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Survivors of COVID-19 exhibit altered amplitudes of 
low frequency fluctuation in the brain: a resting-state 
functional magnetic resonance imaging study at 1-year 
follow-up
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Abstract  
Although some short-term follow-up studies have found that individuals recovering from coronavirus disease 2019 (COVID-19) exhibit anxiety, 
depression, and altered brain microstructure, their long-term physical problems, neuropsychiatric sequelae, and changes in brain function 
remain unknown. This observational cohort study collected 1-year follow-up data from 22 patients who had been hospitalized with COVID-
19 (8 males and 11 females, aged 54.2 ± 8.7 years). Fatigue and myalgia were persistent symptoms at the 1-year follow-up. The resting state 
functional magnetic resonance imaging revealed that compared with 29 healthy controls (7 males and 18 females, aged 50.5 ± 11.6 years), 
COVID-19 survivors had greatly increased amplitude of low-frequency fluctuation (ALFF) values in the left precentral gyrus, middle frontal 
gyrus, inferior frontal gyrus of operculum, inferior frontal gyrus of triangle, insula, hippocampus, parahippocampal gyrus, fusiform gyrus, 
postcentral gyrus, inferior parietal angular gyrus, supramarginal gyrus, angular gyrus, thalamus, middle temporal gyrus, inferior temporal 
gyrus, caudate, and putamen. ALFF values in the left caudate of the COVID-19 survivors were positively correlated with their Athens Insomnia 
Scale scores, and those in the left precentral gyrus were positively correlated with neutrophil count during hospitalization. The long-term 
follow-up results suggest that the ALFF in brain regions related to mood and sleep regulation were altered in COVID-19 survivors. This can 
help us understand the neurobiological mechanisms of COVID-19-related neuropsychiatric sequelae. This study was approved by the Ethics 
Committee of the Second Xiangya Hospital of Central South University (approval No. 2020S004) on March 19, 2020. 
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Introduction 
Coronavirus disease 2019 (COVID-19) is a highly infectious 
illness caused by the severe acute respiratory syndrome 
coronavirus-2 (SARS-CoV-2). In 2020, it rapidly developed into 

a global pandemic and poses a serious threat to health by 
attacking multiple organs. People who recover from COVID-19 
can present a diverse spectrum of sequelae, including post-
inflammatory pulmonary fibrosis (Zhan et al., 2020) and 
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myocardial injury (Chen et al., 2020), which substantially 
affect daily life. Therefore, long-term follow-up research on 
persistent symptoms and physical and neurological sequelae 
is urgently needed in survivors of COVID-19 (Yelin et al., 
2020). To date, several effects on the central nervous system 
(CNS) have been recognized in the early stages of SARS-CoV-2 
infection (Mao et al., 2020; Pezzini and Padovani, 2020), such 
as acute ischemic and hemorrhagic cerebrovascular illness 
(Hernández-Fernández et al., 2020; Li et al., 2020a; Mao et al., 
2020), acute disseminated encephalomyelitis (Parsons et al., 
2020), and Guillain-Barré syndrome (Uncini et al., 2020; Zhao 
et al., 2020).

In COVID-19 infection, spike glycoproteins on the surface 
of SARS-CoV-2 have a high affinity for the angiotensin-
conversion enzyme 2 (ACE2) receptor, which presents widely 
throughout the body (Bougakov et al., 2021). However, the 
precise mechanism through which CNS infection occurs has 
remained controversial. Bougakov et al. (2021) reported that 
the mechanism underlying multiple neurological symptoms 
might be related to direct or indirect viral infection. Direct 
invasion of the CNS by SARS-CoV-2 has been proposed to 
occur via two routes: the hematogenous route and axonal 
transport in the olfactory nerve (De Santis, 2020; Politi et 
al., 2020). The indirect mechanism involves hypoxia due to 
respiratory failure or an aberrant immune response (Gandhi 
et al., 2020; Li et al., 2020b). Regardless of how SARS-CoV-2 
infects the CNS, it induces psychopathological sequelae (Wu 
et al., 2020). Reviewing what has been examined thus far, 
psychopathological sequelae can occur during the acute or 
subacute infection period in patients with COVID-19 and have 
been reported to be significantly related to inflammatory 
biomarkers collected during hospitalization (Mazza et al., 
2020, 2021). Additionally, 3-month follow-up studies have 
found changes in cerebral microstructure and cerebral blood 
flow in individuals who have recovered from COVID-19 (Lu 
et al., 2020; Qin et al., 2021). However, no observational 
studies have investigated the long-term (over 6 months) 
health consequences of COVID-19. Functional magnetic 
resonance imaging (fMRI) is a noninvasive method for 
evaluating hemodynamic changes resulting from neuronal 
activity (Logothetis, 2008) and the amplitude of low-frequency 
fluctuations (ALFF), which can be obtained by computing the 
regional intensity, reflects spontaneous neuronal activity (Yang 
et al., 2007; Huang et al., 2020; Xing et al., 2021).

