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Retroviruses affect a large number of species, from fish and birds to mammals and humans, with global socioeconomic
negative impacts. Here the authors report and experimentally validate a novel approach for the analysis of the
molecular networks that are involved in the recognition of substrates by retroviral proteases. Using multivariate
analysis of the sequence-based physiochemical descriptions of 61 retroviral proteases comprising wild-type proteases,
natural mutants, and drug-resistant forms of proteases from nine different viral species in relation to their ability to
cleave 299 substrates, the authors mapped the physicochemical properties and cross-dependencies of the amino acids
of the proteases and their substrates, which revealed a complex molecular interaction network of substrate recognition
and cleavage. The approach allowed a detailed analysis of the molecular–chemical mechanisms involved in substrate
cleavage by retroviral proteases.
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Introduction

Retroviruses are associated with a broad range of diseases
that include tumors, immunodeficiency syndromes, and
neurological disorders [1]. They affect a large number of
species, from fish and birds to mammals and humans, with
global socioeconomic negative impacts [1]. Each year the HIV
pandemic causes more than 3 million deaths despite advances
in the development of anti-HIV therapies [2]. The seemingly
endless capability of retroviruses to escape antiviral drugs
undermines treatment strategies and prompts the need for
new broad-spectrum therapeutic agents [3].

Retroviral proteases process viral precursor polyproteins
into structurally and functionally mature proteins that
combine into infectious viral forms. As such, these proteins
are key targets for the design of therapeutic inhibitors [4,5].
To date, the majority of protease inhibitors for treatment of
HIV have been peptide mimetics, and most of them were
specifically designed against only one of the HIV-1 proteases,
namely the HXB2 (‘‘wild-type’’) HIV-1 protease [6,7]. Un-
fortunately, this strategy has led to failures to retard the
replication of strains bearing drug-resistant protease muta-
tions [3,8].

Although efficiently hydrolysable protease substrates have
served as excellent templates for peptide-mimetic inhibitor
design, it is difficult to predict which combination of amino
acids will make the best substrate over multiple proteases [6].
Analysis of protease mutations associated with drug resist-
ance is also confounded by the existence of many viral
subtypes carrying naturally occurring polymorphisms [9]. The
genomic differences among HIV-1 proteases can be as high as
30% and range from 10%–70% within the retroviral protease
class [3]. Mutations contributing to viral resistance to
antiviral drugs in one particular HIV subtype are found
frequently in equivalent positions in the genes of other HIV
subtypes or other retroviral proteases [9–14]. Still, the roles of
specific mutations are only partly understood [5].

Here we report the development and experimental

validation of a novel strategy for the molecular analysis of
retroviral proteases. We hypothesized that merging essen-
tially all available knowledge of retroviral proteases and their
interactions with their substrates into a unified model would
provide broad insight into the function of these enzymes and
facilitate the analysis of retroviral drug resistance mecha-
nisms. The modeling that we here report is based on the
multivariate analysis of sequence position–physicochemical
properties of the amino acids of 61 retroviral proteases from
nine viral species and reveals a complex network of
physicochemical interactions involved in protease recogni-
tion and cleavage of substrates. The approach provides novel
insights into the molecular mechanisms involved in substrate
cleavage by retroviral proteases in general as well as in
relation to drug resistance.

Results

Substrate CRM for Retroviral Proteases
The model was based on an extensive survey of publicly

available data from multiple retroviral proteases and their
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substrates from 16 years of retrovirus research during 1990 to
2005, combined into a single dataset (Table S1). Because
retroviral proteases are inherently dynamic structures that
undergo significant structural changes with binding, we
described each structurally aligned amino acid of the 61
retroviral proteases by their principal physicochemical
properties (i.e., their z-scales z1–z5), rather than using the
proteins’ static 3-D structures (see Materials and Methods,
Figure S1, and Table S2) [15,16]. Similarly, we described the
retroviral protease substrates by considering the same
principal physicochemical properties of every single amino
acid of the octapeptide sequence spanning the P4 to P49
position (see Materials and Methods for details).

Protease cleavage rates are dependent on the constituents
of the experimental assay (e.g., pH and salt concentrations)
[17]. To account for differences in the assays, additional assay
descriptors were introduced (Table S3). Substrate recognition
and cleavage involve many dynamic noncovalent and cova-
lent interactions between the substrate and the enzyme. Such

complex processes can be accounted for by introducing
‘‘cross-terms’’ into the multivariate modeling. Cross-terms
are formed as a product of multiplication of any two of the
descriptors and reflect the simultaneous influence of two
particular physicochemical properties on activity. Cross-
terms can be viewed as description of specific interactions,
which do not necessarily need to occur by physical contact of
amino acids with each other. In a mathematical sense, cross-
terms represent approximate nonlinear contributions of
combination effects, regardless of whether these occur due
to close contact or not [18,19].
The descriptors of the retroviral proteases, substrates,

assays, and cross-terms were correlated to the experimentally
determined substrate cleavage rates (kcat/Km) using partial
least squares (PLS) regression modeling (Table 1). Our results
show that it is possible to obtain acceptable models only after
inclusion of cross-terms between the descriptors of amino
acids in the substrates and proteases, and between amino
acids at different positions in the substrates (Table 1).
Moreover, including assay descriptors in the modeling
further increased the validity of the model (Table 1). The
performance of the cleavage rate model (CRM) is summarized
in Table 2 and shown graphically in Figure 1A.

External Validation of CRM
To validate the model further we examined its capacity to

predict the activity of naturally occurring and artificially
mutated retroviral proteases externally. This was afforded by
excluding all data for eight retroviral strains one at a time in
their entirety, and then predicting the excluded data using
models constructed from the remaining data (see Materials
and Methods for details). This analysis showed that the
models could accurately predict the activities of the excluded
retroviral proteases, most notably for the HIV-2 protease
with an accuracy of 93% (root mean square error of
prediction [RMSEP] ¼ 0.52), and for the HIV-1 protease
mutants 86% (RMSEP¼ 0.65; Figure 2). By contrast, state-of-
the-art model building using only the HXB2 HIV-1 protease
data failed to give acceptable models (Table 1; see Materials
and Methods for further details).

