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Abstract

Avian cavity nesters (ACN) are viable indicators of forest structure, composition, and diver-

sity. Utilizing these species responses in multi-disciplinary climate-avian-forest modeling

can improve climate adaptive management. We propose a framework for integrating and

evaluating climate-avian-forest models by linking two ACN niche models with a forest land-

scape model (FLM), LANDIS-II. The framework facilitates the selection of available ACN

models for integration, evaluation of model transferability, and evaluation of successful inte-

gration of ACN models with a FLM. We found selecting a model for integration depended on

its transferability to the study area (Northern Rockies Ecoregion of Idaho in the United

States), which limited the species and model types available for transfer. However, transfer

evaluation of the tested ACN models indicated a good fit for the study area. Several niche

model variables (canopy cover, snag density, and forest cover type) were not directly

informed by the LANDIS-II model, which required secondary modeling (Random Forest) to

derive values from the FLM outputs. In instances where the Random Forest models per-

formed with a moderate classification accuracy, the overall effect on niche predictions was

negligible. Predictions based on LANDIS-II simulations performed similarly to predictions

based on the niche model’s original training input types. This supported the conclusion that

the proposed framework is viable for informing avian niche models with FLM simulations.

Even models that poorly approximate habitat suitability, due to the inherent constraints of

predicting spatial niche use of irruptive species produced informative results by identifying

areas of management focus. This is primarily because LANDIS-II estimates spatially explicit

variables that were unavailable over large spatial extents from alternative datasets. Thus,

without integration, one of the ACN niche models was not applicable to the study area. The

framework will be useful for integrating avifauna niche and forest ecosystem models, which

can inform management of contemporary and future landscapes under differing manage-

ment and climate scenarios.
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Introduction

The structure and composition of forest ecosystems are expected to shift with climate-induced

changes in precipitation, temperature [1], fire [2], carbon mitigation strategies [3,4], and bio-

logical disturbances [5]. Specifically, climate change induced declines in tree species occur-

rence [6], shifts in forest carbon stocks [1], increases in forest mortality events [7], and

increases in forest burn area [8] have been predicted. Forest composition and structure are

integral to biodiversity [9], and the climate induced changes are likely to have wildlife biodi-

versity implications [10] especially for avifauna [11]. For example, moderate to high severity

fires can create open forest habitat, adequate snag density, and minimal mid-story vegetation

for primary avian cavity nesters such as woodpeckers [12]. Though climate models predict

increases in area burned or fire intensity, which may increase habitat suitability for woodpeck-

ers [13], tree species composition shifts via climate change may pose adaptation constraints on

them [14]. Integrating the feedbacks between wildlife, habitat, and forest processes in a model-

ing framework could improve our understanding of climate induced wildlife habitat changes

and subsequent climate-forest adaptive management.

A model integration approach that links future forest structure and composition (from

mechanistic based forest ecosystem models) with ecological niche models would account for

the intrinsic feedbacks between climate, disturbance, and vegetation, and subsequent effects

on wildlife (Fig 1). Avian cavity nester (ACN) ecological niche models, both primary excava-

tors and secondary cavity users, are suited for such model integration [15]. ACNs are an

ensemble of wildlife species that can function as indicators of forest wildlife biodiversity and

ecosystem function. They are suitable indicator species of forest ecosystem dynamics [16–19],

because they are ecologically constrained by landscape scale forest components such as com-

position, structure, disturbance regimes, and management activities. Primary cavity nesters

are also correlated with forest avifauna community diversity [16] and cavity nesting webs

[20,21]. Some woodpeckers and owls are associated with the characteristics of mature and

structurally complex forests [16,22,23], which sustain greater biodiversity [24] and modulate

their population responses. These characteristic include snag density [25,26], tree density and

diameter [27], burn severity [12,28], and beetle outbreaks in the western North America [29].

These forest ecosystem components will be impacted by climate change [5,30,31] having cas-

cading effects on ACNs responses rendering them viable indicators in modeling future

changes to forest ecosystems under a range of climate and management scenarios.

The integrated approach would have two primary outcomes. First, the inclusion of vegeta-

tion and other ecological constraints can further improve climate change based avian distribu-

tion models [32,33]. The integration of vegetation responses (i.e., habitat component) into an

avifauna distribution model framework via dynamic global vegetation models (DGVM: mod-

els that project vegetation type shifts) has been shown to be effective at modeling avifauna

responses to climate change [34]. Moreover, fine-scale vegetation modeling of specific envi-

ronments (e.g., montane and boreal environments) [35,36] or for species with narrow habitat

breadth [37] may be necessary to feasibly model avifauna distributional changes under a

changing climate. Integrating process-based forest landscape models such as the LANDIS

models (LANDIS-II and LANDIS PRO) that incorporate finer scale climate-vegetation-distur-

bance interactions is promising [38–41]. Many of the key habitat characteristics and processes

(e.g., forest composition and structure; disturbance type, intensity, and temporal trends) that

modulate ACN habitat use responses are output variables of forest landscape models, allowing

for points of integration between the two modeling disciplines.

Second, the projected avifauna responses after integration provide an additional metric

beyond biogeochemical to assess differing future scenario effects (e.g., climate, management,
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and natural disturbance) on forest ecosystems. Some studies that have used this integration

approach with ACNs (Fig 1) found that managing for forest carbon storage decreased suitable

habitat [41] and avifauna populations would decline under climate change or business as usual

timber harvest practices [40]. Despite these previous efforts, model integration has been lim-

ited to a few studies [38] and is hampered by lack of a framework for transferring ecological

niche models, especially realized niche models.

We present a framework to integrate ACN ecological niche models with a forest landscape

model (LANDIS-II) and formalize the process. First, our focus is on using existing models and

readily available data to achieve model integration. Since this results in using models that are

not trained in situ, our first objective is to address transferability. Second, because forest land-

scape model outputs do not always function as direct inputs into ACN ecological niche model

(e.g. percent forest cover versus age or leaf area index), our second objective is to explore the

methods necessary to translate forest landscape model outputs into the inputs required. Our

final objective is to address the process of verifying that forest landscape model outputs will

adequately inform an ecological niche model when compared to the niche model’s original

inputs (i.e., the input types used to originally train the niche model). We use the standardized

terminology of ecological niche model, realized niche model, potential niche model, and habi-

tat suitability map proposed by [42].

Materials and methods

Study area

The study area used to test the framework was the Environmental Protection Agency Level III

Northern Rockies Ecoregion of northern Idaho (47.863437, -116.343855) [43]. This area cov-

ers 3.1 million hectares and is 88% forested. The region is 61% publicly held with 76% of the

public land managed by the U.S. Forest Service. It is comprised of ponderosa pine (Pinus pon-
derosa), lodgepole pine (Pinus contorta), Douglas-fir (Pseudotsuga menziesii), western larch

(Larix occidentalis), western white pine (Pinus monticola), western red cedar (Thuja plicata),

Fig 1. The conceptual diagram of climate-avifauna-forest model integration. A) Spatially explicit forest landscape

models with dynamic ecosystem processes that modulate processes via dynamic climate integration like LANDIS-II; B)

Avifauna-Forest models that integrate with Climate-Forest models and are not constrained by transferability to novel

regions; C) the integration of two different model types to produce emergent results that accounts for climate,

vegetation, and avifauna responses. Figure adapted from [15].

https://doi.org/10.1371/journal.pone.0217299.g001
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grand fir (Abies grandis), and western hemlock (Tsuga heterophylla). The climate varies across

topographic gradients from cooler-wet to warmer-dry affecting forest productivity and fuel

loads. Historically, the region had a mixed-severity fire regime with low/moderate severity fire

rotations of< 20 years in the low to mid-elevation forests [44] to high severity fires occurring

every 150–500 years across elevation gradients [45,46]. The similarity of the study area to other

Intermountain West forest ecosystems because of a mosaic of forest cover types due to topo-

graphic, climatic, and disturbance heterogeneity was advantageous for a study dependent on

the transfer of western avian cavity nesting species ecological niche models.