Therefore, the present study investigated the long-term 
sequelae in people 1 year after they had been hospitalized 
with COVID-19. To provide insight into the impact of SARS-
CoV-2 on the brain, we also searched for inflammatory 
biomarkers that could predict the neuropsychiatric sequelae.
 
Participants and Methods
Study design 
This retrospective observational cohort study was approved 
by the Ethics Committee of the Second Xiangya Hospital 
of Central South University (Hunan, China) (approval No. 
2020S004) on March 19, 2020 (Additional file 1). The study 
was performed in accordance with the Declaration of Helsinki, 
and all participants provided written informed consent before 
entering the study. The writing and editing of the article 
were performed in accordance with the STrengthening the 
Reporting of OBservational studies in Epidemiology (STROBE) 
Statement (Additional file 2).

Participants
Our study recruited 22 unpaid individuals who had been 
hospitalized with, and subsequently recovered from, 
COVID-19 and 29 healthy volunteers between January 28 and 
February 8, 2021. The 22 COVID-19 survivors who volunteered 
to participate in our study were recruited from among 237 
patients who had been admitted with COVID-19 and who 

had been discharged from the First Hospital of Changsha 
about 1 year earlier. Clinical characteristics including the 
type of COVID-19, symptoms during hospitalization, and 
inflammatory markers such as lymphocyte count (Lymph#), 
neutrophil count (Neu#), and C-reactive protein (CRP) were 
collected from the hospital records. Healthy volunteers 
who had never tested positive or been hospitalized with 
COVID-19, and who matched the COVID-19 survivors in age, 
sex, and education level, were recruited through social media. 
All participants underwent fMRI scanning and completed 
several questionnaires that included information on age, sex, 
education level, smoking history, handedness, the Athens 
Insomnia Scale (AIS) (Soldatos et al., 2000), and the Hospital 
Anxiety and Depression Scale (HADS) (Michopoulos et al., 
2008). The HADS consists of two subscales, the HADS-A and 
HADS-D, designed to detect anxious and depressive states, 
respectively. The inclusion criteria were as follows: (1) normal 
visual acuity, hearing, and right-handedness; (2) no history 
of brain structural abnormalities, epilepsy, traumatic brain 
injury, or mental or psychiatric illness; (3) no contraindications 
to MRI; and (4) fMRI data showing < 2.0 mm of displacement 
and/or < 2.0° rotation in any of the axes. The exclusion criteria 
were as follows: (1) patients with the following devices 
installed and carried in the body: cardiac pacemakers, cardiac 
stents, artificial heart valves, metal foreign bodies in the 
eyeball, and large blood vessels; (2) patients with severe 
hyperthermia; and (3) patients with claustrophobia. Finally, 
the recovered from COVID-19 (RecCOVID) group comprised 19 
individuals and the healthy control (HC) group comprised 25 
individuals (Figure 1).

Figure 1 ｜ Experimental design flowchart.
ALFF: Amplitude of low-frequency fluctuation; COVID-19: coronavirus disease 
2019.

