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Abstract: The size of one’s pupil can indicate one’s physical condition and mental state. When we
search related papers about AI and the pupil, most studies focused on eye-tracking. This paper
proposes an algorithm that can calculate pupil size based on a convolution neural network (CNN).
Usually, the shape of the pupil is not round, and 50% of pupils can be calculated using ellipses as
the best fitting shapes. This paper uses the major and minor axes of an ellipse to represent the size
of pupils and uses the two parameters as the output of the network. Regarding the input of the
network, the dataset is in video format (continuous frames). Taking each frame from the videos and
using these to train the CNN model may cause overfitting since the images are too similar. This
study used data augmentation and calculated the structural similarity to ensure that the images had
a certain degree of difference to avoid this problem. For optimizing the network structure, this study
compared the mean error with changes in the depth of the network and the field of view (FOV) of
the convolution filter. The result shows that both deepening the network and widening the FOV of
the convolution filter can reduce the mean error. According to the results, the mean error of the pupil
length is 5.437% and the pupil area is 10.57%. It can operate in low-cost mobile embedded systems at
35 frames per second, demonstrating that low-cost designs can be used for pupil size prediction.

Keywords: biomedical imaging; computational intelligence; engineering in medicine and biology;
machine learning

1. Introduction

The irises of lower vertebrates are intrinsically photosensitive, so a pupillary light
reflex (PLR) does not need to be controlled by the brainstem. However, the PLR of higher
vertebrates is governed by the brainstem [1]. The pupil size of the human eye is between
1.5 mm and 9 mm [2] and is controlled by the autonomic nerve. Thus, the optic nerve
function of the central and peripheral nervous systems can be evaluated [3]. In clinical
practice, the pupillary response to light stimuli evaluates the retina, optic nerve function,
and brainstem [4]. PLR is essential in the diagnosis of eye diseases and nervous system

Sensors 2021, 21, 4965. https://doi.org/10.3390/s21154965 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0966-5784
https://orcid.org/0000-0003-2006-9040
https://orcid.org/0000-0002-1681-5410
https://orcid.org/0000-0001-7242-8434
https://doi.org/10.3390/s21154965
https://doi.org/10.3390/s21154965
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21154965
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21154965?type=check_update&version=2


Sensors 2021, 21, 4965 2 of 13

research. PLR mainly measures the size (diameter or area) of the pupil [5], and the size
of the pupil is controlled by the circular (sphincter) and radial muscles of the iris. The
parasympathetic nervous system (PNS) innervates the circular muscle, and the sympathetic
nervous system (SNS) controls the radial muscle [6]. Both PNS and SNS can be used as
parameters to predict a patient’s physical condition. When a patient has inconsistent
responses on both sides of the pupil, or the contraction response is different from ordinary
people, it may be a sign of certain diseases [6–13].

Many studies have shown that, under the stimulation of red light and blue light,
the pupil contraction in primary open-angle glaucoma (POAG) is either smaller than
that in ordinary people or non-existent [7,8,13]. In addition to glaucoma and a series of
retinopathy caused by diabetes, including patients with diabetic retinopathy (DR), non-
proliferative diabetic retinopathy (NPDR), and proliferative diabetic retinopathy (PDR),
the pupil response decreases as the disease worsens under the stimulation of a light
source [6,9,13]. Retinopathy is usually accompanied by the reduced function of intrinsically
photosensitive retinal ganglion cells (ipRGC). In addition to abnormal post illumination
pupil response (PIPR), it can also cause the dysregulation of circadian rhythms [9,13].
In addition to the lesions mentioned above, conditions caused by abnormalities of the
central nervous system can also affect the pupil. For example, the pupils of patients under
general anesthesia and suffering from Horner syndrome will respond differently to light
source stimulation than those of ordinary people [10–12]. Pupil size is also very helpful in
psychology; the size of the pupil changes with mood. The pupil dilates when a subject is in
a pleasant mood; otherwise, it constricts [14,15]. In clinical practice, the size of the pupil is
predicted by the experience of the medical staff. The behavior will not be unified since it
depends on the subjective consciousness or the degree of fatigue among medical staff [16].
Medical equipment for pupil measurement is expensive and must rely on the cooperation
of patients, which is inconvenient for medical staff.