Model integration framework

Models integrated. Our first objective of model transferability and second objective of

linking the niche model outputs with LANDIS-II imposed constraints on the overall pool of

candidate models. Taxonomically, bird species distribution models transfer better to other

regions compared to invertebrate and plant models [47]. However, the transferability of a

model both spatially and temporally requires an evaluation of environmental equilibrium of

the species, i.e., the species occurs in all climatically suitable areas and is absent from those that

are unsuitable [48], environmental similarity between model training and projection regions,

and maintenance of the correlation matrix among predictors between regions [49]. These con-

straints and others related to model development methods [50] limit the number of models

available for integration, because models that pertain to a specific focal species, region, tempo-

ral period, transferability potential, and accommodate the level of inference desired are not

readily available. Thus, the availability of models for this study was predominantly limited

because of: 1) transferability issues due to the inability to apply a model to a novel landscape

(e.g., machine learning models (e.g., MAXENT) do not produce parametric equations for pub-

lication easily, hampering model application beyond the training region) (Fig 2A) or; 2) the

lack of parameter concordance between the LANDIS-II outputs and avian model inputs or its

derivatives (Fig 2B). It is unfeasible to report on each model rejected for integration because of

the failure of transferability or linking, therefore we present the models that fit the selection

criteria and then discuss the general reasons for model rejections.

We present two avian niche models to demonstrate the process of model integration with

LANDIS-II. The first was a Flammulated Owl (Psiloscops flammeolus) realized niche model

that predicts potential distribution and was originally informed by presence-absence data

while accounting for imperfect detection [51]. The Flammulated Owl model was trained in an

Intermountain West ecological region similar to our study area, which allowed for transfer-

ability. The second was an American Three-toed Woodpecker (Picoides dorsalis) potential

niche model that predicts the extent of suitable habitat without considering potential distribu-

tions [52]. The American Three-toed Woodpecker model is considered broadly applicable

across the woodpecker’s distribution [52], thus rendering it readily available and transferable.

Both avifauna niche models resulted in habitat suitability maps of the study region. We

selected these models for pragmatic reasons, because they met the transferability criteria and

integrated with LANDIS-II. Further, they demonstrate the application of realized and potential

niche models within the framework.

The forest landscape model implemented was LANDIS-II (v.6.2.1), which has a library of

extensions that facilitate the simulation of multiscale ecosystem processes with spatial interac-

tions and dynamic communities at scales of 104−107 ha [53]. These multiscale processes and

dynamics are simulated at variable timesteps within an interacting gridded landscape with

each cell representing aggregates of species-age cohorts and respective biomass. Twelve tree

species and ecosystem processes were simulated at a grain resolution of 200 m (4 ha). Several

Avian cavity nester and forest landscape model integration
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methods have been used to initialize landscape conditions [54,55], the species-age cohorts

across the simulated study area were imputed using Forest Inventory and Analysis (FIA) data

and Landscape Builder [56], which is a program that develops a spatially representative land-

scape from FIA data. Biomass totals are then assigned to each grid-cell through a spin-up pro-

cess in LANDIS-II, which results in landscape initial conditions.

Successional processes were modulated using the Net Ecosystem Carbon Nitrogen exten-

sion (NECN) (v.4.2.4) (formally the Century Succession extension) [57] to model biogeochem-

ical responses and ecosystem fluxes. NECN is based in part on the globally utilized CENTURY

soil model [58] and simulates the establishment, growth, and mortality of species, accumula-

tion and decomposition of wood and litter, soil carbon pools, and water availability [57,59].

Disturbance processes (fire and timber harvest) were simulated using the Dynamic Fire and

Fig 2. The framework for linking existing niche suitability models with forest landscape models to achieve integration. The left side represents the pathway (D) of

estimating habitat suitability using existing ecological niche models and enviornmental conditions of the study area independent of a forest landscape model. The right

side represents the pathway (E) of estimating habitat suitability using a forest landscape model (here: LANDIS-II) with integration points. The pathways and integration

points are described in the Model Integration Framework section. Shape key: ovals are models; right-angle rectangles are outputs of models; rounded edge rectangles are

environmental conditions in the study area; dashed lines represent steps that involve evaluation processes; solid lines represent implementation; block arrows represent

data/models used in this study.

https://doi.org/10.1371/journal.pone.0217299.g002
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Fuels System (DFFS) and Biomass Harvest. The DFFS extension (v.2.0.3) is based on the Cana-

dian Wildland Fire Information System and modulates fire events based on fuel a, fire-

weather, ignition probability, and topography [60]. Biomass Harvest (v.3.2) simulates multiple

harvest prescriptions across differing scales [61]. All extensions (succession and disturbance)

were simulated at five-year time intervals, such that timestep-0 refers to spin-up initial condi-

tions and timestep-1 refers to the first simulation step, i.e., five years of growth and disturbance

interactions. The outputs of spin-up and timestep-1 of the LANDIS-II model were used as

direct or indirect inputs into the avifauna niche models (Tables 1 and 2).

Transferability assessment. The transferability assessment of the avifauna niche models

(Fig 2A) was implemented following the suggestions of [49]. The first assumption of transfer-

ability is that the species is in equilibrium with the environment or current climate suggesting

that the species occupies all climatically suitable habitat. This can be evaluated by comparing

the observed distributions to modeled distributions based on climate envelope modeling or

through covariation analysis between species assemblages and climate [62]. The latter analysis

indicates birds have a high covariation with climate and can be assumed to be at equilibrium,

which is likely because of dispersal ability [62]. Thus, we accepted the assumption of equilib-

rium for the Flammulated Owl and American Three-toed Woodpecker without additional

analyses.

The second assumption of transferability is the study area and training region have similar

environmental characteristics. We tested for similarity between the study area and training

regions by comparing the distribution of each model’s predictors using the multivariate envi-

ronmental similarity surface (MESS) methods outlined in [63] and [64]. In our study, the

MESS calculates how similar a grid cell in the study area is to the set of grid cells in the training

region based on the set of predictors of the respective model being evaluated. As a grid cell

approaches 100, the location is less novel because the study area predictor values are approach-

ing the median value in the training area. A negative cell value indicates a predictor in the

study area that is outside the range of the training area, i.e., the cell represents a novel environ-

ment (see MAXENT Novel tutorial at http://biodiversityinformatics.amnh.org/open_source/

maxent). The third assumption of transferability is the covariation structure of the predictor

variables remains spatially and temporally constant between the study area and training

regions. We tested for changes in the correlation matrix using a Pearson correlation coeffi-

cient. We report on the evaluation of the latter two assumptions, environmental similarity and

predictor variable covariation structure.