MRI acquisition
We collected all MRI data with a 3T Siemens Skyra MRI scanner 
(Siemens Healthcare, Erlangen, Germany) with a 32-channel 
head coil. Throughout the scanning, the participants were 
instructed to keep their bodies still, close their eyes, and 
not to think about anything in particular. Additionally, 
participants maintained a supine position, wore earplugs, 
and foam pads were placed between the head and the coil to 
minimize motion artifacts caused by head movements. The 
MRI scanning sequences included T1-weighted imaging, T2-
weighted imaging, three-dimensional magnetization-prepared 
rapid acquisition gradient echo (3D-MPRAGE). Resting-state 
fMRI sessions measure the blood oxygenation level dependent 
(BOLD) signal. The 3D-MPRAGE scanning parameters were as 
follows: 176 sagittal slices, repetition time = 2000 ms, echo 
time = 2.26 ms, flip angle = 8°, voxel size = 1 mm × 1 mm × 
1 mm, slice thickness = 1 mm, field of view = 256 mm × 256 
mm. The BOLD parameters were: 36 axial slices, repetition 
time = 2000 ms, echo time = 30 ms, flip angle = 90°, voxel size 
= 4 mm × 4 mm × 4 mm, slice thickness = 4 mm, field of view 
= 240 mm × 240 mm (Sun et al., 2021). 
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MRI processing
Data Processing Assistant for Resting-State fMRI (DPABI, 4.3, 
Advanced edition) software (http://rfmri.org/dpabi) (Yan et 
al., 2016) based on MATLAB 2016b was used for MRI data 
preprocessing. The specific process was as follows: (1) data 
format conversion: digital imaging and communications in 
medicine (DICOM) images were converted into neuroimaging 
informatics technology initiative (NIfTI) images; (2) removal 
of the first time point: discard the initial 10 scanning volumes 
to allow for steady-state magnetization; (3) slice timing and 
realignment: excluded data from participants with head 
movements > 2 mm or head rotation > 2°; (4) after registering 
the resting-state image with the T1-structural image for 
each participant, all images were manually reoriented to 
the anterior commissure-posterior commissure axis; (5) 
nuisance covariates were regressed out, including the 24 
Friston parameters for head motion, white matter signals, 
and cerebrospinal fluid signals. This reduces confounds from 
non-neuronal signals; (6) normalization: spatially normalized 
resting-state and T1-structural images were converted to 
Montreal Neurological Institute (MNI) space through the 
exponential Lie algebra registration method (Ashburner, 
2007); (7) smoothing: the resampled image was spatially 
smoothed using a 6-mm full-width half-maximum Gaussian 
kernel to reduce spatial noise; (8) each voxel of the filtered 
time series was transformed into the frequency domain by 
a fast Fourier transform to calculate the power spectrum; 
and (9) the square root of each voxel’s frequency (0.01–0.08 
Hz) signal was calculated and subtracted from the average 
value. This quantity was divided by the whole-brain voxel 
deviation to obtain a standardized whole-brain ALFF map with 
m-distribution of ALFF values. For the detailed calculation 
method, please refer to Zang et al. (2007).

Statistical analysis
Paired-sample t-tests were used to compare clinical symptoms 
of the RecCOVID group at the initial time of illness and at the 
1-year follow-up. Two-sample t-tests and chi-square tests 
were used to compare demographic characteristics between 
the RecCOVID and HC groups. Analyses were performed using 
SPSS 24.0 (IBM Corp., Armonk, NY, USA) with P < 0.05 being 
the threshold for significance. Differences in ALFF values 
were examined in DPABI software with multiple comparisons 
using the 5000 permutation test with threshold‐free cluster 
enhancement (Smith and Nichols, 2009; Chen et al., 2018) at 
the whole‐brain level among the RecCOVID and HC groups, 
with a single voxel‐level threshold of P < 0.05. The age, sex, 
years of education, and head movement parameters of the 
two groups were used as covariates.

Pearson correlation analysis was applied to explore associations 
between the ALFF values in several brain regions (derived from 
the anatomical automatic labeling atlas) and inflammatory 
markers, AIS scores, HADS-A scores, and HADS-D scores in the 
COVID-19 group. Significance levels were set at P < 0.05. 