Experimental Validation of CRM
Our approach thus resulted in a statistically well-validated

model for the rate of cleavage of peptide substrates by

Table 1. Creation of a Substratethe CRM for Retroviral Proteases

Model R2 Q2 RMSEE Descriptors Included in the Model Observations—Coefficient Ratio

1 0.38 0.29 0.79 B, C 1:0.6

2 0.48 0.36 0.72 B, C, B 3 C 1:23.0

3 0.60 0.40 0.63 B, C, C 3 C 1:1.6

4 0.72 0.51 0.53 B, C, B 3 C, C 3 C 1:24.0

5 0.40 0.33 0.77 A, B, C 1:0.6

STM 0.56 0.36 0.64 C, C 3 C 1:3.9

CRM 0.77 0.52 0.49 A, B, C, A 3 A, A 3 B, A 3 C, B 3 C, C 3 C 1:28.9

The CRM was developed by inclusion of different descriptor blocks, A–C, until the best model was obtained. The descriptor blocks were as follows: A, assay constituents descriptor block; B,
protease descriptor block; C, substrate descriptor block. A 3 A, A 3 B, A 3 C, B 3 C, and C 3 C represent the cross-term blocks formed from respective descriptor block. As seen in the table,
the CRM, including all descriptor blocks, (except B 3 B, which was excluded due to its size not to induce overfitting), outperformed models 1–5 and STM (i.e., the latter is the STM
representing a model for the HXB2 HIV-1 protease only). Ratio ‘‘Observations–Coefficient Ratio’’ denotes the fraction of the number of observations included in the model versus the
number of descriptors used for model construction.
doi:10.1371/journal.pcbi.0030048.t001
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Author Summary

Retroviruses are associated with a broad range of diseases that
include tumor formation, neurological disorders, and immunodefi-
ciency syndromes, including those of HIV. The extraordinary
mutational plasticity of HIV-1 causes the rapid appearance of highly
diverse quasi-species in a very short time, leading to severe
problems with drug resistance. We here present and validate
experimentally a novel approach for the analysis of the molecular
interaction networks involved in the recognition process of
substrates by natural and drug-resistant retroviral proteases. By
combining a large number of wild-type and mutant retroviral
proteases from nine different viral species, and their interactions
with a large number of substrates, we have created a unified model
incorporating all the proteases’ mutational space. Our results reveal
that a complex physicochemical interaction network is involved in
substrate recognition and cleavage by aspartate proteases and
unravel detailed molecular mechanisms involved in drug resistance.
These findings provide novel implications for understanding
important features of HIV resistance and raise the possibility of
developing completely novel strategies for the design of protease
inhibitors that will remain effective over time despite rapid viral
evolution.

Retroviral Protease Interaction Maps



retroviral proteases. However, although the model was
capable of predicting kcat/Km values, it could not distinguish
cleavable from noncleavable sequences. To allow such
predictions, we constructed a cleavability model (CLM) by
correlating substrate and protease descriptors and their
cross-terms to a vector representing cleavability or non-
cleavability (Table 2; see Materials and Methods for details).
The CLM, which was based on the data for all 61 proteases
with all cleavable peptides used for the construction of the
CRM as well as an additional large set of noncleavable
peptides, almost perfectly classified cleavable and noncleav-
able substrates (97%) and performed excellently in external
predictions of cleavability of new sequences (90.1% 6 1.2%;
see Table 2 and Materials and Methods).

Encouraged by these results, we confirmed the predictive
power of the models by independent experimental validation.
We constructed a virtual peptide library and applied in silico
screening to it, first by using the CLM, then followed by the

CRM. This process resulted in an unbiased set of 30 novel
peptides, selected according to diversity criteria, of which 15
were predicted as cleavable and 15 as noncleavable; the
predicted cleavage rates for the cleavable ones ranging over
almost three orders of magnitude (see Materials and Methods
for details).
The peptides were subsequently synthesized and assayed

for their cleavability by the HXB2 HIV-1 protease and three
HIV-1 proteases harboring mutations associated with drug
resistance. The analysis showed that the CLM could correctly
recognize all cleavable substrates as cleavable, and all
noncleavable substrates as essentially noncleavable (100%
accuracy; Table 3). Moreover, the experimentally determined
cleavage rates of the cleavable peptides agreed well with the
CRM predicted rates on HXB2 and mutated HIV-1 proteases
(68% accuracy; RMSEP ¼ 1.01; Figure 1B). Addition of all
experimental data to the CRM further increased CRM

Figure 1. Goodness of Fit and Experimental Validation for the CRM

(A) Observed versus predicted rate of cleavage of 299 substrates by 61 retroviral proteases (in total, 760 protease–substrate combinations) for the CRM,
in which all predictions relate to model-building data (R2¼ 0.77; Q2¼ 0.52). Each bullet represents naturally occurring and artificially mutated protease
forms of HIV-1 (gray), HIV-2 (magenta), AMV (light green), RSV (blue), HTLV-1 (orange), BLV (red), Mo-MuLV (yellow), EIAV (green), and FIV (light blue).
(B) A priori prediction of cleavage rates of 15 novel peptides with diverse structures by the CRM (Table 3, numbers 4–18). Shown is the predicted versus
experimentally determined cleavage rates by HXB2 (red) and mutant HIV-1 proteases, I84V (blue), L90M (magenta), and I84 þ L90M (green). The
prediction error for the cleavage rates was less than one log(kcat/Km) unit for 68% of the protease–substrate pairs; the correlation for the a priori
predicted rates versus the experimentally determined rates yielding a correlation coefficient r¼0.47 (p , 0.0001), as indicated on the panel. The data in
(A) is also shown in (B) (gray).
doi:10.1371/journal.pcbi.0030048.g001

Table 2. Details of the CLM and CRM Obtained Herein, and Their Validation Results

Parameter CLM CRM

Number of observations 2,150 (747 cleavable and 1,403 noncleavable) 760

Descriptors used B and C descriptor blocks and B 3 C, C 3 C

cross-term descriptor blocks

A, B, and C descriptor blocks; A 3 A, A 3 B, A 3 C, B 3 C, C 3 C cross-term

descriptor blocks

Model fit (R2) 0.87 0.77

Cross-validation results (Q2) 0.81 0.52

Permutation test results (iR2; iQ2) 0.27; �0.16 0.31; �0.55

Internal validation 97% classification accuracy (cutoff, �0.3) RMSEE ¼ 0.49 log(kcat/Km) units, RMSECV ¼ 0.69 log(kcat/Km) units