Integration process

Flammulated owl model. The Flammulated Owl model was originally parametrized

(hereafter referred to as the base model) and trained using data from the Boise National Forest

in southern Idaho. The input variables (Table 1) were processed for our study area at the

appropriate spatial scales reported in the original study. An initial habitat suitability map (ini-

tial probability of occupancy) was calculated for our study area using the same methods, data,

and state variable types described in [51], i.e., base model (Fig 2D). This initial habitat suitabil-

ity map was used to evaluate the efficacy of using LANDIS-II to inform the Flammulated Owl

model (Fig 2F), by comparing this base model map to the habitat suitability maps generated

using LANDIS-II outputs and modeled canopy cover, modeled land cover types, and both.

The parameters of the Flammulated Owl model were not all directly informed by the

LANDIS-II outputs; canopy cover and land cover required secondary modeling (derivative

variable model) (Table 1) (Fig 2B). The base model uses the LANDFIRE Forest Canopy Cover

dataset [65] aggregated into four canopy cover classes (1 = 0–10%, 2 = 11–40%, 3 = 41–70%,

Avian cavity nester and forest landscape model integration
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and 4 = 71–100%) with the category’s midpoint value assigned to a grid cell. To calculate can-

opy cover from LANDIS-II outputs, we used Random Forest (RF) [66] to predict the canopy

cover classes of the study area from the LANDIS-II biomass estimates (S1 File). To evaluate

the secondary modeling process, we first used the RF classification prediction error (Out-of-

Bag (OOB)) to approximate the model’s internal performance at predicting the observed can-

opy cover (Fig 2C). OOB is the prediction error of a RF model derived internally through a

bootstrapping process of sub-sampled data. Second, we evaluated the sufficiency of the RF can-

opy cover predictions from LANDIS-II simulated state variables at timestep-0 to adequately

model an initial habitat suitability map by comparing it to the suitability map informed by

LANDFIRE canopy cover estimates (Fig 2F). We compared the two habitat suitability maps

Table 1. The variables used to inform the Flammulated Owl realized niche model reported by [51].

Parameter Original (base model)
Input Source

LANDIS-II Model

Source

Original Model Coefficient

(logistic)

Aspect

(cosine)

Digital elevation model derivative Digital elevation model derivative -2.544

Canopy LANDFIRE Forest Canopy Cover [65] A Random Forest model of canopy cover based on

biomass estimates.

0.064

Diversity Shannon Diversity Index of the LANDFIRE Existing Vegetation

Type classes of the study area

Shannon Diversity Index of the Random Forest

modeled cover types.

-1.209

Douglas-fir LANDFIRE Existing Vegetation Type [65] Proportion of Douglas-fir from the Random Forest

modeled cover types.

0.994

Non-forest LANDFIRE Existing Vegetation Type [65] Proportion of non-forest from the Random Forest

modeled cover types.

-0.021

Ponderosa

pine

LANDFIRE Existing Vegetation Type [65] Proportion of ponderosa pine from the Random

Forest modeled cover types.

0.013

https://doi.org/10.1371/journal.pone.0217299.t001

Table 2. The variables used to inform the American Three-toed Woodpecker potential niche model reported by [52].

Parameter (Indicator) Value LANDIS-II Model

Source

Tracts of old-growth forest Continuous tracts of land with a cumulative

area > 1,000 km2 (very good); area 600–1000 km2

(good)

First simulated timestep: all continuous grid cells with an average forest age >

= 125

Plant associations� Spruce (Picea spp.) forest (very good); Spruce and

Mixed-conifer/Douglas-fir (good)

The area of forest cover resulting from the first simulated timestep. The forest

type dataset was the same as the Flammulated Owl model.

Stand age�+ > = 125 yrs (very good)

> = 90 yrs (good)

First simulated timestep: all grid cells with an average forest age meeting the

criteria

Snags and decadent trees,

especially those with heart rot�+

+

>1.2 snags/ha (this fulfills very good and good levels) First simulated timestep: a binary variable predicted using a Random Forest

model with live above ground biomass, average forest age, elevation, slope,

and aspect as predictor variables.

Natural forest disturbance� Disturbed < = 5 years (this fulfills very good and

good levels)

First simulated timestep: burned grid cells

Elevation�+++ 4300–9000 ft DEM

Timber Harvest� Rotations > 100 yrs. (this fulfills very good and good
levels)

First simulated timestep: all grid cells with an average forest age meeting the

criterion

� Ecological indicators that are considered important indicators

+ The stand age was parameterized as a categorical value (old-growth and mature) in [52]. We associated a value of 125 years from a reference in [40].

++ The snag density was parameterized as a categorical value (abundant) in [52]. We associated a value of 1.2 snags/ha based on American Three-toed Woodpecker

habitat suitability model [70].

+++ The elevation proposed by [52] was specific to Utah. The best information on elevation gradients in Idaho indicate mid-elevation habitat use and across the

American Three-toed Woodpecker western distribution an elevation range of 4300’– 9000’ [71].

https://doi.org/10.1371/journal.pone.0217299.t002
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using an ArcGIS 10.5 band collection statistic correlation matrix. The band collection statistic

is a multivariate analysis of raster bands, where in this case the correlation between two raster

cells was calculated based on the covariance between the two datasets divided by the product

of the standard deviations.

Land cover types and diversity (Shannon Diversity Index) metrics of the Flammulated Owl

base model are based on the land cover classes of the LANDFIRE Existing Vegetation Type

(EVT) within differing buffers around each grid cell. The base model is parameterized using 11

EVT classes [51]. The LANDIS-II internally classified forest types (based on Biomass Reclass

Output v.2.0) of initial spin-up conditions based on the Landscape Builder extrapolation of

FIA data resulted in much more spatial heterogeneity of forest cover types than the LAND-

FIRE classifications for the study area. This is likely due to the homogeneous nature of LAND-

FIRE EVT classifications. This required a RF model to spatially predict the LANDFIRE cover

types of the initial landscape from the LANDIS-II species composition-biomass spin-up values

(S1 File). Like the canopy cover model, the OOB (Fig 2C) and comparison between the two

initial habitat suitability maps (Fig 2F) (one informed with the LANDFIRE EVT cover types

and one with the LANDIS-II RF cover types) were used to evaluate the secondary modeling

process.

Finally, we generated habitat suitability maps based on the probability of occupancy with-

out aggregating into discrete suitability levels, as this tends to diminish the available informa-

tion [67]. We compared (Fig 2F) the habitat suitability map informed by the base model
datasets (Fig 2D) to the LANDIS-II and derivative variable models informed habitat suitability

map (Fig 2E) using the ArcGIS 10.5 Band Collection Statistic correlation matrix. We assumed

in all instances that the habitat suitability map generated from the base model (Fig 2D) repre-

sented the study area, and the LANDIS-II informed habitat suitability map with secondary

modeling was being evaluated (Fig 2E). Observed Flammulated Owl location data from the

Idaho Department of Fish and Game (IDFG) [68] and an associated 400 m buffer representing

a home-range [51] were also compared to the occupancy predictions (Fig 2G).

American three-toed woodpecker model. The American Three-toed Woodpecker

potential niche model applied here was developed by the Utah Division of Wildlife Resources

and The Nature Conservancy using an Ecological Integrity Table (EIT) format [52]. EITs iden-

tify the key ecological attributes or conceptual factors (e.g., environmental regimes and con-

straints) that sustain a target’s (here: a species) composition, natural dynamics, and long-term

persistence [52,69]. Associated with the conceptual factors are real indicators that can be quan-

tified or qualified to assess ecological integrity. The transferability assessment was not relevant

to this model (Fig 2A), because it is a trait based potential niche model based on threshold

assessments of environmental parameters to produce ordinal levels of suitability. The model is

explicitly intended to be broadly applicable across the woodpecker’s range (i.e., transferable);

the exception being the elevation indicator which is applicable specifically to Utah [52]. Unlike

the Flammulated Owl model, which could be informed by the original model development

datasets and LANDIS-II outputs, these model characteristics precluded the development of a

comparative habitat suitability map for model verification. We therefore assumed the model

informed from LANDIS-II outputs was an accurate representation of suitable habitat.