Results
Demographic characteristics of COVID-19 survivors
Age, sex, and education level were well matched with no 
significant differences between the two groups. As shown 
in Table 1, the history of smoking history, head motion 
parameters, and HADS scores presented no significant 
differences. In contrast, AIS scores were higher in the 
RecCOVID group than in the HC group, and sleep disruptions 
were more severe in the RecCOVID group. Details are 
summarized in Table 1. 

Clinical data for the COVID-19 survivors
The RecCOVID group included 10 mild cases and 9 severe 
cases,  according to WHO guidel ines (World Health 
Organization). Clinical data are shown in Table 2. During 

hospitalization, the common clinical manifestations in the 
RecCOVID group of this study were fever (79%), cough (74%), 
dyspnea (42%), olfactory loss (42%), taste loss (37%), fatigue 
(37%) and myalgia (21%). After 1 year of follow-up, the fever 
(11%), cough (37%), olfactory loss (5%) and taste loss (5%) 
had significantly improved (P < 0.05). However, compared 
with the time when they had the SARS-CoV-2 infection, at the 
1-year follow-up, the RecCOVID group presented with greater 
chest tightness (32%, P = 0.010) and headache (36%, P = 
0.056). Dyspnea (32%), fatigue (21%), and myalgia (36%) were 
persistent symptoms at the 1-year follow-up after discharge 
(Table 2).

Table 1 ｜ Demographic characteristics in the RecCOVID and HC groups

RecCOVID 
group (n=19)

Healthy control 
group (n=25) t/c2 value P-value

Age (yr)a 54.210±8.696 50.480±11.576 1.221 0.229
Sex (male/female)b 8/11 7/18 0.956 0.328
Education level (yr)a 13.420±3.610 12.720±4.088 0.602 0.550
Smoking history (yes/
no)b

2/17 4/21 0.275 0.600

Handedness (right/left) 19/0 25/0 – –
Head motion (mm)a 0.085±0.075 0.087±0.055 –0.076 0.940
Athens Insomnia Scale 
scorea

8.320±4.534 5.560±3.001 2.295 0.029

Hospital Anxiety and 
Depression Scale-Aa

3.210±4.131 5.040±3.458 –1.559 0.128

Hospital Anxiety and 
Depression Scale-Da

3.740±4.954 4.160±3.520 –0.317 0.754

aData are expressed as expressed as mean ± SD and were analyzed by two-
sample t-test. bData are expressed as number, and were analyzed by chi-
square test. COVID-19: Coronavirus disease 2019.

Table 2 ｜ Clinical information for the COVID-19 survivors at the time of 
illness and at the 1-year follow-up

Hospitalization Follow-up t-value P-value

Clinical type (mild/
severe)

10/9 – – –

Hospital day (d) 19.160±10.383 – – -
Follow-up time (d) – 345.790±15.796 – –
Inflammatory markers

Lymphocyte count 
(×109/L)

1.132±0.473 – – –

Neutrophil count 
(×109/L)

3.131±1.060 – – –

C-reactive protein 
(mg/L)

31.497±28.363 – – –

Symptoms [number 
(percentage)]

Fever 15(79) 2(11) –6.245 0
Cough 14(74) 7(37) –2.348 0.031
Expectoration 0 3(16) 1.837 0.083
Dyspnea 8(42) 6(32) –1.143 0.268
Headache 1/18 (5) 5(36) 2.041 0.056
Fatigue 7(37) 4(21) –1 0.331
Myalgia 4(21) 5(36) 0.369 0.716
Decreased appetite 0 1/18 (5) 1 0.331
Nausea 1/18 (5) 1/18 (5) 0 1
Vomiting 1/18 (5) 0 –1 0.331
Diarrhea 2(11) 1/18 (5) –1 0.331
Chest tightness 0 6(32) 2.882 0.010
Chest pain 1/18 (5) 5(36) 1.714 0.104
Olfactory loss 8(42) 1/18 (5) –3.24 0.005
Taste loss 7(37) 1/18 (5) –2.882 0.010