External validation Prediction accuracy 90.1% 6 1.2% Prediction accuracy 60%–93% for retroviral proteases, RMSEP ¼ 0.52�1.19

log(kcat/Km) units

A, B, and C denote descriptor blocks and cross-term descriptor blocks as detailed in the legend to Table 1. For computational details and further explanation of abbreviations, see Materials
and Methods.
doi:10.1371/journal.pcbi.0030048.t002
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Figure 2. External Predictions for Retroviral Proteases by CRMs

Each panel represents the predictions of a model created on the data collected herein (Table S1), but excluded all data for the proteases of one
retroviral strain, one at a time, and uses the model to predict the excluded data. Blue bullets correspond to prediction of cleavage activity for new
proteases and new substrates (i.e., the cases in which neither the protease nor the peptide was represented in the dataset used in creation of the
model). Red bullets correspond to prediction of the cleavage rates for the new proteases only (i.e., the cases in which the peptide, but not the protease,
was represented in the dataset used for model creation). Gray dots represent the observed versus computed cleavage rates for each of the respective
models (i.e., the data used for model creation).
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predictability according to cross-validation; the Q2 increased
from 0.52 to 0.54.

Interpretation of the Chemical Effects in Substrates
Determining their Cleavage Susceptibility by Retroviral
Aspartate Proteases

Analysis of the regression coefficients of the CRM allows
analysis of the physicochemical properties of the amino acid
residues of both the substrates and the proteases required for
catalytic activity. The model verifies the well-known hydro-
phobic requirement for the P3–P39 residues of the substrates
by the retroviral protease cleavage sites (i.e., the regression
coefficients for the z1 terms of the P3–P39 residues of the
substrates are negative, as can be seen from the physico-
chemical property map derived from the model; Figure 3)
[20]. In fact, the map shows that P3 and P39 can accommodate
various amino acids with a preference for hydrophobic
residues, which is in perfect agreement with previous findings
[13]. Moreover, it is well-known that b-branched or polar
amino acids are not tolerated in the P1 position of retroviral
substrates [13]. In the model, this limitation is reflected in
that the z1, z2, and z4 terms for the P1 position are most
favorable for aromatic amino acids and methionine, while
polar or b-branched residues are disfavored.

Specificity studies for retroviral proteases have found that
highly complicated and not easily interpretable interior
interactions take place in the substrates [21]. Such inter-
actions become easy to interpret in the model by the cross-
terms, however. For example, the large regression coefficients
from particular physicochemical properties of the P19–P2,
P19–P1, P19–P39, and P1–P3 residue pairs indicate the presence
of interactions for these pairs, while no such interactions take
place for the P3–P2 pair according to the model, in
accordance with experimental results [22]. Cooperativity
between P1–P2, P1–P3, and P1–P4 residue pairs, indicated by
the model, has also been shown to be important for specificity
features [21]. In earlier specificity studies of retroviral
proteases, many series of substrates were used, each of which
often differ only by one or two residues, prohibiting a
complete analysis of all residues at every subsite [21]. Merging
all the available data thus provides a comprehensive picture
that reveals important cross-dependencies between several
different residue positions in the substrates (i.e., the
regression coefficients where particular substrate–substrate
cross-terms are significantly large), and demonstrates that a
complex interaction network between residues in the
substrates is involved in their cleavage (Figure 3).

Interpretation of the Chemical Effects in Aspartate
Proteases Involved in their Cleavage of Substrates

In a similar way as above for analysis of substrates, the
regression coefficients of the descriptor terms for protease
amino acid residues can identify the physicochemical proper-
ties of the nonconserved amino acids in the proteases that

determine substrate cleavage (e.g., the model reveals that
hydrophobic amino acids are preferred at the position
corresponding to position 82 in HIV-1 protease to afford a
high catalytic activity of the proteases). This is due to the fact
that the regression coefficient z1 for position 82 is the largest
one and negative. Another example is that hydrophobic,
small-size amino acid residues (e.g., Ile or Pro) are preferred
at position 81, since both regression coefficients for hydro-
phobicity (z1) and size (z2) are among the largest and also
negative at this position for the model.
To assess a cumulative importance of all physicochemical

properties for each protease residue relatively to other
residues, we computed and compared the absolute value
sums of z1–z5 regression coefficients for each individual
position, which is thus a measure representing the overall
importance of an amino acid in eliciting chemical effects in
the protease when compared to the same measure of other
amino acids in the model. Our results from this analysis
reveal the most important nonconserved positions involved
in catalytic activity of the retroviral proteases (Figure 4A; see
Materials and Methods for details). One of the most
important amino acid residues shown by the CRM was the
threonine of the aspartate proteases’ catalytic triad, Asp-
Thr(Ser)-Gly (i.e., the T26 residue in HIV-1 protease that is
substituted to serine in Rous sarcoma and avian myeloblas-
tosis virus retroviral proteases; Figure S1) [23]. Six further
amino acid positions (corresponding to R8, D30, V32, V82,
I84, and L90 residues in the HXB2 HIV-1 protease) were also
identified as important. These positions agree well with the
amino acids known to be associated with high resistance to
protease inhibitors [24,25]. The model also identified P81 and
N83 amino acid positions, which are known to play a key role
in regulation of retroviral protease function [26]. The role of
the I64 residue, also indicated by the model, appears to be
indirect, as it is located farther way from the substrate
cleavage cleft (Figure 4A).
The substrate-protease cross-terms of the CRM were then

in a similar fashion used to identify the major cross-
dependencies of the protease and substrate amino acids for
cleavage activity, which thus reveal the major interaction
effects that determine substrate specificity (Figure 4B–4D; see
Materials and Methods for details). We then found that P39

substrate residues form the strongest cross-dependencies
with retroviral protease amino acids corresponding to L24,
D29, I84, and L97 residues in the HIV-1 protease (Figure 4D).
Notwithstanding that D29 directly contributes to the S39
subsite, the effect of residues L24, I84, and L97 distal to the
S39 subsite is indirect [13]. Further analysis indicated the
importance of direct interactions between the P1 residue and
the P81 and V82 protease amino acids (Figure 4C), which
form a part of the S1 subsite [13].
The P19 residue, on the other hand, shows a major indirect

interaction with the L90 amino acid (Figure 4C). This is a
position for a distantly acting, commonly appearing drug-

