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Abstract 

Sepsis is a life-threatening condition in which the immune response is directed towards the host tissues, causing 
organ failure. Since sepsis does not present with specific symptoms, its diagnosis is often delayed. The lack of diag-
nostic accuracy results in a non-specific diagnosis, and to date, a standard diagnostic test to detect sepsis in patients 
remains lacking. Therefore, it is vital to identify sepsis-related diagnostic genes. This study aimed to conduct an 
integrated analysis to assess the immune scores of samples from patients diagnosed with sepsis and normal samples, 
followed by weighted gene co-expression network analysis (WGCNA) to identify immune infiltration-related genes 
and potential transcriptome markers in sepsis. Furthermore, gene regulatory networks were established to screen 
diagnostic markers for sepsis based on the protein-protein interaction networks involving these immune infiltration-
related genes. Moreover, we integrated WGCNA with the support vector machine (SVM) algorithm to build a diag-
nostic model for sepsis. Results showed that the immune score was significantly lower in the samples from patients 
with sepsis than in normal samples. A total of 328 and 333 genes were positively and negatively correlated with the 
immune score, respectively. Using the MCODE plugin in Cytoscape, we identified four modules, and through func-
tional annotation, we found that these modules were related to the immune response. Gene Ontology functional 
enrichment analysis showed that the identified genes were associated with functions such as neutrophil degranula-
tion, neutrophil activation in the immune response, neutrophil activation, and neutrophil-mediated immunity. Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed the enrichment of pathways such as primary 
immunodeficiency, Th1- and Th2-cell differentiation, T-cell receptor signaling pathway, and natural killer cell-mediated 
cytotoxicity. Finally, we identified a four-gene signature, containing the hub genes LCK, CCL5, ITGAM, and MMP9, and 
established a model that could be used to diagnose patients with sepsis.
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Introduction
Sepsis refers to a multi-stage developmental process of 
infection involving a range of conditions from systemic 
inflammatory response syndrome (SIRS) to septic shock, 
which can lead to multiple organ dysfunction syndrome 
(MODS) and even death [1, 2]. Sepsis is commonly 
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observed in the aging population, especially in patients 
with cancer and immunocompromised individuals [3, 4]. 
Currently, the treatment of severe sepsis has improved 
due to early diagnosis, quick recovery, rapid application 
of effective antibiotics, and improvements in supportive 
care, including pulmonary protective ventilation, smarter 
use of blood products, and reduced prevalence of noso-
comial infections in critically ill patients [5].

Sepsis is a heterogeneous syndrome, and its develop-
ment is the pathophysiological evolution of the patient’s 
body, involving different cell types and molecules, and 
its clinical manifestations lack specificity, patients often 
delay timely and effective treatment because of diagnos-
ing late. In the diagnosis of sepsis, biomarkers are still in 
their infancy, studies by Shang-Kai Hung et al. reviewed 
a number of promising biomarkers including C-reac-
tive protein (CRP), procalcitonin (PCT), interleukin-6 
(IL-6), CD64, presepsin, and sTREM-1, to distinguish 
between adults with sepsis [6]. Several studies have iden-
tified sepsis-related indicators, including markers of the 
hyperinflammatory stage in sepsis such as pro-inflam-
matory cytokines and chemokines, proteins synthesized 
in response to infection and inflammation [7, 8], and 
markers of neutrophil and monocyte activation [9]. More 
recently, studies have identified markers of immunosup-
pression in sepsis, such as anti-inflammatory cytokines, 
as well as the altered expression of cell surface markers 
on monocytes and lymphocytes [10, 11]. The identifica-
tion of a variety of pro-inflammatory and anti-inflamma-
tory markers can help identify patients at risk of severe 
sepsis, prevent the development of organ dysfunction, 
and help reduce the mortality rate associated with severe 
sepsis. Although current evidence has identified several 
important biomarkers associated with sepsis, it is dif-
ficult to make a rapid diagnosis and evaluation of sepsis 
with single biomarker because of poor sensitivity or spec-
ificity. In view of the complex pathophysiological process 
of sepsis, it is important to look for biomarkers with high 
sensitivity and specificity for the diagnosis of sepsis and 
treatment of multiple organ dysfunction syndrome.

The pathogenesis and progression of sepsis are not fully 
elucidated yet; therefore, it is vital to conduct in-depth 
studies of the mechanisms of sepsis at the molecular level, 
especially to identify sepsis-related diagnostic genes. In 
this study, we performed an integrated analysis using 
public multiple microarray datasets to assess the immune 
scores of samples from patients with sepsis and normal 
samples, followed by weighted gene co-expression net-
work analysis (WGCNA) to immune infiltration-related 
genes and potential transcriptome markers in sepsis. Fur-
thermore, gene regulatory networks were established to 
screen sepsis-related diagnostic markers based on pro-
tein-protein interaction (PPI) networks involving these 

immune-infiltration related genes. Finally, we constricted 
a sepsis diagnostic model based on the support vector 
machine (SVM) algorithm.2. Materials and methods.