Data for clinical type are expressed as expressed as number, and data for 
hospital day, follow-up time, and inflammatory markers are expressed as the 
mean ± SD. Data for symptoms are expressed as number (percentage) and 
were analyzed by paired sample t-test. COVID-19: Coronavirus disease 2019.
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fMRI results for the COVID-19 survivors
Compared with the HC group,  the RecCOVID group 
demonstrated significantly increased ALFF values in the 
left precentral gyrus (PreCG), middle frontal gyrus, inferior 
frontal gyrus of operculum, inferior frontal gyrus of triangle, 
insula, hippocampus (HIP), parahippocampal gyrus, fusiform 
gyrus, postcentral gyrus, inferior parietal angular gyrus, 
supramarginal gyrus, angular gyrus, thalamus, middle 
temporal gyrus, inferior temporal gyrus, caudate (CAU) and 
putamen (PUT) (Figure 2A). The left HIP was the peak among 
the clusters (Figure 2B; cluster size: 78 mm3, peak MNI 
coordinates: –30, –33, –3, peak t value: 5.4507). More details 
are provided in Table 3.

correlated with the Neu# (r = 0.761, P = 0.000; Figure 3B) in 
the RecCOVID group. However, after correcting for multiple 
comparisons (FDR-corrected P < 0.05), only the latter 
correlation survived (PFDR = 0.019). 
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Figure 2 ｜ ALFF analyses in the individuals who had recovered from 
COVID-19.
(A) Significantly increased ALFF in the RecCOVID group. The 5000 
permutations test was performed with threshold‐free cluster enhancement 
(single voxel‐level threshold of P < 0.05, cluster size > 10 voxels). (B) Peak in 
the cluster (cluster size: 78 mm3, peak MNI coordinates: −30, −33, −3, peak t 
value: 5.4507). The dark red (A) and yellow (B) on the color bar indicate brain 
regions in which the ALFF values differed significantly between the RecCOVID 
and HC groups. ALFF: Amplitude of low-frequency fluctuation; COVID-19: 
coronavirus disease 2019; HC: healthy control; MNI: Montreal Neurological 
Institute; R: right.

Table 3 ｜ Significant ALFF differences between the RecCOVID and HC 
groups

Brain regions
Side 
(R/L) AAL

Cluster 
size

MNI coordinate
Peak 
intensityX Y Z

PreCG/MFG/
IFGoperc/
IFGtriang/INS/HIP/
PHG/FFG/PoCG/
IPL/SMG/ANG/
THA/MTG/ITG

L 1/7/11/13
/29/37/39
/55/57/61
/63/65/77
/85/89

1190 –30 –33 –3 5.4507

CAU/PUT L 71/73 53 –6 12 –6 3.8569

AAL: Anatomical automatic labeling atlas; ALFF: amplitude of low-frequency 
fluctuation; ANG: angular gyrus; CAU: caudate; COVID-19: coronavirus disease 
2019; FFG: fusiform gyrus; HIP: hippocampus; IFGoperc: inferior frontal 
gyrus of operculum; IFGtriang: inferior frontal gyrus of triangle; INS: insula; 
IPL: inferior parietal angular gyrus; ITG: inferior temporal gyrus; L: left; MNI: 
Montreal Neurological Institute; MFG: middle frontal gyrus; MTG: middle 
temporal gyrus; PHG: parahippocampal gyrus; PoCG: postcentral gyrus; 
PreCG: precentral gyrus; PUT: putamen; R: right; SMG: supramarginal gyrus; 
THA: thalamus.

Correlation results for COVID-19 survivors
Before multiple comparison correction, the ALFF values in the 
left CAU were positively correlated with the AIS (r = 0.466, P = 
0.044; Figure 3A) and those in the left PreCG were positively 

20

15

10

5

0

A
IS

8

6

4

2

0

N
eu

# 
(×

10
9 /L

)

ALFF_CAU_L
0.4       0.5        0.6       0.7        0.8       0.9

ALFF_PreCG_L
0.4          0.6          0.8          1.0          1.2

r=0.446, P=0.044 r=0.761, P=0.000BA

Figure 3 ｜ Correlations between left CAU and PreCG ALFF values and AIS 
score and Neu#.
(A) ALFF values in the left CAU showed a positive correlation with AIS score. 
(B) ALFF values in the left PreCG showed a positive correlation with Neu#. AIS: 
Athens Insomnia Scale; ALFF: amplitude of low-frequency fluctuation; CAU: 
caudate; COVID-19: coronavirus disease 2019; L: left; Neu#: neutrophil count; 
PreCG: precentral gyrus.