The American Three-toed Woodpecker model has 12 indictors of which eight are consid-

ered most important [52]. We included six important indicators and one of the alternative

indicators (Table 2) omitting the important indicators larvae of bark beetles and forest manage-
ment. This was necessary, because we did not model biological disturbances in the LANDIS-II

modeling, and there was no process to identify areas of none management activity associated

with the EIT’s forest management: very good suitability level. However, the forest management
indicator is indirectly included among the other indicators such as stand age [52]. Further, it

Avian cavity nester and forest landscape model integration
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was not possible to explicitly identify non-harvested areas of the previous 100 years to properly

inform the timber harvest indicator. We used stand age as a proxy to identify areas with rota-

tion ages>100 years to meet the criteria of the timber harvest indicator (Table 2).

This ecological niche model required simulated state variables from the timestep-1 of the

LANDIS-II model (Table 2). The plant associations’ spruce-fir cover extent was derived using

the same land cover RF model as the Flammulated Owl process. We parametrized the natural
forest disturbance indicator with a binary variable identifying the simulated burn areas in time-

step-1. The elevation parameterizations were not applicable outside of Utah and were assigned

new threshold values based on the study area [71] (Table 2). The stand age and snag and deca-
dent trees indicators are qualitative ordinal variables in the EIT. To improve spatial modeling

of these variables in a GIS, we assigned quantitative thresholds from other published sources

[70,71] (Table 2). Stand age was informed from the LANDIS-II timestep-1 landscape maps.

Snag and decadent trees indicator could not be directly informed by LANDIS-II outputs (Fig

2B). We implemented a RF classification model using FIA data [72] (S1 File) to predict a

binary (present/absent) response for the appropriate snag density of each grid cell of the study

area, because predicting a quantitative snag density response would be uninformative due to

FIA methodology. The FIA methodology for plot level estimates result in a minimum scaled

snag density of ~14 snags/ha for each recorded dead tree on a plot, which is significantly above

the optimal 1.2 snags/ha associated with the American Three-Toed Woodpecker. For RF

model training, we filtered the response variable to only include dead standing trees meeting

specific criteria (dbh > 26 cm, height> 21 m, and decay code > 2). By accounting for only

snags meeting these criteria, we indirectly accounted for the EIT indicators dbh of snags and

height of snags in our modeling.

The habitat suitability maps were produced by assigning each indicator layer grid cell with

the respective condition present a one through seven-digit value with each initial digit being

unique to the layer (e.g., layer 1 = 1, layer 2 = 20, layer 3 = 300, etc.). These layers were added

together in a GIS to create a final gridded surface representing the potential niche (i.e., at each

grid cell from zero to seven layers intersected, the specific combination of intersecting layers

was captured at each grid cell) with cells that lacked the inclusion of one or more indicators

being explicitly identified. A suitability index value representing the number of intersecting

indicator layers present at a grid cell was then assigned to a new gridded surface. For example,

if grid cell x was coded as 7604321, one gridded surface accounted for the layer 5 conditions

being absent from cell x, and a second gridded surface coded cell x with a suitability index
value of six.

Like the Flammulated Owl assessment, observed locations of the American Three-toed

Woodpecker [68] were compared to the potential habitat suitability maps by assigning the suit-
ability index value to each observation point and summarizing (Fig 2G). To account for the

potential territorial habitat around an observation point, we quantified the suitable habitat

using a 147 ha buffer. The buffer was based on the median value of the reported highly variable

territory sizes [71]. We summarized the percent area of forest land cover associated with each

ecological indicator and suitability index value depending on the suitability level, and the num-

ber of indicators associated with each buffer (majority and minimum).

Results

Flammulated owl model

The Flammulated Owl realized niche model was implemented because the transferability

assessment suggested it was an acceptable fit for the Northern Rockies Ecoregion of Idaho.

The MESS analysis indicated the study area did not have many novel locations compared to
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the training region; almost all predictor values within the Northern Rockies Ecoregion are

within the range found in the training region (S1 Fig). The covariance structure of predictors

was mostly consistent between areas; several variable pairs only differed in degree of correla-

tion (S2 Fig). However, the ponderosa pine density variable differed in direction and degree

with respect to non-forest land cover density and canopy cover (S2 Fig).

The RF model that predicted canopy cover classes from the LANDIS-II outputs was ade-

quate (OOB accuracy: 54.9%) (S1 File). The model overestimated the grid cells that were con-

sidered medium, underestimating the high and low canopy classes (S1 File). However, the

overall performance of the RF did not appear to affect the predicted Flammulated Owl distri-

bution; the two distributions (habitat suitability maps comparisons based on the LANDFIRE

and RF canopy cover) were 99.6% correlated. This is plausible since the effect of canopy cover

on occupancy is minimal (Table 1). The RF model that predicted land cover classes from the

LANDIS-II outputs performed well (OOB accuracy: 90.6%) (S1 File). Land cover classes with

sparse representation across the study area were predicted poorly. However, of the three land

cover parameters that informed the Flammulated Owl model (Douglas-fir, non-forest, and

ponderosa pine), ponderosa pine had the highest prediction error rate (43%) (S1 File) and

Douglas-fir had the lowest prediction error rate (3%) (S1 File), which is a strong predictor of

Flammulated Owl habitat occupancy (Table 1).

The predicted realized niche habitat suitability map using the LANDIS-II outputs and

derivative variable models (RF canopy cover and RF land cover) was 94.8% correlated with the

base model predictions (Fig 3) (Note: this was the same correlation observed in the RF land

cover and LANDFIRE canopy cover modeled habitat suitability map compared to the base
model, because RF canopy cover estimates had little effect on the final habitat suitability maps

when compared to the implementation of LANDFIRE canopy cover). Differences >10% in

occupancy probability were negligible, being mostly relegated to the edges of the study area

and non-forested areas (Fig 3). The probability of occupancy was similar between the base
model and LANDIS-II habitat suitability maps, in addition to the observed Flammulated Owl

locations among both maps (Table 3) (S3 Fig). Among the observed Owl locations, the proba-

bility of occupancy was low (Table 3), however the habitat buffers of the known locations did

contain older forest stands (mean = 93 years old).

American three-toed woodpecker model

The EIT was not fully informed because the study area lacked contiguous blocks of mature or

old-growth forest that met the tracts of old-growth forest indicator threshold (Fig 4A). Most of

the potential niche was associated with public lands, specifically the U.S. Forest Service. Both

levels of suitability were limited by the area of appropriate stand age, timber rotation, and snag

presence (Fig 4A). The snag RF model (S1 File) was moderately sufficient (OOB accuracy:

74.3%) to predict presence across the landscape. Less than 2% (very good) and 4% (good) of the

region was associated with four or more of the EIT indicators (Fig 4B) with 1476 ha of very
good and 5544 ha of good suitable habitat associated with six indicators.

