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Abstract: In this work, nitrogen-doped ZnO nanoparticles were synthesized in various conditions by
the gas evaporation method with DC arc plasma. Nitrogen concentrations of 6.38 × 1018 cm−3 to
2.6 × 1019 cm−3 were obtained at a chamber pressure of 150 torr, using arc currents of 20 A to 70 A.
The intensities of local vibrational modes at 275 cm−1 and 581 cm−1 in the Raman spectra of ZnO
nanoparticles showed a dependency on the nitrogen concentration in the ZnO nanoparticles. The
ratios of donor–acceptor pair and exciton emissions in the photoluminescence spectra of nitrogen-
doped ZnO nanoparticles, and the electroluminescence of light-emitting diodes based on these
nanoparticles, were nearly proportional to the Raman peak’s intensity at 275 cm−1. The results
indicated that the nitrogen dopants in the ZnO nanoparticles were acting as an acceptor.

Keywords: ZnO nanoparticles; nitrogen doping; electroluminescence; photoluminescence; light-
emitting diodes

1. Introduction

ZnO is currently of great interest for the development of novel solid-state lighting
devices. ZnO has a wide bandgap of 3.37 eV and a stable exciton binding energy of 60 meV
for light emission in the near-UV spectral range at room temperature [1,2]. One hurdle in
ZnO light device development is the difficulty in fabricating p-type ZnO. This difficulty
limits the application of ZnO in common optical devices, such as LEDs, that require precise
doping. To date, protocols that achieve reproducible and stable p-type ZnO have not been
developed. One reason for the slow development is due to the defects in ZnO, such as
oxygen vacancy (VO), zinc interstitial (Zni), etc., and that there are few candidates for
shallow acceptors [3]. The most reliable dopants for p-type ZnO are group V elements, such
as phosphorus (P) [4], arsenic (As) [5], antimony (Sb) [6], and nitrogen (N) [7]. Nitrogen is
the most suitable p-type dopant due to its atomic size being similar to that of oxygen. The
behavior of nitrogen dopants in ZnO has been discussed by theoretical calculations, such
as the ab initio electronic bandstructure method [8] and density functional theory [9]. Incor-
porating nitrogen dopants and co-dopants into ZnO has previously been reported [10–12].
Some reports have shown nitrogen-doped p-type ZnO- or ZnMgO-based LEDs with single-
crystal films using epitaxial growth technologies [13–15]. Unfortunately, single-crystal
substrates and epitaxial growth technologies require strick fabrication controls and are
currently not cost-effective. On the other hand, the fabrication of scalable LEDs using
nanoparticles (NPs) is inexpensive and can be fabricated in atmospheric conditions.

Currently, nitrogen-doped ZnO NPs are a unique and attractive issue. Various fab-
rication methods have been developed for synthesizing nitrogen-doped ZnO NPs, such
as radio frequency (RF) thermal plasma, hydrothermal-ammonolysis, and Nd:YAG laser
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ablation [16–18]. Our group has successfully developed nitrogen-doped ZnO NPs using a
DC arc plasma gas evaporation method. Additionally, we have developed several protocols
for the fabrication of ZnO NPs with both p-type and n-type conductivity [19–21]. Though
it contained the influence of many boundaries, Itohara et al., reported the p-type conductiv-
ity (mobility 5~7 cm2/Vs and carrier concentration + 2.0 × 1012 ~ + 2.7 × 1012 cm−3) of
nitrogen-doped ZnO NPs films [22]. We previously demonstrated the operation of semicon-
ductor devices, such as thin-film transistors [22] and UV LED [23], using nitrogen-doped
ZnO NPs for p-type layers. Fujita et al., demonstrated near-ultraviolet, homojunction LEDs
based on nitrogen-doped ZnO NP layers on a GZO (Ga-doped ZnO) film by a simple
coating process [23]. Shafiqul et al., demonstrated all nanoparticle-based homojunction
UV LEDs using Ga-doped ZnO NPs (n-type) and nitrogen-doped ZnO NPs (p-type) [24].
However, due to the difficulty of measuring a single nanoparticle’s electrical properties,
such as carrier concentration and mobility, the role of nitrogen in p-type characteristics of
ZnO NPs is not yet understood.

In this study, to better understand the role of nitrogen in ZnO NPs, we synthesized
nitrogen-doped ZnO NPs in various conditions using the gas evaporation method. We
investigated the material property dependencies of the ZnO NPs and ZnO NP-based LEDs
on nitrogen concentrations of ZnO NPs.