Discussion
This study explored differences in clinical symptoms between 
the acute phase and a 1-year follow-up period in cases of 
COVID-19. The 1-year follow-up data was also used to explore 
differences in brain function between healthy controls and 
those who had recovered from COVID-19. The main findings 
were as follows: (a) dyspnea, fatigue, myalgia, and insomnia 
were the most common symptoms at follow-up; (b) compared 
to the HC group, the COVID-19 survivors exhibited increased 
brain activity in the left PreCG, middle frontal gyrus, inferior 
frontal gyrus of operculum, inferior frontal gyrus of triangle, 
insula, HIP, parahippocampal gyrus, fusiform gyrus, postcentral 
gyrus, inferior parietal angular gyrus, supramarginal gyrus, 
angular gyrus, thalamus, middle temporal gyrus, inferior 
temporal gyrus, CAU, and PUT; (c) there was a significant 
correlation between ALFF values in the left CAU and AIS 
scores, and the increase in ALFF values in the left PreCG was 
highly correlated with the levels of Neu#.

We found that dyspnea, fatigue, and myalgia were common 
even at the 1-year follow-up after SARS-CoV-2 infection. 
While anxiety and depression scale scores were within the 
normal range, insomnia became obvious over time. This is 
consistent with the results of other studies. A previous SARS 
study showed that 40% of survivors continued to suffer from 
chronic fatigue problems after an average of 41.3 months 
post infection (Lam et al., 2009). Several studies have also 
suggested that fatigue or muscle weakness is more common 
in women recoverees and patients who had severe COVID-19 
(Huang et al., 2021; Xiong et al., 2021).

Moreover, Tansey et al. (2007) found that 33% of survivors 
had a significant decrease in mental health 1 year after 
infection, even though most patients recovered well from the 
SARS infection. Compared with the 1-month data, a 3-month 
follow-up survey of 226 survivors showed that symptoms of 
depression persisted, while symptoms of post-traumatic stress 
disorder, anxiety, and insomnia had significantly improved 
(Mazza et al., 2021). The latest Chinese cohort study observed 
that sleep difficulties, anxiety, and depression were common 
symptoms at a 6-month follow-up (Huang et al., 2021), which 
is similar to our results. We speculate that compared with 
anxiety and depression, symptoms of insomnia become 
more obvious with longer follow-up times. The mechanism 
underlying the physical and neuropsychological sequelae of 
COVID-19 may be a combination of multiple factors, including 
direct viral infection, immune stress, hormone therapy, 
intensive care unit treatment history, and social isolation 
(Huang et al., 2021).
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In the current study, the group that had recovered from 
COVID-19 had significantly increased ALFF values in multiple 
brain regions compared with the HC group, with the greatest 
difference in the left HIP. The main function of the HIP is 
memory formation and spatial navigation, and it plays an 
important role in supporting flexible cognition and behavior 
(Bellmund et al., 2018). Kim et al. (2015) suggested that 
uncontrollable stress can affect the shape and function of the 
HIP. However, the COVID-19 outbreak has caused a certain 
degree of psychological stress not only for patients, but also 
for healthy people who are not sick. Thus, we suspect that the 
increased regional intensity in the HIP could result partially 
from stress and partially from inflammation or other reasons. 
In addition to the HIP, other brain areas with increased ALFF 
values included the insula, parahippocampal gyrus, and 
thalamus, which are all important parts of the limbic system. 
The limbic system processes sensory input from external and 
internal environments, and uses memory and motivation to 
determine the emotional, autonomous, motor, and cognitive 
responses that are essential for self-protection and survival 
(McLachlan, 2009). Supporting these reported changes in 
limbic system function, abnormal cortical thickness in the 
left limbic system was reported in a study of patients with 
COVID-19 6 months after discharge (Qin et al., 2021). Taken 
together, these data suggest that the limbic system may be 
vulnerable to COVID-19 infection, but how this happens needs 
further study.