Areas with at least three indicators present comprised major contiguous tracts of potential

suitability. Areas with more than three indicators present were disjunct and sparsely distrib-

uted across the landscape (Fig 5). There was a slight increase in area of suitability level good
because of the inclusion of mixed-conifer and Douglas-fir cover in the plant associations indi-

cator. However, this had minimal impact on increasing the area of suitable habitat based on

the total number of indicators present (Fig 4B). At the very good and good suitability level, the

observed American Three-toed Woodpecker point habitat buffers were mostly associated with

areas relegated to no indicators and one indicator present, respectively (Fig 4C). Some buffers
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contained areas with up to five EIT indicators (Fig 4D). The observed Woodpecker locations

had a mean elevation of 1060 m, majority mixed-conifer land cover, median stand age of 52,

and were subjected to a simulated burn. A comparison of FIA plots meeting the very good and

good suitability level to the predictions indicated spatial agreement (S4 Fig). The FIA plots

were not located outside the areas predicted to have one or more EIT indicators.

Fig 3. The contemporary habitat suitability map of the flammulated owl across the Northern Rockies Ecoregion of Idaho with observed locations. The habitat

suitability maps were based on the occupancy probability using the realized niche suitability model described in [51]. Two data sources were used to inform the niche

model: original sources as described by [51] (Base Model) and inputs sourced from the LANDIS-II forest landscape model (Landis Model). Differences greater than +/-

10% between models informed with the differing input sources are too slight to be visible (inset map).

https://doi.org/10.1371/journal.pone.0217299.g003

Table 3. The summary statistics of the base model and LANDIS-II Flammulated Owl occupancy probability predictions of the study area with the observation

point data.

Habitat Suitability Comparison Observation Location Comparison

Base Model LANDIS-II Base Model LANDIS-II LANDIS-II Buffers

Mean 43% 43% 47% 46% 44%

Minimum 23% 23% 34% 33% 37%

Maximum 74% 74% 62% 62% 51%

Count NA NA 28 28 28

https://doi.org/10.1371/journal.pone.0217299.t003
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Discussion

Ecological modeling focused on the effects of climate change and management scenarios (e.g.,

fire, carbon mitigation, harvest) on forest resiliency will need to account for the effects of these

dynamics on wildlife habitat. Thus, to implement climate adaptive management strategies

aimed at increasing or preserving wildlife species, modeling efforts will need to include the

coupled response of vegetation and wildlife to climate change. We evaluated a framework for

Fig 4. Among the American Three-toed Woodpecker very good and good habitat suitability models: (A) is the percent

of forest land cover associated with each ecological indicator (these can sum to>100 because areas can be associated

with more than one indicator); (B) is distribution of forest land cover associated with each suitability index value; (C) is

the count of observation point buffers that have a majority of grid cells coded with the specific suitability index value;
(D) is the count of observation point buffers that contain a minimum of one grid cell with the respective suitability
index value.

https://doi.org/10.1371/journal.pone.0217299.g004

Fig 5. The number of American Three-toed Woodpecker potential niche ecological indicators intersecting across

the Northern Rockies Ecoregion for two habitat suitability levels. Expanded inset map depicts the disjunct areas of

increased suitability.

https://doi.org/10.1371/journal.pone.0217299.g005
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integrating ACN ecological niche and forest landscape models to improve ACN climate

change niche modeling and provide ecological modelers with a means to account for wildlife

measures in biogeochemical forest modeling.

Transferability assessment

Ecological niche models developed independent of forest landscape models will often require a

transfer from the model’s trained to implementation region, increasing the uncertainty of

model applicability to a potentially novel region. Generally, models are more readily transfer-

able when they capture the foundations of the ecological niche [73] and use predictors that

encompass a wider environmental range in the development region that have direct physiolog-

ically or resource meaningful associations [74]. To maximize transferability potential, a candi-

date set of models should be constructed based on the environmental similarity between the

training region and study area, the methods used to evaluate model fit within the training

region, the ecological rationale and association between predictor variables and niche

response, and the type of model (inference focused or machine learning).

Ideally, mechanistic models, which are more robust at capturing the processes that limit

species distributions [75] would be implemented within this framework. It will not always be

feasible to implement a process-based niche model, since a significant proportion of ecological

niche models are correlative models [76] and are readily available for implementation. There-

fore, the primary limiting factor of applying the framework is identifying niche models that

are trained in geographic and environmental space similar to the study region. This ensures

transferred correlative models are applied to environments with similar covariance structures.

Meeting this criterion is important because geographical orientation, anthropogenic land use,

and ecological memory affect species distributions and are difficult to standardize across

regions [74]. This factor limited the implementation of models in this study (e.g., [77]),

because the models were developed in regions too dissimilar to the study area.

Transferability is also limited by the niche model algorithm. A Black-backed Woodpecker

(Picoides arcticus) niche model developed in the same ecoregion but outside the study area

[78] met the geographic constraint criterion. However, the model was developed from a

machine learning algorithm (MAXENT), which limits transferability. Models that use predic-

tor variables based on sound ecological relationships with close causal links to response vari-

ables increase transferability [79]. Ideally then, statistical models are more readily transferable,

because they are focused on inference and ascertaining the causal relationships between pre-

dictor and response variables that have biological interpretations within clear conceptual

frameworks [80]. Alternatively, machine learning processes are more readily used for predic-

tion through identification of patterns in often complex datasets. Ecological interpretations of

such models is challenging, because relationships are not readily related to biological knowl-

edge [80]. This makes transferability difficult because though machine learning algorithms like

RF are immune to random noise overfitting [66], they are not immune to overfitting due to

heterogeneity of predictor-response relationships [81,82]. This overfitting and failure to make

general predictions to novel geographic extents has been observed in machine learning pro-

cesses applied to avifauna distributions [83]. Without a sound ecological basis for modeled

predictor-response variable relationships, regardless of the model’s in situ prediction success,

it is best to avoid transferring these models to a novel region.

The integration framework is intended to support modeling efforts that focus on climate

change scenarios and evaluating the temporal changes in avifauna niches. Ensuring the feasi-

bility of a cross-temporal transfer of the niche model is also important; it is best to select mod-

els that have been evaluated for parsimony and not just correlative fit. Parsimonious models,
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those with moderate complexity as determined using for example Akaike’s Information Crite-

rion, exhibit better cross-temporal transferability than models with higher correlative fit to

training conditions as determined using Area Under the Curve [82]. Models like the Black-

backed Woodpecker niche model previously mentioned with many predictor variables are

also limited in transferability because parsimony limits cross-temporal applications.

The Flammulated Owl model applied within this study meets the criteria described. It was

developed within a geographic region similar to our study area (S1 and S2 Figs). The model’s

predictor variables are based on a priori biological knowledge; they approximate known key

habitat-use variables and at scales appropriate to capture dynamics of different ecological pro-

cesses (e.g., juvenile dispersal, predator interactions, and foraging range) [51]. In addition, the

training selection criteria to produce a parsimonious model and prevent over-fitting [51] sup-

ports its use in a cross-temporal modeling application, i.e., climate change scenario modeling.