2. Materials and Methods

To fabricate nitrogen-doped ZnO NPs, we used an arc vapor deposition method
(ULVAC Inc., Model No-GE-970, Chigasaki, kanagawa, Japan). We previously detailed
the arc vapor method process and mechanism for ZnO NPs synthesis [19,20]. Briefly, zinc
metal (Nilaco Corporation, Chuo-Ku, Tokyo, Japan. Zn-99.99%) was used for the Zn source,
and dry air was used for the oxygen and nitrogen sources. The dry air was allowed to flow
into the chamber to control the dopants during the arc reaction. A carbon cathode was
placed above the Zn source in the chamber, and a potential difference was applied between
the carbon cathode and Zn source to create a current arc. The plasma generated by the
current arc caused a reaction with the Zn and dry air. In the reaction, O2 and N2 radicals
were generated from the dry air by the arc plasma and incorporated into nanoparticulate
crystalline Zn from the surface of the Zn source [19]. The resulting reaction produced
ZnO NPs of various sizes, which incorporated nitrogen atoms. In our investigation, we
created nitrogen-doped ZnO NPs with different nitrogen and oxygen concentrations by
controlling the arc current and chamber pressure. For generating different samples, arc
currents were varied between 20 A and 70 A. The chamber pressure was regulated between
75 and 760 torr using a rotary pump and control valve. For all NP synthesis conditions, the
airflow rate inside the chamber was held at a constant 5 L min−1.

We used the ZnO NPs to fabricate LED devices to evaluate the p-type characteristics
of nitrogen-doped ZnO NPs. An illustration of the device build is shown in Figure 1. To
create the LEDs, we first prepared a dispersion by mixing isopropyl alcohol (IPA) (0.3 mL),
and binder (0.1 g) (Silsesquioxane OX-SQ SI 20; Toagosei Co., Ltd., Minato-ku, Tokyo,
Japan) with nitrogen-doped ZnO NPs (0.05 g). The ZnO NP dispersions were coated on
the GZO electrode films (thickness of 500 nm) using the spin coating. The GZO films
were prepared using a 5% Ga-doped ZnO target on a 500 µm-thick glass substrate by RF
magnetron sputtering (Canon Anelva Corporation, Kawasaki, Kanagawa, Japan. Model-
400S) at a temperature of 300 ◦C. The spin coating process followed a two-step rotational
condition at an initial speed of 1000 rpm for 5 s, which was accelerated to a final speed
of 4000 rpm for 10 s. The nitrogen-doped ZnO NP-coated layers were sintered by a hot
plate at ~300 ◦C. Gold (Au) contact electrodes of 30 nm thickness were deposited on both
the p-type layer and the GZO film using a vacuum deposition procedure. The previous
research articles examined the ohmic behavior between the contact electrode (Au) and the
p-ZnO NP film [22].
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Figure 1. Schematic view of ZnO NP LEDs.

We measured the nitrogen concentration and characterized the corresponding material
properties of the nitrogen-doped ZnO NPs. Nitrogen concentration in ZnO NP powders
were measured by a thermal conductivity detector (EMGA-830 O/N analyzer, Horiba,
Minami-ku, Kyoko, Japan). Raman spectra of the NPs were also measured using the 532 nm
laser line of a high-resolution Raman confocal system (Nanofinder 30, Tokyo Instruments,
Edogawa-ku. Tokyo, Japan). Photoluminescence (PL) spectra of the NPs were acquired
at an excitation wavelength of 325 nm using a spectrofluorometer (FluoroMax-4, Horiba,
Minami-ku, Kyoto, Japan. A diffractometer (SmartLab, Rigaku, Akishima, Tokyo, Japan)
with Cukα radiation was used for measuring X-ray diffraction (XRD) in the ZnO NP powder
samples. The size and shape of NPs were observed using a field emission scanning electron
microscope (FESEM; JSM-7001FA, 5 KV, JEOL, Akishima, Tokyo, Japan). We measured the
current–voltage (I–V) characteristics of the fabricated LEDs using a parameter analyzer
(B2900A High-Resolution SMU, Keysight Technologies, Hachioji, Tokyo, Japan). Finally,
we evaluated the electroluminescence (EL) spectra of the LEDs fabricated from the ZnO
NPs. The EL spectra were measured from the top side of the p-contact electrode at room
temperature using a spectrometer (QE65000, Ocean Optics, Ontario, NY, USA). The EL
power of the LEDs was measured from the bottom side through a glass substrate using a Si
photodiode (S2281, Hamamatsu Photonics, Hamamatsu, Shizuoka, Japan).