For these reasons, this paper suggests that there must be a way to quantify pupil size,
which is convenient and has a low cost. In the past, most studies have focused on pupil
centering or eye-tracking [17–23]. There are few studies on pupil size. Concerning the
study of pupil size, for example, Garcia et al., used OpenCV to preprocess an image and
then used the Otsu threshold and contour detection to complete pupil size detection [16].
De Souza et al., proposed using two complementary independent algorithms. They then
used the results of these two separate algorithms to infer the center of the pupil and looked
outward to the edge to complete the pupil size prediction [24]. De Santis et al., used the
level set theory to realize fully automatic segmentation and then used this result to predict
pupil size [25]. Thasina Tabashum et al., used the Kalman Filter to develop a real-time
prototype that can simultaneously extract pupil size over time and enable adjustment
frame by frame [26]. S Navaneethan et al., proposed a human eye pupil detection system
to quickly recognize and diagnose the human eye pupil area. Double threshold, logical
OR, morphological closing, and average black pixel density modules are involved in the
proposed solution [27]. These studies about pupil size most used rule-based algorithms.
Additionally, Taehyung Kim et al., used a convolutional neural network-based semantic
segmentation method for accurate pupil detection [28] that mixes the rule-based algorithm
with an AI-based program. Deep learning is a type of artificial intelligence (AI). In terms
of AI acceptance, 84.2% of healthcare workers agree that AI can assist the imaging and
pathology department, and 76.3% of non-healthcare workers agree that AI is helpful [29].
Therefore, this paper proposes an algorithm based on deep learning that allows real-
time calculations in a low-cost mobile embedded system. The research will help solve
clinical problems in pupil measurement, including the fact that pupil size is unable to be
quantified in real-time, involves inconvenient operation, and is often expensive. The main
contributions of this paper include:

• We have proposed pupil size detection based on a convolution neural network that
allows real-time calculation in a low-cost mobile embedded system.
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• We have evaluated the performance of the proposed approach with multiple realistic
datasets for optimizing the structure.

2. Materials and Methods
2.1. Dataset

This study chose three different datasets, labeled pupils, from the wild (LPW), CASIA-
Iris, and Świrski datasets. The purpose was to prevent the training of the only dataset,
which would create overfitting. In addition, we selected images from datasets, except for
eye images with complete pupils for training, and struck off any photographs that showed
the pupil partially covered. Additionally, the training data added complex pupil images,
such as those which included glasses and makeup. Those taken outdoor also increased the
challenge of the model.

2.1.1. Labeled Pupils in the Wild Dataset

The dataset used in this study is labeled as pupils in the wild (LPW) and was provided
by Tonsen et al. [30]. The first dataset had nine different conditions for high-quality eye
images. It provided a label for the center of the pupil, which strengthened the challenge
and accuracy of our model. The images of this dataset are shown in Figures 1 and 2 with
ellipse fitting.

Figure 1. The sample images of the LPW dataset.

LPW was provided in the form of videos, so this study needed to extract the images
from the video in an appropriate sampling frequency. The videos were continuous frames,
so the similarity of adjacent photos was high. The high similarity could easily cause over-
training. Therefore, this study performed a structural similarity analysis to ensure that the
sampling frequency was not too high. The calculation method of the structural similarity
index is as follows:

SSIM(x, y) =

(
2µxµy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

) (1)
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where the µx and µy are mean values, σx and σy are standard deviations, σxy is the covari-
ance, and C1 and C2 are constants used to control the overall stability. If the structural
similarity index is 1, the two images do not have a difference.

Figure 2. The result of the LPW dataset ellipse fitting.

This study compared the structural similarity index with different intervals of 10, 15,
and 20 frames, and the average value of SSIM is shown in Table 1. Finally, this study chose
the interval of 15 frames, in which the average value of the structural similarity index was
closest to 0.7992 [31].

Table 1. The average value of SSIM at the different intervals of sampling.