Assessing the transferability of a qualitative potential niche model like the American Three-

toed Woodpecker model, which is based on ecological integrity assessments, takes a different

approach than a realized niche model (Flammulated Owl). The EITs are the tools of an eco-

logical integrity assessment, which evaluate ecosystems for species composition, diversity, and

functional organization comparable to that of similar, undisturbed ecosystems in the region

[84]. The individual assessments (i.e., EITs) determine the viability of a species within an eco-

system by evaluating the composition, structure, function, and processes occurring within a

natural range of variation important for resiliency and adaptation to most natural and anthro-

pogenic perturbations [69]. They are intended among other things to provide a baseline and

trend assessment when applied at broad spatial and temporal scales and are inherently trans-

ferable [52]. However, differing ecologies across a species’ range and introduced biases because

of model development region (i.e., the American Three-toed Woodpecker model was origi-

nally developed in Utah and with a western U.S. focus, making transferability to eastern sec-

tions of its range questionable) will influence transferability. Unlike the Flammulated Owl

model, assessment of transferability required evaluation of which indicators to include, adjust-

ing thresholds to reflect the study region, and transforming indicators to a quantitative form

to improve spatial modeling.

The EIT model meets the criteria for selecting a model for inclusion and transferability

assessment. First, though originally applicable across the species’ geographic range, the Wood-

pecker model was developed for a western U.S. state [52]; focusing the model’s indicators to

environmental conditions similar to Idaho. Second, the indicators have a close association

with the response variable (potential suitable habitat) and are founded on ecological associa-

tions, which are inherent features of an EIT [69]. Even with the inherent applicability, model

caveats were addressed to improve transferability.

The EIT is constrained by ecological variation across different geographies, correlated indi-

cators, and reliance on taxonomically similar species for ecological information [52]. We

addressed these constraints to improve the model’s application to the study area. Environmen-

tal variation within the plant associations and elevation indicators across geographic regions

are noted in the EIT. We used the plant associations variations in spruce-fir and lodgepole

pine/mixed-conifer forest cover to inform suitability levels of very good and good; thereby

expanding the model’s applicability to the study area. In addition, the elevation indicator was

parameterized based on literature values as this was explicitly noted as being applicable to

Utah. Addressing the variations in these indicators improved model transferability to the

study area.

We used the correlation among indicators to minimize variable redundancy and account

for variables that could not be directly informed. The stand age, timber harvest, and important

but excluded indicator forest management were considered correlated (for this study) based on
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their descriptions in the EIT. We lacked temporally relevant information for timber harvest
and forest management, which would have affected the transferability and usefulness of the

model if unaccounted. Per the EIT, forest management accounts for alterations to the overall

natural fire regime, salvaging logging, and suppression logging. Historically, northern Rockies’

forests were intensely managed resulting in forest structural [85] and fire regime changes [86]

throughout. The ubiquitous affect across the landscape and lack of spatially explicit historical

management information would have resulted in a relegation of the region to the poor indica-

tor level for modeling purposes. This would have rendered the forest management indicator

uninformative for model inclusion. Confounding this was the lack of spatially explicit harvest

data to assess timber harvest thresholds. The solution was to use the LANDIS-II stand ages at

two threshold levels to inform the timber harvest and stand age (Table 2). This allowed for

identification of older stands indicative of long fire return intervals and lack of harvest. As a

result, the areas meeting these thresholds were assumed to be “unmanaged” providing a proxy

for the forest management important indicator. Though, we implemented solutions to improve

transferability and applicability, model evaluation was still a concern.

Model comparison

The LANDIS-II informed habitat suitability map of the Flammulated Owl model was evalu-

ated against the same niche model informed with an independent dataset (Fig 2F). However,

both habitat suitability maps were not completely verified with independent observation data

(Fig 2G), since the available observation data was affected by sampling bias. In contrast to the

Flammulated Owl model, there was no procedure to quantitatively evaluate (Fig 2F) the Amer-

ican Three-toed Woodpecker model with an alternatively informed model (Fig 2D). The valid-

ity of the model depended on the success of the initialized landscape to accurately reflect

contemporary forest composition and structure. The landscape initialization process [56] was

informed by FIA data and produced a forest composition and structure that agreed with FIA

data. Further, the evaluation of the Flammulated Owl model (Fig 2F) supports the validity of

the initial LANDIS-II modeled landscape. The LANDFIRE and LANDIS-II informed models

agreed (S3 and S4 Figs), therefore we surmised the LANDIS-II model timestep-0 outputs used

to inform the American Three-toed Woodpecker model were reflective of the contemporary

landscape. In addition, the FIA plots meeting the suitability criteria were generally associated

with the areas identified by the model (S4 Fig). In this case, the validity of the suitability predic-

tions would be a function of the model capturing the habitat use dynamics of the American

Three-toed Woodpecker in the Northern Rockies Ecoregion and not the inputs used to inform

it. The caveat to this assumption: the snag density predictions were not verifiable or compara-

ble to the Flammulated Owl model, and they represent input data that is uncertain. We are not

concerned as this variable is temporally dynamic and is not indicative of more long-term core

habitat features further discussed.

Both avian models required inputs to be secondarily modeled from LANDIS-II simulated

state variables. Canopy cover (Flammulated Owl), forest type (Flammulated Owl and Ameri-

can Three-toed Woodpecker), and snag density (American Three-toed Woodpecker) all

required secondary modeling (derivative variable model) (Fig 2B). We implemented a RF

model for each variable, because 1) we assumed complex and strong interactions among the

predictor variables, which are notably handled by RF [87]; 2) prediction and not inference was

our objective, making a machine learning process more advantageous [80]. The canopy cover

model was the least robust, though this did not affect the Flammulated Owl habitat suitability

map predictions (S1 File). RF has been used with success to predict canopy cover, but the pre-

dictor variables were more informative and based on inputs not derivable from LANDIS-II
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[88]. The secondary modeling introduces additional variability into the final potential and

realized niche predictions, however models not informed by RF (Flammulated Owl) indicated

the moderate error within the RF model (canopy cover) had a minimal effect on predictions

(S1 File). Only the snag RF model could not be independently assessed, which is likely to have

little effect on the information derived from the American Three-toed Woodpecker potential

niche model because of the nature of the snag variable.

LANDIS-II

The process of using LANDIS-II to produce spatially explicit inputs for use in other models

has been done before [89], provides a means to simulate landscape level variables that are oth-

erwise unavailable, and has its limitations. LANDIS-II estimates spatially explicit information

that were unavailable over large spatial extents from alternative datasets. Integrating LANDI-

S-II allowed for the application of the American Three-toed Woodpecker model to the North-

ern Rockies Ecoregion. Data to inform the Woodpecker model were otherwise unavailable

except for FIA plots, which would have limited the spatially explicit predictions possible via

LANDIS-II. Using LANDIS-II in this integration provided opportunities, however it also pre-

sented limitations.

Restricted outputs from LANDIS-II presented a limitation to implementation of the pro-

posed framework. This limited the scope of species and model types [90–92] that were feasible,

because predictor variables (e.g., normalized burn ratio NBR) were not easily correlated to the

LANDIS-II fire model outputs and modeling these was beyond the scope of this study. Man-

agement of species of conservation concern like the Lewis’s Woodpecker (Melanerpes lewis)
[93] would benefit from model integration. However, the available models [92,94] were not

easily transferable because of geographic and variable differences, specifically measures of

landscape level fire effects beyond burned area (e.g., NBR) are not distinctly relatable to

LANDIS-II fire severity outputs. However, with such modeled metrics provided (severity), it

may be possible. Overall, the variable mismatches between avifauna-forest models and LAND-

IS-II limited the integration candidate set of ACN niche models.