Data collection and preprocessing
Gene Expression Omnibus (GEO) datasets, including 
those of normal samples and samples obtained from 
patients with sepsis (GSE57065 [12], GSE65682 [13], 
and GSE145227 [14]) were downloaded from the NCBI 
Gene Expression Omnibus (GEO) database (https://​
www.​ncbi.​nlm.​nih.​gov/​geo/). The data were processed 
via the following steps: 1) Normal samples and samples 
from patients with sepsis were retained; 2) Probes were 
transferred to Gene Symbol; 3) Probes with more than 
one gene were eliminated; 4) The mean expression value 
was calculated for genes corresponding to multiple gene 
symbols.

Analysis of differentially expressed genes (DEGs) in sepsis
The “limma” package in R was used to obtain DEGs 
between normal samples and samples from patients with 
sepsis by setting the following thresholds: false discovery 
rate (FDR) < 0.05 and |log2 fold-change (FC)| > 1. A total 
of 786 DEGs, including 427 upregulated genes and 359 
downregulated genes were acquired.

Immune infiltration score analysis of data
For the GSE57065 and GSE65682 data sets, we used 
ESTIMATE software [15]. to evaluate the StromalScore, 
ImmuneScore and ESTIMATEScore of the samples. 
MCPCounter [16] was used to evaluate the scores of 10 
types of immune cells, and GSVA’s ssGSEA method was 
performed to evaluate the scores of 28 types of immune 
cells [17]. To explore the relationship between sepsis and 
immune infiltration.

Identification of co‑expressed genes in sepsis using 
WGCNA
The WGCNA algorithm was used to identify co-
expressed genes and co-expression modules accord-
ing to the gene expression profiles of samples in the 
GSE57065 dataset. First, expression profiles of the DEGs 
in the GSE57065 dataset were extracted, and Pearson’s 
correlation analysis was performed to calculate the dis-
tances between the sequences of genes. Moreover, gene 
co-expression networks were constructed using the 
WGCNA package. The weighted co-expression network 
was constructed following the scale-free network law, 
meaning that the logarithm of k of a node with k-connec-
tivity is negatively correlated with the logarithm of P of k 
of the probability of that node.

Next, the gene expression matrix was transformed into 
an adjacency matrix, which in turn was transformed into 
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a topological matrix (TOM). The average-linkage cluster-
ing was performed with the hierarchical clustering mod-
ule based on TOM. According to the standard of a hybrid 
dynamic cut tree, the minimum number of bases was set 
at 80 for each gene network module.

Construction of PPI networks using STRING (search tool 
for the retrieval of interacting genes/proteins)
The STRING database is a database of known PPIs across 
2031 species, containing 9.6 million proteins and 13.8 
million PPIs [18]. It contains not only results of experi-
mental data, text mined from PubMed abstracts, and 
integrated data from other databases, but also results 
predicted by bioinformatics methods. The study of PPI 
networks is helpful in the identification hub regulatory 
genes. Currently, there are many databases of PPI net-
works, among which the STRING database covers the 
maximum number of species and contains information 
on different PPIs. The PPI network was visualized using 
Cytoscape (http://​cytos​cape.​org). Then, the Molecular 
Complex Detection (MCODE) plugin in Cytoscape was 
used to identify gene modules. The identified gene mod-
ules were subjected to Gene Ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) enrich-
ment analysis to study the functions and pathways asso-
ciated with the identified DEGs.

Results
Study workflow
The protocol designed to identify the immune infiltra-
tion-related genes and construct the diagnostic model 
for sepsis is displayed in Fig. 1. Specifically, we conducted 
comprehensive analysis through multiple public microar-
ray data sets to evaluate the immune scores of sepsis and 
normal samples. And through WGCNA to identify genes 
related to sepsis immunity to determine potential tran-
scriptome markers. Further, a gene regulatory network 
based on these immune infiltration-related genes was 
constructed, and a diagnostic model for predicting sepsis 
was developed based on the pattern recognition of sup-
port vector machines (SVM).

Data collection
The GSE57065 dataset consisted of 82 samples from 
patients with sepsis and 25 normal samples; the 
GSE65682 dataset consisted of 760 samples from patients 

Fig. 1  Workflow of the construction of the diagnostic model and immune infiltration analysis in sepsis

http://cytoscape.org
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with samples and 42 normal samples; the GSE145227 
dataset consisted of 10 samples from patients with sepsis 
and 12 normal samples. Patients’ clinical characteristics 
are provided in Table 1.