Interval of Sampling Average Value

10 0.8406
15 0.8090
20 0.7781

2.1.2. CASIA-IrisV4-Thousand Dataset

The LPW dataset was taken with the eye tracker located on the edge of glasses, so
the oblique image was obtained. In addition, since the pictures of LPW are from videos,
photos from the same person may be split into training and test datasets, and we need
other datasets to reduce the impact. Therefore, for the second dataset, we added CASIA-
Iris-Thousand. These data come from the Chinese Academy of Sciences’ Institute of
Automation (CASIA), a subset of CASIA-IrisV4 [32]. Additionally, CASIA-Iris-Thousand
used an IKEMB-100 camera produced by IrisKing, which captured 1000 subjects to ob-
tain 20,000 high-quality positive iris images. The images of this dataset are shown in
Figures 3 and 4 with ellipse fitting.
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Figure 3. The sample images of the CASIA-IrisV4-Thousand dataset.

Figure 4. The result of the CASIA-IrisV4-Thousand dataset ellipse fitting.

2.1.3. ŚWirski Dataset

Since the LPW and CASIA-IrisV4-Thousand datasets were pretty different, we chose
to add a third dataset. This dataset was provided by Lech Świrski et al. [33]. These data
contained four datasets as single images. As with the LPW dataset, both were shot obliquely
with the eye tracker on the glasses. Similar to the CASIA-IrisV4-Thousand dataset, the eye
position was not exaggerated. It was appropriate to join and neutralize the two datasets.
The images of this dataset are shown in Figures 5 and 6 with ellipse fitting.

Figure 5. The sample images of the Świrski dataset.
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Figure 6. The result of the Świrski dataset ellipse fitting.

2.1.4. Preprocess Details

In addition to the similar structure index, data augmentation was also applied to en-
sure that the network could learn more styles during training. For data balance, the dataset
will use data augmentation to solve different amounts of data. For data augmentation, this
study used scales between 0.7 and 1.3 to produce different pupil sizes. The data were also
shifted 10% in each axis to allow the pupil edge to be at the image edge or even beyond the
image. Moreover, we used a rotation of ±30◦ and flipped vertically and horizontally to
cope with various situations. The items we used in data augmentation will not change the
image’s label to simplify the data procession. After that, we have 60,000 images, and the
size is 152 by 152 pixels. All of them could enhance the richness of the dataset. Finally, the
dataset was split into the training set and the testing set in a ratio of 7:3, which would be
shuffled before data split.

Of the three datasets, some only provided the label of the pupil center, so we needed a
new label for length. In both dark and light environments, human pupils have an average
non-circularity of 0.0166. The ellipse’s fitting abilities in both the dark and light were 59.6%
and 47.7%, respectively, so the fitting shape was set to ellipse [34]. The ground truth of the
network was calculated by the pixels on the major and minor axes of the ellipse fitted by a
direct least-squares method [35].

2.2. Method and Network Structure

Before training, we divided the dataset into two parts. One was the training set, and
the other was used for testing the models after training. As this study was limited by
hardware that could not put all of the training data into the network simultaneously, the
training set was split into three parts and loaded into the network in stages. That ensured
that the training data in each stage were unknown. In addition to different training data,
the learning rate of each step was also different. The learning rate was dropped from
1 × 10−3 to 1 × 10−5 at each step, and the batch size was 128. Every stage-trained for
100 epochs and used Adam as the optimizer. The network structure is shown in Figure 7,
and the * symbol means multiplication to avoid confusion with the letter x.

Figure 7. Network structure.
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The network parameters are shown in Table 2. Concerning the symbols used, x, y, and
z of K(x,y,z) are the size of the three-dimensional filters, and the amount of filters in each
layer is fixed at 32. Besides, m, n, and l of C(m,n,l) are the number of convolution layers
before the pooling layer, and i, j, and k of D(i, j, k) are the dilation rates of the convolution
layer. After the convolution layers, one 2D max-pooling layer reduces noise, and the size is
two by two.

Table 2. Network parameters.

Comparison Type

Type I Type II Type III

Network depth
Shallow K(3,3,3)C(1,1,1)D(1,1,1) K(3,3,3)C(1,1,1)D(3,2,1) K(7,5,3)C(1,1,1)D(1,1,1)
Middle K(3,3,3)C(4,2,1)D(1,1,1) K(3,3,3)C(4,2,1)D(3,2,1) K(7,5,3)C(4,2,1)D(1,1,1)
Deep K(3,3,3)C(8,4,2)D(1,1,1) K(3,3,3)C(8,4,2)D(3,2,1) K(7,5,3)C(8,4,2)D(1,1,1)

Type I uses regular convolution; Type II uses dilation convolution; Type III uses regular convolution. The filter
size has the same FOV as Type II.