(A–H) represent external predictions for wild-type, naturally occurring, and artificially mutated proteases as follows: (A) AMV, (B) Mo-MuLV, (C) HIV-2, (D)
RSV, (E) EIAV, (F) FIV, (G) HTLV-1, and (H) HIV-1 proteases. (For [H] the data excluded were for 23 mutant HIV-1 proteases, with mutations associated with
drug resistance.) The percentages in each panel indicate the fraction of predicted observations with a prediction error less than one log(kcat/Km) unit.
RMSEP, the correlation coefficients (showing correlation between the observed versus the externally predicted rates), and their significances are shown
on each panel.
doi:10.1371/journal.pcbi.0030048.g002
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resistant mutation, L90M in the HIV-1 protease, which has
been observed to increase the cleavage activity of HIV-1
protease for natural substrates mutated in the P19 position
[27]. Although the P3 amino acid may interact directly with
various amino acids in the S3 pocket, our results suggest that
the P3 amino acid specificity is determined indirectly by
effects arising from the I13 and E34 residues (Figure 4C). This
result is in alignment with other reports, where the
polymorphic mutation I13V was linked with the mutation
of Thr to Ala at the P3 position of the natural cleavage site
p24/p2 [28]. Moreover, mutations at the E34 position have
been seen in clinical HIV samples after protease inhibitor
treatment [29].

The analysis further demonstrated that the P4 and P49
residues form a large number of important cross-terms with
protease amino acids (Figure 4B–4D). The P4 and P49

positions can broadly tolerate a variety of amino acids
(Figure 3). However, mutations could occur in the P4 and P49
positions of natural cleavage sites under antiviral drug
pressure, which compensate a decreased catalytic activity of
drug-resistant retroviral multi-mutants with the mutations
depicted in Figure 4B–4D. Indeed, resistance mutations are
known at such positions. For example, the Cbz group of the
retroviral protease inhibitor TL-3 occupies the S4 subsite and
interacts with the F53 residue, where mutation to a smaller

Leu causes a decreased susceptibility of TL-3 by an order of
magnitude [30]. Moreover, a substantial overlap exists
between retroviral protease residues associated with specific-
ity (Figure 4B–4D) and residues involved in resistance
development (I13, I50, F53, V82, I84, N88, L90, and I93) [24].

Discussion

A goal of any successful antiretroviral therapy must be to
ensure complete inhibition, or at least a fair retardation, of
the replication of all the multiple viral strains that constantly
emerge in an infected organism. The present approach allows
concomitant analysis of many mutated target proteases in
silico, and is useful to aid the analysis of the roles of such
mutations in drug resistance. The Stanford HIV drug
resistance database contains more than 24,000 HIV protease
polymorphisms and resistance mutation sequences [31].
Performing high-throughput screenings and ligand optimi-
zations to search for a drug suited to such a multitude of
targets is an insurmountable task. Traditional structure-based
drug design is built on the ‘‘lock-and-key principle,’’ in which
a drug is designed to be a snug fit with its target protein [3]. It
is not well-suited to concomitant design of multiple targets
that undergo conformational changes and show dynamically
regulated differences in the shape of their active sites. Our
results show that combining multiple proteases from many
retroviral strains encompasses the mutational space informa-
tion of retroviral proteases better than using the protease
from a single strain. Thereby, it becomes possible to obtain
models that allow interpretations of the molecular mecha-
nisms involved in retroviral protease cleavage site processing.
The multiple-protease–based models thus allow localization
of physicochemical effects that rule substrate cleavage and
predict multiple positions where compensational mutations
could occur that restore substrate cleavage following the
appearance of protease inhibitor resistance mutations. The
validity of the models are proven not only by applying state-
of-the-art statistical validation methods, but also by their
ability to a priori accurately predict the cleavage rate of
entirely novel peptides and proteases. Interestingly, the
model also reveals several amino acids outside of the enzymes’
binding pocket, such as I13, L24, E34, I64, I84, L90, and L97,
as being important for catalytic activity. It is well-known that
retroviral proteases are flexible proteins, and it is likely that
these positions contribute with long-range conformational
effects that indirectly affect protein function and mobility
[18].
The regression coefficients of terms and cross-terms of the

model contain a large amount of chemical information that
would be of direct value in designing a substrate that is
efficiently cleaved over a group of protease mutants. Another
option for such design would be to apply virtual screening of
peptide libraries using the model. In addition, we show that
inclusion of new experimental data leads to a model with
improved predictability. Iterating the process should thus
give models that afford increasingly accurate predictions of
peptides with particular properties (e.g., having broad
specificity over multiple resistance mutations). Analyzing
such new entities experimentally and including the new data
into new models would lead to further improved models and
would refine the understanding of how retroviral proteases
overcome drug resistance.

Figure 3. Map of Physicochemical Properties of Retroviral Protease

Substrates Based on the Regression Coefficients of Substrate and

Substrate–Substrate Cross-Terms of the CRM

The figure summarizes the physicochemical requirements that a
substrate should possess to be efficiently cleaved by a ‘‘swarm’’ of viral
variants, notwithstanding that individual variants may favor or disfavor
particular substrates. Spheres correspond to the five principal properties
(z1–z5) for each amino acid [16]. Red spheres denote that a position
favors an amino acid with a positive value of its z-scale for high cleavage
rate. Blue spheres indicate that an amino acid with negative value of the
z-scale is favored. For example, Ala, Asn, Asp, Pro, and Ser have positive
values for z3 and z5 and are thus amino acids preferred for the P4 position
for affording a substrate with higher cleavage activity. Lines indicate the
most important substrate–substrate cross-terms. Red lines denote that
when the z-scales of both amino acids show large positive or large
negative values, higher cleavage activity is favored. Blue lines indicate
that higher cleavage rates are favored when both the z-scales have large
values with different tokens. Black spheres denote the remaining
substrate amino acid properties, which have a smaller effect on efficient
substrate cleavage (see Materials and Methods).
doi:10.1371/journal.pcbi.0030048.g003
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Materials and Methods

Data and data preprocessing. Data for substrate cleavage by 61
retroviral proteases were collected in an extensive survey that
included publicly available data for retroviral proteases during
1990–2005 [32–64]. The survey included proteases from the following
viruses: HIV-1, HIV-2, AMV (avian myeloblastosis virus), RSV (Rous
sarcoma virus), HTLV-1 (human T cell leukemia virus type 1), BLV
(bovine leukemia virus), Mo-MuLV (Moloney murine leukemia virus),
EIAV (equine infectious anemia virus), and FIV (feline immunode-
ficiency virus); its outcome is summarized in Tables S1 and S2. In
some cases fully denaturated proteins had been exposed to HIV-1 or
HIV-2 proteases [61,62,64]. Noncleavable octapeptides were in these
cases extracted from the noncleavable fragments located between the
observed cleavage sites by using an eight-residue-long sliding window.
Some of the data were generated in-house as described below (see
Materials and Methods further below).

