regulatory role for this subunit of the first respiratory chain complex that could help to
modulate respiratory chain activity in response to oxygen availability.

10. Conclusions

Freeze tolerance is an amazing adaptation exhibited by only a few vertebrate species.
Pre-existing well-developed tolerances of anoxia and/or dehydration are well known
components of freeze tolerance. The present paper highlighted the major importance of
antioxidant defenses to freezing survival and emphasized a new concept, the key role
for mitochondria in freezing survival. This is supported by the upregulation of a variety
of genes (on both nuclear and mitochondrial genomes) that code for proteins residing in
mitochondria. These proteins can provide either protective actions or support continuing
low level mitochondrial ATP production for as long as oxygen reserves permit.
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