The purpose of this study was to achieve a real-time prediction in a low-cost mobile
embedded system, so the number of parameters could not be too large. A large model,
or too many parameters, would not achieve the required speed using a low-cost mobile
embedded system, so this study used dilation convolution to accomplish this purpose. The
dilation convolution is shown in Figure 8.

Figure 8. Diagram convolution with a 3× 3 filter. The black dot is the position where the convolution occurs, and the gray
area is the FOV of the filter. The dilation rates are (a) = 1, (b) = 2, and (c) = 3.

The dilation convolution can enlarge the FOV of the filter without increasing the
number of parameters. Widening the FOV can enable a broader range of information to
be accepted [36]. Additionally, it can effectively prevent the misjudgment of the network
caused by some similar features. This study also compared the network models with the
same FOV between the regular filter and the dilated convolution to understand the effect
of the decrease in the number of parameters by dilation convolution. Therefore, in addition
to three different depth networks in Table 2, there were also three types with varying
convolution structures.

3. Results

This study used the test datasets for testing the networks and used the mean error as
metrics, which are defined as follows:

mean error =
1
n ∑

|prediction(pix)− ground truth(pix)|
ground truth(pix)

× 100% (2)

As the mean error simultaneously calculates the error of the major and minor axes, n
is equal to twice the total number of images. The results of the test are shown in Table 3:
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Table 3. Mean error of each network.

Comparison Type

Type I Type II Type III

Network depth
Shallow 5.437% 4.549% 4.321%
Middle 3.442% 2.838% 2.677%
Deep 2.662% 2.660% 18.165%

The mean error of length of all networks is mostly within 6%, and the best model even
reaches 2.660%.

For testing the speed on a low-cost mobile embedded system, this study converted
the original Keras model to the TensorFlow Lite model, which can be used for Raspberry
Pi to (a) Intel E3-1230 v5 and (b) ARM v8 Cortex-A72 (Raspberry Pi 4 Model B). This study
also tested the speed on the original Keras model of (c) Intel E3-1230 v5 and (d) NVIDIA
RTX 2080 Ti. The results are shown in Figure 9.

Figure 9. The relationship between frame rate and mean error under different hardware conditions for each network.
(a,b) use the TensorFlow Lite model; (c,d) use the original Keras model.
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On the (a) Intel E3-1230 v5 and (b) ARM v8 Cortex-A72, the highest speeds were
around 55 FPS and 35 FPS. On the (c) Intel E3-1230 v5 and (d) NVIDIA RTX 2080 Ti, the
highest speed was around 31 FPS and 31 FPS.

This study considered that the real-time calculation was faster than 30 FPS [37] in
the low-cost mobile embedded system, so the model with the lowest mean error was
K(3,3,3)C(1,1,1)D(1,1,1). Therefore, this study suggests using K(3,3,3)C(1,1,1)D(1,1,1) as the final
model for this study. Under the same conditions, we recommend choosing K(3,3,3)C(4,2,1)D(1,1,1)
and K(3,3,3)C(8,4,2)D(3,2,1) for (c) Intel E3-1230 v5 and (d) NVIDIA RTX 2080 Ti as the suggested
model for different hardware.

4. Discussion
4.1. Model Evaluation

Although the model can reach a maximum of 35 FPS in a low-cost mobile embedded
system, its mean error is too high. In addition, the model with the lowest mean error of
2.660% is too slow. When the pupil size changes, it may not detect all changes in pupil size
in real-time because the calculation speed is insufficient. As such, this study used 30 FPS as
the condition.

In addition to the length of major and minor axes, the area can also express the pupil
size. The equation is as follows:

Ellipse Area = a× b× π (3)

where a is the semi-major axis, and b is the semi-minor axis. In this study, the mean error
of the length is not counted separately for the major and minor axes, so the ellipse area
equation is used with the mean error of length. In the recommended model, the mean error
of the length and area are 5.437% and 10.57%, respectively. Besides, the comparison with
previous research [16] is shown in Table 4.