Description of proteases. The 61 retroviral protease sequences
included in the study (Table S2) were aligned using the template
shown in Figure S1. A total of 94 amino acids could be fully aligned
over all the proteases, but only the positions lacking gaps in all
proteases, as well as those being nonconserved, were considered.
These then amounted to 85 amino acids, which were described by
their five principal physicochemical properties, or ‘‘z-scales’’ [16].
These z-scales roughly represent hydrophobicity (z1), steric properties
(z2), polarizability (z3), and polarity and electronic effects of amino
acids (z4, z5) (z-scales are the principal components of 26 physico-
chemical properties of amino acids, which include: molecular weight,
van der Waals volume, heat of formation, energy of highest occupied
molecular orbital, energy of lowest unoccupied molecular orbital, log
P, a-polarizability, absolute electro-negativity, absolute hardness,
total molecular surface area, polar molecular surface area, nonpolar
molecular surface area, number of hydrogen bond donors, number of
hydrogen bond acceptors, indicator of positive charge in the side
chain, indicator of negative charge in the side chain, NMR a-proton
shifts at pD ¼ 2.7 and 12.5, and seven descriptors representing thin-
layer chromatographic mobilities using different stationary and
mobile phases [16]).

Thus, every protease was described by 85 3 5 ¼ 425 descriptors,
which comprised the physicochemical property space information of
the series of proteases used herein. It shall be noted that amino acids
entirely conserved in a library do not yield any additional
information and their importance can therefore not be assessed
unless the library is extended by further mutations of these positions.

Description of substrates. We restricted the length of the substrates to
octapeptides (P4-P3-P2-P1-P19-P29-P39-P49, where P4 represents sub-
strate N-terminus amino acid and P49 represents C-terminus
substrate amino acid), since generally only eight amino acid residues
are involved in the interaction process with eight subsites (S4-S3-S2-
S1-S19-S29-S39-S49) of a retroviral protease, with the cleavage site being
between the P1 and P19 amino acids. Each one of the eight amino
acids of the substrates were described by the same five z-scales as
above, yielding 8 3 5 ¼ 40 total descriptors for each substrate. This
comprised the physicochemical space information of the series of
substrates used herein.

Description of assay conditions. Descriptors for eight constituents of
the experimental assays according to the published data used [32–64]
were included in the modeling in order to normalize for the
differences in assay conditions. The descriptors used are given in
Table S3 and accounted for variations in pH, sodium chloride, 2-
mercaptoethanol, EDTA, DMSO, dithiothreitol, nonidet-P40, and
glycerol concentrations.

Description of cross-dependencies of proteases, substrates, and assays. The
mutual dependencies of protease, substrate, and assay properties
were described by cross-terms. These cross-terms were formed by
multiplication of any two of the above-described descriptors of
proteases, substrates, and assays. To simplify the discussion in the
following, the above blocks of descriptors for assays, proteases, and

Figure 4. The Ten Most Important Nonconserved Residues in Retroviral

Protease for Substrate Recognition and the Most Important Cross-

Dependences of Retroviral Protease and Substrate Amino Acids

Identified by Use of the CRM

(A) The amino acids are shown in red on the 3-D structure of the HXB2
HIV-1 protease as a template. Because the retroviral proteases are
homodimers, the modeling does not allow a distinction between cases

where only one or both of the amino acids of the homoprotein should
be assigned as important.
(B) The retroviral protease amino acid residues most important for P4

substrate position (shown in blue).
(C) The retroviral protease amino acid residues most important for the P3

(light blue), P2 (yellow), P1 (red), and P19 (magenta) substrate positions.
(D) The retroviral protease amino acid residues most important for the
P39 (white) and P49 (orange) substrate positions (see Materials and
Methods for details).
doi:10.1371/journal.pcbi.0030048.g004
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substrates will be referred to as A, B, and C descriptor blocks,
respectively. The cross-terms were then formed by multiplications
yielding A3A, A3B, A3C, B3C, and C3C cross-term blocks. Each
one of these blocks were in the subsequent modeling used in various
combinations, together with the A, B, and C blocks, to demonstrate
their respective importance and to find the most suited combination
for creation of optimal models. All ordinary protease, substrate, and
assay descriptors were mean-centered and scaled to unit variance
prior to computation of cross-terms. In addition, we applied block-
scaling for each type of descriptors to account for their differences in
number and mutual correlation [65]. (Block-scaling gives each block a
variance square root of Nb, where N is the number of descriptors in
block b. Block-scaling thus gives each variable the variance 1/(Nb)

1/2.
The procedure avoids a situation where large blocks of descriptors
mask small ones.) (The B3B cross-terms block was not formed due to
its huge number of descriptors [i.e., 90,100 descriptors]).

Description of the kinetics of experimental data. Two types of
models were created. One aimed to delineate whether or not a
peptide is cleavable by retroviral proteases. This model, called CLM,
was trained against a vector formed by assigningþ1 to a hydrolysable
substrate and �1 to a nonhydrolysable. The other model aimed to
model the cleavage rate of cleavable substrate, and was called CRM. In
the latter case, the model was trained against the vector formed from
the logarithm of the experimentally determined kcat/Km values
(mM�1h�1 units), log(kcat/Km).

Multivariate modeling and data analysis. CRM. All experiments
listed in Table S1, where substrate cleavage rates had been
determined, were used for the construction of CRM, and comprised
760 observations. Protease, substrate, and assay descriptors, and
cross-terms thereof, were used as detailed in Table 2. The
preprocessed descriptors (see below) were correlated to measured
cleavage rates log(kcat/Km) units by PLS regression modeling using
Simca-Pþ10.0 software (Umetrics AB, http://www.umetric.com). In the
model building, inclusion of various descriptor blocks were attemp-
ted and the data were subjected to PLS regression modeling (see
models 1–5 and the single target model [STM] in Table 1 for details)
[65]. While models 1–5 utilized all the 760 log(kcat/Km) values obtained
from Table S1, the STM comprised only 212 experiments for the
HXB2 HIV-1 protease of Table S1. Models were subjected to
validation (see below), and model 4 and the CRM were the only ones
considered acceptable (R2 . 0.7 and Q2 . 0.4) [66]. As CRM also
outperformed model 4, it was the one used herein.