A lack of suitable ACN niche models for integration can be addressed though development

of in situ niche models based on habitat predictor variables easily sourced from forest land-

scape models [38,89,95]. Better integration through ACN predictor variable fit (Fig 2B) is pos-

sible through the use of alternative succession extensions like PnET [96] or forest landscape

models like LANDIS-PRO [97], which can simulate leaf are index or density and basal area

providing a better mechanism to estimate predictor variables like canopy cover [38]. Integrat-

ing LANDIS-II or other forest landscape models in the initial research development stages will

likely minimize the constraints associated with variable mismatches and transferability [95].

Habitat suitability maps

In Idaho, the Flammulated Owl is widely distributed in montane habitats but locally abundant

with clustered spatial distribution of breeding sites [98]. This general pattern was exhibited in

the predicted realized niche and the IDFG observation points (Fig 3). The increased probabil-

ity of occupancy was generally not associated with observed locations and associated habitat

use buffers (Table 3). The lower occupancy probabilities associated with the observed locations

could result from uneven temporal recording intensity, spatial coverage, sampling effort, and

temporal and spatial detectability, i.e., biased data [99]. It is likely these data are a function of

these biases. Most of the data were incidental/opportunistic sightings spanning a 32-year

period. Probability of detection is high for the Flammulated Owl among trained observers,

though it is influenced by noise [51] and can decline significantly outside of the pair-bonding
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and incubation period [100]. The realized niche predictions may represent contemporary hab-

itat suitability and the observation data may not represent contemporary habitat use because

of less than perfect detectability and a likely shift in temporal habitat suitability over the

32-year period.

Alternatively, the niche suitability model may poorly approximate the realized niche in the

novel study region because of resource use variations. Resource selection can vary between

locations based on availability differences resulting in poor predictability of habitat use [101].

This can cause poor transferability of habitat suitability models [90]. The transferability assess-

ment showed little difference between the model’s training region and the study area (S1 and

S2 Figs) except in the covariance structure between ponderosa pine cover and two other vari-

ables (non-forest cover and canopy cover) (S2 Fig). However, prey availability, snag density,

and stand density, which are associated with Flammulated Owl habitat, may influence resource

selection, and are related to stand age and disturbance regime [102], which were not directly

modeled. The age and forest structure underling the density of ponderosa pine and Douglas fir

forest cover (included variables) is likely affecting habitat use due to resource availability dif-

ferences between the model development and our study region. This is partially supported,

because older stands were associated with the habitat use buffers. We did not assess if this rep-

resents a habitat use difference compared with the entire landscape, as this was beyond the

scope of this research. The habitat suitability map is still useful in the management and protec-

tion of suitable habitat by focusing on those areas that are most suitable [51], or by focusing

population trend and habitat suitability research needs [103] on areas of increased occupancy.

Assessing population abundance and trends for the American Three-toed Woodpecker is

difficult; they are a highly irruptive species because of an association with newly (< 5 years

old) burned forest patches [71]. Often associated with shifting food resources [104], irruptive

species have irregular movement patterns making spatial predictions of habitat use also diffi-

cult [105]. We found little value in comparing the observed locations to the habitat suitability

map, because of the irruptive characteristics and resulting sampling biases [99]. Any habitat

suitability map will be highly temporally constrained and likely biased if disturbance character-

istics resulting in shifting prey availability are not accurately modeled. However, land manage-

ment and conservation activities will benefit from the spatial identification of habitats with key

non-temporally sensitive niche characteristics (e.g., mature spruce forest). These landscape

areas have the potential to confer suitable habitat after interacting with natural and anthropo-

genic disturbances. Focusing contemporary management and conservation activities on these

core habitat areas is an investment in future potentially suitable habitat.

The niche attributes within the American Three-toe Woodpecker model that are temporally

constrained but confer habitat suitability are snag density and time since last burn. The less

temporally dynamic niche attributes are the mature/old growth forest, spruce forest cover, ele-

vation, and areas devoid of harvest. The intersection of these niche attributes represents the

core habitat areas to focus contemporary management activities. We found that these areas

were aggregations of spatially fragmented forested blocks (Fig 5), which fragmentation and

habitat loss are the main concerns for this species in Idaho [106]. Land management activities

such as snag retention, fire management, and minimized timber harvest especially of mature/

old growth forest would be best focused on these areas. In addition, future scenario modeling

could evaluate the degree of impact of climate change and disturbance event interactions on

the core habitat.
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Conclusion

The presented framework for the integration of ACN and forest landscape models based on

the transfer of existing niche models is viable. Transferability was hindered by limitations such

as model training region and study area landscape similarities in addition to forest landscape

model output variables. We addressed these limitations through the criteria of selecting appro-

priate niche models, evaluating training and study area landscape similarities, and secondary

modeling of niche model inputs from the forest landscape model outputs. The framework

proved useful when niche models are not easily transferable to a landscape due to data con-

straints. LANDIS-II estimated spatially explicit landscape information (e.g., biomass distribu-

tions) that were unavailable from other datasets, and the framework included the process of

comparing habitat suitability maps and underlying variables. This increased the application of

avian niche models across a broad landscape improving habitat conservation information for

land managers. Finally, this framework provides a process to ascertain species responses to cli-

mate change and management scenarios while providing forest ecosystem modelers with a

means to account for wildlife species responses.

Supporting information

S1 Fig. The multivariate environmental similarity surface of the study area. Values<0 indi-

cate locations that are novel and not present in the original region used to inform the niche

suitability model. As a location approaches 100 the study area predictor values are all equal to

the median value in the training region.

(TIF)

S2 Fig. The covarience structure of the Flammulated Owl (Flam) realized niche model

explanatory variables in the training region (BNF) and study area (NR). Intensity of the

color or size of the pie indicate strength while red and blue indicate negative or positive rela-

tionships, respectively.
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S3 Fig. Histogram of predicted occupancy probability values: A) Base model B) LANDIS-II

model.
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S4 Fig. The American Three-toed Woodpecker habitat suitability map with the corre-

sponding FIA plots that meet the criteria of very good and good suitability.

(TIF)

S1 File. Walsh_methods_Paper_S1_file.

(DOCX)

Acknowledgments

This work was supported by the National Science Foundation award number DEB-1553049

and USDA NIFA McIntire-Stennis project 1004594.

Author Contributions

Conceptualization: Eric S. Walsh.

Data curation: Eric S. Walsh.

Formal analysis: Eric S. Walsh.

Avian cavity nester and forest landscape model integration

PLOS ONE | https://doi.org/10.1371/journal.pone.0217299 June 7, 2019 18 / 24

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0217299.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0217299.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0217299.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0217299.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0217299.s005
https://doi.org/10.1371/journal.pone.0217299


Funding acquisition: Tara Hudiburg.

Methodology: Eric S. Walsh.

Project administration: Eric S. Walsh.

Validation: Eric S. Walsh.

Visualization: Eric S. Walsh.

Writing – original draft: Eric S. Walsh.

Writing – review & editing: Eric S. Walsh, Tara Hudiburg.