Table 4. The comparison with previous research.

The Recommended Model The Previous Research

Mean Error 5.437% 6.587%

4.2. Feature Map Visualization

This paper uses the GRAD-CAM [38] method to calculate its weight (w) by backprop-
agation to confirm the relevance of the feature map and the parameters. It can be observed
from the image that the area of interest of the network architecture is the pupil area, as
shown in Figure 10.

Figure 10. The feature map visualization.

4.3. Model Speed Trend

Figure 11 shows the relationship between the frame rate of each model and its num-
ber of parameters. According to the results, the frame rate decreases as the number of
parameters increases, and its fitting curve shows an exponential trend. The coefficient of
determination (R2) of the fitting curve in Figure 11 is 0.8168, and it can be concluded that
the frame rate and the number of parameters are highly correlated. Therefore, this study
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tried to reduce the number of parameters by dilation convolution, which is conducive to
improving the network’s speed.

Figure 11. Trend curves of frame rate and parameters.

4.4. Model Comparison

Figure 12 shows the effect of changing the convolution filter at the same depth. Both
Type II and Type III can effectively reduce the mean error in most cases. However, the
speed decreases. The declining rate on Type II models is more considerable at the shallower
structure than Type III, but the difference between the two becomes smaller in the middle,
as shown in Figure 12a,b. In Figure 12c, the Type III model may have too many useless
features leading to errors in judgment, although the convolution filter has a larger FOV.
Therefore, the overall mean error is higher than Type II.

Figure 12. The effect of the filter’s FOV changes on speed and mean error with (a) Shallow structure, (b) Middle structure,
(c) Deep structure.
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4.5. Model Revision

From the experimental results, this study found that in the Type II and Type I models
with the same parameters, while the mean error of Type II is significantly reduced the
calculation speed is slightly reduced. That is probably due to the fact that the Type II model
has a larger FOV than Type I. Although the part with more FOV seems to skip calculation
when performing convolution operations, the convolution kernel size is not reduced. The
neglected part can be regarded as a fixed-zero weight calculation, so the part will not be
trained, and the number of parameters will not increase. However, complementing the
part where the weight of the filter is regarded as zero will create too many parameters.
The larger FOV of the convolution kernel will decrease operating efficiency, resulting in a
slower speed. In addition to wasting performance, it is also easy to affect the prediction
because of some useless features.

This study conducted another experiment to account for the suggestion that the num-
ber of parameters causes the mean error to rise. This study tried to reduce the number
of parameters in the deepest network of Type III. As the depth of the network was fixed,
we adjusted the number of filters in each layer. We then changed the 32 filters to use
between 4 and 10 filters, and the mean error was reduced to within 10%. However, if
more than 11 convolution filters were used, the mean error would not decrease signifi-
cantly. According to the results, the mean error will reduce by lowering the number of
parameters, as expected. Therefore, due to too many network parameters, the deepest
network of Type III will cause the mean error to fail to achieve the desired result, resulting
in serious misjudgment.

5. Conclusions

This paper proposes an algorithm that can calculate pupil size that is based on the
CNN model. This study compared the mean error with different network depths and
FOV of the convolution filter for optimizing the structure. According to the results, both
deepening the network and widening the FOV can effectively reduce the mean error.
However, both will reduce speed. For the ARM v8 Cortex-A72 (RPi 4B), we recommend the
model be used at 35 FPS. The mean error of the pupil length is 5.437%, and the pupil area
is 10.57%. The model can calculate, in real-time, pupil size in a low-cost mobile system. It
will help doctors and nurses to obtain quantified results. This study also provides models
with lower mean error under different hardware conditions and respective improvements
in calculation speeds.

We will make an in-depth study to optimize the neural network structure of the system
to reduce the computational complexity and improve pupil detection speed in future works.
For the algorithm to identify pupils in different fields, the richness of the dataset will be
increased to enhance the generalization of real situations. We also need to consider that we
split the training and test sets after the data augmentation may allow the model to peek at
the test data during the training process and cause deviation. Besides, arranging clinical
experiments to compare with the results of machines and doctors is also necessary.
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