ALFF values in the CAU and PUT were greater in the RecCOVID 
group than in the HC group. The human striatum is composed 
of the CAU and PUT, and it has been reported that ACE2 
is expressed in the striatum (Baig et al., 2020). Therefore, 
elevations in ALFF may be related to the richness of ACE2 in 
the striatum. Higher ALFF values in the CAU was associated 
with greater insomnia in the COVID-19 survivors. The CAU 
is involved in many associative, executive, motivational, and 
emotional processes (Kas et al., 2021). Increased spontaneous 
neuronal activity in the CAU might trigger insomnia, thus 
accounting for the higher rates in the RecCOVID group at 
the 1-year follow-up. However, a longitudinal fluorine-18 
fluorodeoxyglucose positron emission tomography study 
examining the consequences of COVID-19 after 6 months 
showed a hypometabolic pattern in the bilateral CAU (Kas et 
al., 2021). The discrepancy in results might be related to the 
different follow-up times and the smaller sample size (seven) 
used in Kas et al. (2021).

In our study, the RecCOVID group also had higher ALFF values 
in the left frontal lobe (PreCG, middle frontal gyrus, inferior 
frontal gyrus of operculum, and inferior frontal gyrus of 
triangle), parietal lobe (postcentral gyrus, inferior parietal 
angular gyrus, supramarginal gyrus, and angular gyrus), and 
temporal lobe (fusiform gyrus, middle temporal gyrus, and 
inferior temporal gyrus) than did the HC group. This might 
indicate that COVID-19 damages the function of multiple brain 
lobes to varying degrees. Furthermore, ALFF values in the left 
PreCG of the RecCOVID group were positively associated with 
Neu#. This implies that the more severe the inflammation was 
when the patients were hospitalized, the faster the recovery 
was after 1 year of follow-up in the PreCG. SARS-CoV-2 was 
recently detected in frontal lobe sections from postmortem 
examination, confirming the presence of the virus in brain 
tissue (Paniz-Mondolfi et al., 2020). Thus, we think this may 
be related to direct infection of the virus, which causes a fast 
inflammatory response that recovers quickly.

We wish to highlight two interesting findings. First, brain 
regions at follow-up only showed higher ALFF values than 
controls; no regions exhibited lower ALFF values. Second, 
ALFF values were elevated in the left hemisphere, but not in 
the right hemisphere. As the study was conducted 1 year after 

discharge, we speculate that the cause of the first finding may 
be related to the compensatory repair of brain tissue following 
hypoxia or inflammation, which manifests as increased 
spontaneous activity of neurons and increased ALFF. The 
second finding could be related to asymmetrical development 
of the brain (Duboc et al., 2015), resulting in different degrees 
of viral damage to the left and right cerebral hemispheres. 
However, the exact mechanism underlying these two findings 
remains unclear and further research is needed.

This study has several limitations. First, the small sample size 
was small. Subsequent follow-up studies should focus on 
increasing the sample size. Second, to avoid cross-infection of 
patients, head MRI was not performed in the acute phase. 

In this study, dyspnea, fatigue, and myalgia were common 
even at the 1-year follow-up after SARS-CoV-2 infection, 
and insomnia became obvious over time. We observed 
significant differences in ALFF values in brain regions 
related to mood and sleep regulation in individuals who 
had recovered from COVID-19, which may provide imaging 
evidence for neuropsychiatric sequelae in the long-term 
recovery of COVID-19. Inflammatory markers collected during 
hospitalization were related to the ALFF, and this finding may 
help shed some light on the neurobiological mechanisms 
underlying COVID-19-associated neuropsychiatric sequelae. 
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Generalisability 21 Discuss the generalisability (external validity) of the study results

Other information
Funding 22 Give the source of funding and the role of the funders for the present study and, if

applicable, for the original study on which the present article is based

2

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and
published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely
available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at
http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is
available at http://www.strobe-statement.org.