For the CRM containing descriptors of substrates, proteases,
assays, and their cross-terms as shown in Table 2, the regression
equation can be expressed as follows:

y ¼ �yþ
XA
a¼1
ðcoef fa 3 xaÞ þ

XB
b¼1
ðcoef fb 3 xbÞ þ

XC
c¼1
ðcoef fc 3 xcÞ þ

XA
a¼1

xa
XB
b¼1
ðcoef fab 3 xbÞ

 !
þ
XA
a¼1

xa
XC
c¼1
ðcoef fac 3 xcÞ

 !
þ

X0:53AðA�1Þ

a1¼1;a2¼2;a1 , a2

ðcoef fa1a2 3 xa1 3 xa2 Þ þ
XB
b¼1

xb
XC
c¼1
ðcoef fbc 3 xcÞ

 !
þ

X0:53CðC�1Þ

c1¼1;c2¼2;c1 , c2

ðcoef fc1c2 3 xc1 3 xc2 Þ

ð1Þ

where A, B, and C represent the number of descriptors in assay,
substrate, and protease blocks respectively, a, b, and c correspond to
assay, substrate, and protease descriptors respectively, and coeff
denotes a coefficient for a corresponding descriptor or a cross-term.

CLM. All data listed in Table S1 were considered for the CLM.
Assay descriptors were not included. This was because the assay
conditions used have only minor effects on substrate cleavability. In
some cases, the assay conditions also had not been specified. All in all,
the dataset comprised 2,163 peptide–protease combinations. How-
ever, 13 experiments of these differed only by assay descriptors and
were therefore excluded. This resulted in a final dataset with a total of
2,150 observations, which was used for the model creation. Proteases,
substrates descriptors, and cross-terms were used for the CLM
construction as denoted in Table 2. The descriptors, preprocessed as
described below, were correlated to the peptide cleavability (þ1/�1) by
PLS regression modeling using Simca-Pþ [65].

For the CLM containing descriptors of substrates, proteases, and
their cross-terms as shown in Table 2, the regression equation can be
expressed as follows:

y ¼ �yþ
XB
b¼1
ðcoef fb 3 xbÞ þ

XC
c¼1
ðcoef fc 3 xcÞ þ

XB
b¼1

xb
XC
c¼1
ðcoef fbc 3 xcÞ

 !

þ
X0:53CðC�1Þ

c1¼1;c2¼2;c1 , c2

ðcoef fc1c2 3 xc1 3 xc2 Þ

ð2Þ

where B and C represent the number of descriptors in substrate and
protease blocks, respectively, b and c correspond to substrate and
protease descriptors, respectively, and coeff denotes a regression
coefficient for a corresponding descriptor or a cross-term.

Validation of models. The goodness-of-model fits were quantified by
R2. This unitless fraction indicates the portion of the total variation
of the response that is explained by the model and shows how well a
model fits the data [65,66]. We also computed the root mean square
error of estimation (RMSEE) to determine the internal calculation
error within the model:

RMSEE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1
ðyi � ycalculatedi Þ2

N

vuuut
ð3Þ

where yi and y i
calculated denote the observed and calculated rates by the

CRM [65]. N denotes the number of calculated observations.
Cross-validation is a method of estimating the accuracy of a

regression model. In cross-validation the dataset is divided into
several parts (seven were used herein), with each part used to test a
model fitted to the remaining parts, resulting in the cross-validated
regression coefficient Q2 [67,68], where a higher Q2 denotes a better
predictability [66].

In bootstrap validation the dataset is repeatedly and randomly
permutated, yielding new dataset samples with replacements from
the original dataset [69,70]. New models are then built on permutated
data, and R2, Q2, and correlation coefficients between original and
permutated response values are estimated. Intercept values for R2

(iR2) and Q2 (iQ2) reflecting R2 and Q2 of random response data were
computed from repeated random permutations of the data (100
repeats were done herein) [70]. Negative iQ2 indicates that it is
impossible to get predictive models based on random data.

External validation for the CLM was performed by randomly
dividing the dataset into two parts (30% and 70%). The smaller part
was excluded and predicted based on a model created from the
remaining 70% of the data. This procedure was repeated ten times.
For each external validation round we calculated the prediction
accuracy (i.e., the fraction of correctly classified substrates to cleavable
or noncleavable versus all observations included in the test set).

External validation of the CRM was performed by excluding all
data for eight retroviral strains one at a time in their entirety, and
then predicting the excluded data using models constructed from the
remaining data. (In the case of HIV-1 proteases, the HXB2 HIV-1
protease and HIV-1 proteases with five artificial stabilizing mutations,
Q7Kþ L33Iþ L63Iþ C67Aþ C95A, were kept in the model, and the
external predictions were performed for the remaining 23 drug-
resistant HIV-1 mutants.) The prediction accuracy for each model
was estimated as the fraction of protease–substrate pairs with
prediction error , 1.0 log(kcat/Km) to all protease–substrate pairs
used for the respective external prediction. This critical threshold
was set based on 2-fold RMSEE for the CRM (0.49 log(kcat/Km); Table
1). We also used RMSEP to evaluate model predictive ability for
external datasets [65]. RMSEP can be compared with the root mean
square error of internal cross-validation (RMSECV), which illustrates
the error of predictions within the model [65]. RMSEP was computed
as follows:

RMSEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1
ðyi � y predictedi Þ2

N

vuuut
ð4Þ

where yi denotes the observed rate and y i
predicted the externally

predicted rate by the CRM. RMSECV was calculated in an identical
fashion, using for y i

predicted the predicted rates obtained during
internal cross-validation of the CRM [65]. N denotes the number of
predicted observations.

The correlation coefficient, r, for the experimentally observed
versus predicted cleavage rates by the CRM (Figure 1B and Figure
2A–2H) was determined, and the statistical significance, p, of the
correlation was assessed. The p-value obtained is the probability that
a correlation this great or greater (in the positive direction only)
would be seen if there was no linear relationship between observed
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and predicted cleavage rates. An in-house add-in to Excel (Microsoft,
http://www.microsoft.com) was used for the test of correlation. All
significance tests were one-sided.