3. Results and Discussion

Figure 2 shows the Raman spectra of ZnO NPs synthesized at an arc current of 30 A
with different chamber pressures ranging from 75 torr to 760 torr. The Raman active,
non-polar phonon modes E2 (high) were observed at 438 cm−1, and the polar A1 (TO)
and E1 (LO) optical modes appeared at 380 cm−1 and 584 cm−1, respectively [25]. The
second-order scattering feature at 332 cm−1 was attributed to the multi-phonon scattering
process [26]. In addition, the expected strongest nitrogen-related local vibrational modes
(LVMs) in the Raman spectra were located at 275 cm−1 and 581 cm−1 [27]. In this case,
the nitrogen content in the ZnO NPs at a chamber pressure of 150 torr was higher than
those of the other chamber pressures. Presumably, this was related to the lifetimes of N2
radicals being extended at the lower chamber pressure through fewer collisions, which
would increase nitrogen incorporation. At 75 torr, the reaction time was shorter due to a
higher gas flow rate, leading to lower nitrogen content than at a pressure of 150 torr. If
nitrogen acted as an acceptor, these results were consistent with the results of Itohara et al.,
where the sample fabricated at 150 torr exhibited p-type conduction, while the sample
fabricated at 610 torr exhibited n-type conduction [22].
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Figure 2. The Raman spectra of ZnO NPs prepared at an arc current of 30 A and chamber pressures
between 75 to 760 torr.

We investigated the relationship between arc current and nitrogen content of the NPs.
Different batches of nitrogen-doped ZnO NPs were created at arc currents between 20 A
to 70 A. The chamber pressure for all samples was held constant at 150 torr. Figure 3
shows the relationship between the nitrogen concentration and the nitrogen-related LVM
Raman peaks (275 cm−1 and 581 cm−1) of the NPs fabricated at the different arc currents.
The nitrogen concentrations ranged from 6.38 × 1018 cm−3 to 2.6 × 1019 cm−3. The LVM
peak intensities of the Raman spectra depended on the nitrogen concentration in the
ZnO NPs. The maximum nitrogen concentration was observed at an arc current of 30 A.
Thus, the intensity values for the LVM peak (275 cm−1 and 581 cm−1) correlated with
the nitrogen concentration in the ZnO NPs. This was consistent with previous literature,
which demonstrated that the nitrogen concentration had a linear dependence on the
Raman spectra intensity of the LVM [27]. The nitrogen concentration at the arc current
of 30 A was approximately 2.6 × 1019 cm−3, which was similar to the value of nitrogen
concentration in nitrogen-doped ZnO NPs previously reported [20]. Note that the nitrogen
concentration, measured by the thermal conductivity method, contained surface-absorbed
species of nitrogen molecules. The 275 cm−1 peaks may have originated from nitrogen
substitution of oxygen, whereas the broad Raman peak at 581 cm−1 was related to the
defect complexes [28]. Therefore, we used the intensities of Raman peaks at 275 cm−1

as the relative value of the nitrogen concentrations that doped into the ZnO NPs for the
following discussions.

We analyzed the structural morphology of the nitrogen-doped ZnO NPs synthesized
at a pressure of 150 T and arc current of 30 A using XRD, as shown in Figure 4. The XRD
peaks for the powder ZnO NP samples showed the hexagonal wurtzite crystal structure
with proper orientation, which was consistent with the standard JCPDS data (36-451) [29]
for ZnO. No additional peaks were present due to other impurities. The XRD diffraction
peak (002) of nitrogen-doped ZnO NPs was centered at approximately 34.31◦, which was
shifted compared to the known diffraction peak (002) for bulk ZnO (34.42◦) [30]. This shift
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was evidence of the incorporation of nitrogen into the ZnO NP crystal lattice and was
consistent with Raman spectroscopy results.
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An SEM image of ZnO nanoparticles synthesized at a chamber pressure of 150 torr
and arc current of 50 A is shown in Figure 5. The SEM image shows that the ZnO NPs have
different morphologies, such as rods and spheres. The average size of the ZnO NPs was
around 100–200 nm.
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Figure 5. The SEM image of ZnO nanoparticles synthesized at a chamber pressure of 150 torr and arc
current of 50 A.