References
1. Lenihan JM, Bachelet D, Neilson RP, Drapek R. Simulated response of conterminous United States

ecosystems to climate change at different levels of fire suppression, CO2 emission rate, and growth

response to CO2. Glob Planet Change. Elsevier B.V.; 2008; 64: 16–25. https://doi.org/10.1016/j.

gloplacha.2008.01.006

2. Abatzoglou JT, Williams AP. Impact of anthropogenic climate change on wildfire across western US

forests. Proc Natl Acad Sci. 2016; 113: 11770–11775. https://doi.org/10.1073/pnas.1607171113

PMID: 27791053

3. Law BE, Hudiburg TW, Luyssaert S. Thinning effects on forest productivity: consequences of preserv-

ing old forests and mitigating impacts of fire and drought. Plant Ecol Divers. 2013; 6: 73–85. https://

doi.org/10.1080/17550874.2012.679013

4. Law BE, Hudiburg TW, Berner LT, Kent JJ, Buotte PC, Harmon ME. Land use strategies to mitigate cli-

mate change in carbon dense temperate forests. Proc Natl Acad Sci. National Acad Sciences; 2018;

https://doi.org/10.1073/pnas.1720064115 PMID: 29555758

5. Weed AS, Ayres MP, Hicke J a. Consequences of climate change for biotic disturbances in North

American forests. Ecol Monogr. 2013; 83: 441–470. https://doi.org/10.1890/13-0160.1

6. Coops NC, Waring RH. Estimating the vulnerability of fifteen tree species under changing climate in

Northwest North America. Ecol Modell. Elsevier B.V.; 2011; 222: 2119–2129. https://doi.org/10.1016/j.

ecolmodel.2011.03.033

7. McDowell NG, Allen CD. Darcy’s law predicts widespread forest mortality under climate warming. Nat

Clim Chang. 2015; 5: 669–672. https://doi.org/10.1038/nclimate2641

8. Rogers BM, Neilson RP, Drapek R, Lenihan JM, Wells JR, Bachelet D, et al. Impacts of climate

change on fire regimes and carbon stocks of the U.S. Pacific Northwest. J Geophys Res. 2011; 116:

1–13. https://doi.org/10.1029/2011JG001695

9. McElhinny C, Gibbons P, Brack C, Bauhus J. Forest and woodland stand structural complexity: Its def-

inition and measurement. For Ecol Manage. 2005; 218: 1–24. https://doi.org/10.1016/j.foreco.2005.

08.034

10. Langdon JGR, Lawler JJ. Assessing the impacts of projected climate change on biodiversity in the pro-

tected areas of western North America. Ecosphere. 2015; 6: art87. https://doi.org/10.1890/ES14-

00400.1

11. Jetz W, Wilcove DS, Dobson AP. Projected impacts of climate and land-use change on the global

diversity of birds. PLoS Biol. 2007; 5: 1211–1219. https://doi.org/10.1371/journal.pbio.0050157 PMID:

17550306

12. Vierling KT, Lentile LB, Nielsen-Pincus N. Preburn characteristics and woodpecker use of burned

coniferous forests. J Wildl Manage. 2008; 72: 422–427. https://doi.org/10.2193/2006-212

13. Hutto RL, Patterson DA. Positive effects of fire on birds may appear only under narrow combinations

of fire severity and time-since-fire. Int J Wildl Fire. 2016; 25: 1074–1085. https://doi.org/10.1071/

WF15228

14. Fogg AM, Roberts LJ, Burnett RD. Occurrence patterns of Black-backed Woodpeckers in green forest

of the Sierra Nevada Mountains, California, USA. Avian Conserv Ecol. 2014; 9. https://doi.org/10.

5751/ACE-00671-090203

15. Walsh ES, Vierling KT, Strand E, Bartowitz K, Hudiburg TW. Climate change, woodpeckers, and for-

ests: Current trends and future modeling needs. Ecol Evol. 2019; 1–15. https://doi.org/10.1002/ece3.

4876 PMID: 30847111

Avian cavity nester and forest landscape model integration

PLOS ONE | https://doi.org/10.1371/journal.pone.0217299 June 7, 2019 19 / 24

https://doi.org/10.1016/j.gloplacha.2008.01.006
https://doi.org/10.1016/j.gloplacha.2008.01.006
https://doi.org/10.1073/pnas.1607171113
http://www.ncbi.nlm.nih.gov/pubmed/27791053
https://doi.org/10.1080/17550874.2012.679013
https://doi.org/10.1080/17550874.2012.679013
https://doi.org/10.1073/pnas.1720064115
http://www.ncbi.nlm.nih.gov/pubmed/29555758
https://doi.org/10.1890/13-0160.1
https://doi.org/10.1016/j.ecolmodel.2011.03.033
https://doi.org/10.1016/j.ecolmodel.2011.03.033
https://doi.org/10.1038/nclimate2641
https://doi.org/10.1029/2011JG001695
https://doi.org/10.1016/j.foreco.2005.08.034
https://doi.org/10.1016/j.foreco.2005.08.034
https://doi.org/10.1890/ES14-00400.1
https://doi.org/10.1890/ES14-00400.1
https://doi.org/10.1371/journal.pbio.0050157
http://www.ncbi.nlm.nih.gov/pubmed/17550306
https://doi.org/10.2193/2006-212
https://doi.org/10.1071/WF15228
https://doi.org/10.1071/WF15228
https://doi.org/10.5751/ACE-00671-090203
https://doi.org/10.5751/ACE-00671-090203
https://doi.org/10.1002/ece3.4876
https://doi.org/10.1002/ece3.4876
http://www.ncbi.nlm.nih.gov/pubmed/30847111
https://doi.org/10.1371/journal.pone.0217299


16. Drever MC, Aitken KEH, Norris AR, Martin K. Woodpeckers as reliable indicators of bird richness, for-

est health and harvest. Biol Conserv. 2008; 141: 624–634. https://doi.org/10.1016/j.biocon.2007.12.

004

17. Bryce SA, Hughes RM, Kaufmann PR. Development of a bird integrity index: Using bird assemblages

as indicators of riparian condition. Environ Manage. 2002; 30: 294–310. https://doi.org/10.1007/

s00267-002-2702-y PMID: 12105768

18. Segura A, Castaño-Santamarı́a J, Laiolo P, Obeso JR. Divergent responses of flagship, keystone and

resource-limited bio-indicators to forest structure. Ecol Res. 2014; 925–936. https://doi.org/10.1007/

s11284-014-1179-5

19. Ibarra JTJT, Martin K. Beyond species richness: An empirical test of top predators as surrogates for

functional diversity and endemism. Ecosphere. 2015;6. https://doi.org/10.1890/ES15-00207.1

20. Blanc LA, Walters JR. Cavity-Nest Webs in a Longleaf Pine Ecosystem. Condor. 2008; 110: 80–92.

https://doi.org/10.1525/cond.2008.110.1.80

21. Martin K, Aitken KEH, Wiebe KL. Nest sites and nest webs for cavity-nesting communities in interior

British Columbia, Canada: nest characteristics and niche partitioning. Condor. 2004; 106: 5–19.

https://doi.org/10.1650/7482

22. Roberts SL, van Wagtendonk JW, Miles AK, Kelt DA. Effects of fire on spotted owl site occupancy in a

late-successional forest. Biol Conserv. Elsevier Ltd; 2011; 144: 610–619. https://doi.org/10.1016/j.

biocon.2010.11.002

23. Reynolds RT, Linkhart BD. Flammulated Owls in ponderosa pine: Evidence of preference for old

growth. In: Kaufmann MR, Moir WH, Bassett RL, editors. Old Growth Forest in the Southwest Rocky

Mountain Regions Proceedings of a Workshop. General Te. Fort Collins, CO, USA: USDA Forest

Service; 1992. pp. 166–169.

24. Mazziotta A, Heilmann-Clausen J, Bruun HH, Fritz Ö, Aude E, Tøttrup AP. Restoring hydrology and
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