Analysis of CRM. All descriptors used for the CRM construction
were mean-centered and scaled to unit variance, as described above.
This transformation unified the different ranges of descriptor values
allowing a comparative analysis of their coefficients. The larger an
absolute value is of a descriptor’s coefficient, the larger its impact is
on the model’s outcome.

To construct the retroviral protease substrate physicochemical
fingerprint map shown in Figure 3, we analyzed CRM substrate and
substrate–substrate cross-term descriptor coefficients. First, we
compared the absolute values of the coefficients to find the largest
ones. A total of 17 z-scales of the substrates’ amino acid residues were
then identified to be highly important and are shown in Figure 3 as a
red sphere if its regression coefficient had a positive value, and as a
blue sphere if it was negative. In a similar way we identified 20 highly
important substrate–substrate cross-terms. These are represented in
Figure 3 as red lines if the corresponding cross-term coefficient had a
positive value, and as blue lines if it was negative.

To determine the most important protease amino acids shown in
Figure 4A, we compared the sum of the absolute values of the five z-
scale descriptor coefficients for each of the 85 aligned amino acid
positions of the proteases. Summation of the coefficients allowed us
to simultaneously capture all the physicochemical property effects
caused by each of the amino acids considered. The ten amino acids
with the largest sums of their coefficients and consequently the
largest contribution on cleavage rate according to the model were the
ones depicted in Figure 4A. Figure 4A was produced using the Visual
Molecular Dynamics (VMD) program, version 1.8.3 [71].

The model was further analyzed by considering protease–substrate
amino acid interactions as described by cross-terms. Every protease–
substrate amino acid pair yields 25 cross-terms, as five z-scales of each
amino acid multiplied makes 25 cross-terms. To capture the most
important protease–substrate interactions, we calculated the sum of
the absolute values of 25 cross-term coefficients for each substrate–
protease amino acid pair. We then compared all obtained sums and
identified the protease–substrate interactions with the largest
influence on the model’s outcome. In total, the 20 most important
protease–substrate amino acid pairs are presented in Figure 4B–4D.
Figure 4B–4D was also produced using VMD [71].

It may be noted that whereas the regression coefficients arising
from the substrates only, or the proteases only, relate to the overall
activity of all the substrates and all the proteases, respectively, the
coefficients of the substrate–protease cross-terms relate to specificity
(i.e., the ability of a particular substrate to prefer a particular
protease).

In silico substrate screening. The active site of HIV-1 protease
accommodates a sequence of eight amino acid residues (P4–P49) of
a substrate, and cleaves it between the P1 and P19 residues. The
potential number of substrates consisting of natural amino acids is
therefore 208, but this large number was not computationally feasible
to assess. We therefore constructed a smaller library of octapeptide
sequences by considering only the natural amino acids that can
frequently be found in retroviral protease substrates as follows: for
the P4 position, amino acids were R, S, K, P, G, or A; for P3, Q, A, R, K,
G, or E; for P2, N, E, A, G, T, I, L, or V; for P1, F, Y, W, M, or L; for P19,
P, F, A, L, W, or V; for P29, L, Q, V, A, T, or I; for P39, D, S, Q, T, M, V,
R, or I; and for P49, T, M, Q, V, P, G, R, or S. This resulted in a virtual
library of 6 3 6 3 8 3 5 3 6 3 6 3 8 3 8 ¼ 3,317,760 entries.

The library was first screened using the CLM to filter out all
noncleavable substrates for the HXB2 HIV-1 protease. We considered
a substrate noncleavable if its predicted cleavability parameter was
less than�0.3. This resulted in 2,463,379 cleavable sequences (;74%
of the initial library). We then used the CRM to predict the actual rate
of cleavage for the cleavable octapeptides. From these we chose 15
substrates; seven with a predicted cleavage rate log(kcat/Km) of more
than 4.2 U, and eight with a rate less than 4.2 U. To ensure that
peptides were dissimilar, we first randomly selected substrates with
predicted log(kcat/Km) . 4.2 U, allowing at most four amino acids to
be identical with the corresponding positions of the substrates in the
dataset and in the already chosen substrates in the test set. If none of
the remaining substrates met the requirements, five-amino-acid
similarity was allowed. The same procedure was applied for the eight
substrates with the predicted log(kcat/Km) , 4.2 U (Table 3, numbers
4–18). Next, we consecutively chose 15 substrates predicted to be
noncleavable by the CLM by HXB2 HIV-1 protease, allowing at most
four amino acids to be identical at any same positions among all the
substrates already selected (including the cleavable substrates already
chosen above). If none of the remaining substrates met the require-

ments, a five-amino-acid similarity was allowed (Table 3, numbers 19–
33). We then used the CLM to predict cleavability of the chosen 30
substrates by mutant HIV-1 proteases I84V, L90M, and I84VþL90M.
(The outcome for the predicted cleavability of the 30 chosen
substrates was essentially the same for the mutant HIV-1 proteases
as for the HXB2 HIV-1 protease.) Following this, we then again
applied the CRM and predicted the cleavage rate of the 15 cleavable
substrates chosen for the three mutant HIV-1 proteases, I84V, L90M,
and I84Vþ L90M.

Synthesis of novel retroviral protease substrates. A total of 33
octapeptide sequences were engineered into internally quenched
fluorogenic substrates. Fluorogenic substrates were synthesized by
solid-phase peptide synthesis using an automated multiple peptide
synthesizer (MultiPep; Intavis AG Bioanalytical Instruments, http://
www.intavis.com; Table 3). Reagents were purchased from Fluka
(http://www.fluka.org), Applied Biosystems (http://www.appliedbiosys-
tems.com), Bachem (http://www.bachem.com), or Novabiochem
(http://www.emdbiosciences.com/html/NBC/home.html). The follow-
ing amino acid derivatives were used in the synthesis: Fmoc-L-Ala-
OH, Fmoc-L-Arg(Pbf)-OH, Fmoc-L-Asn(Trt)-OH, Fmoc-L-Asp(Ot-
Bu)-OH, Fmoc-L-Gln(Trt)-OH, Fmoc-L-Glu(Ot-Bu)-OH, Fmoc-L-
Glu(EDANS)-OH, Fmoc-Gly-OH, Fmoc-L-Ile-OH, Fmoc-L-Leu-OH,
Fmoc-L-Lys(Boc)-OH, Fmoc-L-Lys(DABCYL)-OH, Fmoc-L-Met-OH,
Fmoc-L-Phe-OH, Fmoc-L-Pro-OH, Fmoc-L-Ser(t-Bu)-OH, Fmoc-L-
Thr(t-Bu)-OH, Fmoc-L-Trp(Boc)-OH, Fmoc-L-Tyr(t-Bu)-OH; and
Fmoc-L-Val-OH. PyBOP was used as an activating reagent and Tenta
Gel R PHB-Arg(Pbf)-Fmoc resin (capacity 0.16 mmol/g) as a polymeric
support.