Figure 6a shows the room temperature PL spectra for nitrogen-doped ZnO NPs
generated at a chamber pressure of 150 torr and arc currents between 20 A and 70 A.
The deep level emission was caused by defect-related transitions in the lattice or near
the surface of the ZnO, such as oxygen vacancies (VO), zinc vacancies (VZn), and zinc
interstitials (Zni) [31]. The near-band-edge (NBE) emission peak shifted toward the lower
energy side due to its appearance at the donor–acceptor pair (DAP) transition [32]. The
NBE emission of ZnO NPs was found to be strongest at an arc current of 30 A, compared to
other currents.

The acceptor nitrogen incorporation in the ZnO NPs crystals was revealed in their de-
convolution of photoluminescence (PL) spectra at (NBE) emission through the appearance
of DAP recombination [33–35]. Figure 6b represents the NBE emission and the Gaussian
deconvolution peaks corresponding to the exciton emission and DAP emission. The in-
tensity of the DAP emission increased with the addition of nitrogen in the ZnO NP lattice,
which was reflected in the acceptor levels of ZnO NPs. Zeuner et al., suggested the nature
of the DAP band at 3.24 eV for nitrogen-doped ZnO [36]. We observed that the DAP band
was centered at approximately 3.23 eV. The strong 3.23 eV emission intensity confirmed the
involvement of nitrogen acceptors [37].

We fabricated LEDs using nitrogen-doped ZnO NPs. The ZnO NPs acted as hole
injection layers. Therefore, we chose to use NPs fabricated at a chamber pressure of
150 torr and arc currents of 20 A to 70 A, which had the highest nitrogen concentrations.
Figure 7a displays the I–V properties of the fabricated ZnO NP-based LEDs. Figure 7b
shows the corresponding EL spectra of the LEDs at a forward bias voltage of 10 V. The I–V
characteristics demonstrated a diode rectification character at room temperature and under
dark conditions. The device resistivities under forwarding bias were near proportional to
the EL intensities. The leakage currents were observed from the devices, but the meaning
of the leakage current variety for various conditions of ZnO NPs was still unknown and
requires further investigations. The EL spectra showed only the near-band-edge UV
emission, and no deep-level emissions in the PL spectra (excited by a weak power source)
were observed. It was considered that the deep-level transition for EL emissions was
saturated by the higher injected carrier density [23]. The EL peak energy of LEDs shifted
toward the lower energy side compared to the PL spectra, due to the heating effect of
temperature rises during operation of the devices [15,24].
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Figure 8 shows the dependence of EL intensities on the nitrogen concentrations in
ZnO NPs (275 cm−1 Raman peaks) and the ratiometric of the DAP emission and exciton
emission, calculated from Figure 6b, versus the 275 cm−1 Raman peak intensity of the
respective sample. The ratios of DAP/exciton emission intensity were near proportional to
the nitrogen concentrations of the ZnO NPs (275 cm−1 peak intensities of Raman spectra).
This suggested that the nitrogen concentrations of the ZnO NPs correlated with the donor
or acceptor concentrations. Thus, the results indicated that the incorporated nitrogen acted
as an acceptor in the ZnO lattice. This also clearly showed that the EL intensities of the
LEDs were proportional to the nitrogen concentrations of the ZnO NPs.
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As mentioned above, the densities of nitrogen in ZnO NPs contributed to increasing
acceptors, the conductivity of p-type layers, and the EL intensities of LEDs. Taking into
account these results, the authors conclude that nitrogen dopant acts as an acceptor in
ZnO NPs, and the nitrogen-doped ZnO NP layer functions as a hole injection layer in the
LED devices.

4. Conclusions

Nitrogen-doped ZnO nanoparticles were successfully prepared by DC arc plasma gas
evaporation and used to make LEDs. The EL emission of LEDs was measured to evaluate
the p-type features of nitrogen-doped ZnO NPs, and the EL intensities were found to be
proportional to the nitrogen concentrations in the ZnO NPs. The overall experimental
analysis showed nitrogen dopant was likely acting as an acceptor for ZnO NPs. These
results implied that the fabrication of high-performance ZnO NP-based LEDs could be
expected by optimizing the nitrogen concentration in the ZnO NPs.
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