The peptides were synthesized at a 5-lmol scale using the
automated standard protocol optimized for Fmoc chemistry pro-
vided with the MultiPep synthesizer. Each cycle included deprotec-
tion of the Fmoc group by 20% piperidine in DMF and washing of the
support with DMF; coupling (i.e., the N-deblocked peptidyl-resin was
treated with a solution of the appropriate Fmoc amino acid
derivative, PyBOP, and NMM in DMF for 25 min) and washing of
the support with DMF, capping (i.e., treatment of the polymer with a
2% solution of acetic anhydride in DMF for 5 min), and washing of
the support with DMF.

The final synthetic step on MultiPep included deprotection with
20% piperidine in DMF, washing of the support with DMF and
CH2Cl2, and drying. The peptide was deprotected and cleaved from
the resin with deprotection mixture (TFA–triisopropylsilane–1,2-
ethanedithiol–water, 92.5:2.5:2.5:2.5) for 3 h at room temperature,
triturated with tert-butyl-methyl ether, taken up in MeCN/water,
lyophilized, and purified by high-performance liquid chromatogra-
phy (HPLC); their structures were confirmed by mass spectrometry.
Analytical HPLC was performed on a Waters (http://www.waters.com)
system (Millenium32 workstation, 2690 separation module, 996
photodiode array detector) equipped with Vydac RP C18 90 Å
reversed-phase column (2.1 3 250 mm; http://www.vydac.com).

Small-scale preparative HPLC was carried out on a system
consisting of a 2150 HPLC pump, 2152 LC controller, and 2151
variable wavelength monitor (LKB, Sweden) and Vydac RP C18
column (10 mm 3 250 mm, 90 Å, 201HS1010), with the eluent, an
appropriate concentration of MeCN in waterþ 0.1% TFA, a flow rate
of 5 mL/min, and detection at 280 nm. Freeze-drying was carried out
at 0.01 bar on a Lyovac GT2 Freeze-Dryer (Steris Finn-Aqua, http://
www.steris.com) equipped with a Trivac D4B (Leybold Vacuum, http://
www.oerlikon.com) vacuum pump and a liquid nitrogen trap.

Peptides were checked by liquid chromatography/mass spectrom-
etry using a Perkin Elmer PE SCIEX API 150EX instrument equipped
with a turboionspray ion source (PerkinElmer Life and Analytical
Sciences, http://las.perkinelmer.com) and a Dr. Maisch Reprosil-Pur
C18-AQ (http://www.dr-maisch.com), 5 lm, 150 mm 3 3 mm HPLC
column, using a gradient formed from water and acetonitrile with 5
mM ammonium acetate additive.

When not otherwise specified, chemicals were reagent grade from
Sigma (http://www.sigmaaldrich.com).

Substrate cleavage assays. Wild-type HIV-1 protease (HXB2 clone)
and its three mutants, the I84V, L90M, and I84VþL90M genes, were a
kind gift of Professor Helena Danielson, Uppsala University. Protease
expression, isolation, refolding, and analysis were performed as
previously described [72].

Rates of cleavage of the synthesized internally quenched fluoro-
genic substrates by the HXB2 and mutant HIV-1 proteases were
assayed fluorimetrically (ex, 355 nm; em 490–10 nm) in black 96-well
plates (Nunc, http://www.nuncbrand.com) under the conditions
detailed in Table S3, assay 17, using a PolarSTAR OPTIMA micro-
plate reader (BMG LABTECH, http://www.bmglabtech.com). Sub-
strate stock solutions were 1 mM dissolved in DMSO (Table 3,
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numbers 1–33). A typical reaction mixture (total volume 100 lL)
contained variable concentrations of peptide substrates in 0.1 M
acetic acid and 1.1 M sodium chloride (pH 5.0 was achieved with
sodium hydroxide solution) and 35 ng of enzyme. Reaction was
conducted at 37 8C for 60 min (cycle time, 60 s, with 5 s shaking after
each cycle). Each experiment was repeated at least three times, and
the average value was taken as a final result (Table 3). The kinetic data
was analyzed by nonlinear fit using the GraFit program and the basic
equation for Michaelis–Menten kinetics [73]. The obtained kcat/Km
constants were converted into mM�1h�1 units for before further use.

Supporting Information

Figure S1. Structural Alignment of Nine Wild-Type Retroviral
Proteases

Found at doi:10.1371/journal.pcbi.0030048.sg001 (26 KB DOC).

Table S1. Summary of the Dataset for Retroviral Proteases Used
Herein

References to publications, description of the data considered under
the study, and the number of entries each article added to the dataset
are shown.

Found at doi:10.1371/journal.pcbi.0030048.st001 (38 KB DOC).

Table S2. The 61 Retroviral Proteases from Nine Retroviruses
Included in the Study

Found at doi:10.1371/journal.pcbi.0030048.st002 (21 KB DOC).

Table S3. Descriptors of Assay Conditions Used for Determination of
Substrate Cleavage Rates

Found at doi:10.1371/journal.pcbi.0030048.st003 (40 KB DOC).

Accession Numbers

The Protein Data Bank (http://www.pdb.org) accession numbers for
the proteins discussed in this paper are HIV-1 protease (1aid), HIV-2
protease (1ida), HTLV-1 protease (2b7f), FIV protease (4fiv), RSV
protease (1bai), AMV protease (1mvp), and EIAV protease (1fmb). The
Swiss-Prot (http://www.expasy.org/sprot) accession numbers for the
proteases discussed in this paper are Mo-MuLV protease (P03355)
and BLV protease (P10270).
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