Analysis of immune infiltration scores
The ESTIMATE (Estimation of Stromal and Immune 
cells in malignant Tumours using Expression data) 
algorithm was used to assess the immune, stromal, and 
ESTIMATE scores of samples from the GSE57065 data-
set. The scores of 28 types of immune cells were esti-
mated by single-sample gene set enrichment analysis 
(ssGSEA) method using the “GSVA” package in R, and 
results showed that the abundance of activated B cells, 
immature B cells, natural killer (NK) cells, NK T cells, 
and myeloid-derived suppressor cells (MDSCs) was 
significantly lower in samples from patients with sep-
sis than in normal samples. However, the abundance 
of neutrophils was significantly higher in samples from 
patients with sepsis than in normal samples (Fig.  2A). 
The immune score and ESTIMATE score were signifi-
cantly lower in samples from patients with sepsis than 
in normal samples, and the stromal score was signifi-
cantly higher in samples from patients with sepsis than 
in normal samples (Fig.  2B). The “MCPcounter” pack-
age in R was used to evaluate the scores of 10 types of 
immune cells, and results showed that the abundance of 
T cells, cytotoxic lymphocytes, NK cells, and B-lineage 

and monocytic-lineage cells was significantly lower in 
samples from patients with sepsis than in normal sam-
ples (Fig. 2C), whereas that of neutrophils and endothe-
lial cells was significantly higher in samples from 
patients with sepsis than in normal samples. These 
results indicated that patients with sepsis had abnormal 
immune disorders and were immunocompromised.

At the same time, Spearman correlation analysis was 
performed to test the correlation between immune 
scores and the abundance of immune cells (Fig.  2D). 
The results reported a significantly positive correla-
tion between the immune score calculated by the ESTI-
MATE method and the abundance of B-lineage cells, 
NK cells, cytotoxic lymphocytes, T cells evaluated by 
the “MCPcounter” package and that of immature B 
cells, MDSCs, activated B cells, and NK T cells assessed 
by ssGSEA.

Similarly, the ESTIMATE algorithm was applied to 
evaluate the immune, stromal and ESTIMATE scores 
of samples from the GSE65682 dataset. The scores of 
28 types of immune cells estimated by ssGSEA showed 
that the abundance of activated B cells, immature B 
cells, NK cells, NK T cells, and MDSCs were signifi-
cantly lower in samples from patients with sepsis than 
in normal samples, whereas that of neutrophils was 
significantly higher in samples from patients with sep-
sis than in normal samples (Fig. 2E). The immune score 
and ESTIMATE score were significantly lower in sam-
ples from patients with sepsis than in normal samples, 
whereas the stromal score was significantly higher in 
samples from patients with sepsis than in normal sam-
ples (Fig.  2F). The scores of 10 types of immune cells 
evaluated by the “MCPcounter” package in R showed 
that the abundance of T cells, cytotoxic lymphocytes, 
NK cells, and B-lineage and monocytic-lineage cells 
was significantly lower in samples from patients with 
sepsis than in normal samples (Fig.  2G), while that 
of neutrophils and endothelial cells was significantly 
higher in samples from patients with sepsis than in nor-
mal samples. These results were consistent with those 
obtained from samples in the GSE57065 dataset.

Then, Spearman correlation analysis was performed 
to test the correlation between immune scores and 
the abundance of immune cells (Fig.  2H). The results 
reported a significantly positive correlation between 
the immune score calculated by the ESTIMATE 
method and the abundance of lineage-lineage cells, NK 
cells, cytotoxic lymphocytes, and T cells evaluated by 
the “MCPcounter” package in R and that of immature B 
cells, MDSCs, activated B cells, and NK T cells assessed 
by ssGSEA, which were consistent with the immuniza-
tion rating scale of the GSE65682 dataset.

Table 1  Samples information

Note:

For the GSE57065 cohort, the total RNA of the sample was extracted through 
Whole blood Paxgene tubes, and Biotinylated cRNA were prepared according to 
the standard Affymetrix protocol from total RNA (Expression Analysis Technical 
Manual, 2001, Affymetrix)

For the GSE65682 cohort, whole blood was collected in PAXgene blood RNA 
tubes, mixed by inversion 10X and stored at -80C.Total RNA was isolated in 
accordance with the PAXgene blood RNA isolation (QIAGEN) procedure using 
the QIAcube workstation

For the GSE145227 cohort, total RNA was extracted using RNAiso, The sample 
labeling, microarray hybridization and washing were performed based on 
the manufacturer’s standard protocols. Briefly, total RNAs were transcribed to 
double strand cDNAs and then synthesized cRNAs. Next, 2nd cycle cDNAs were 
synthesized from cRNAs, followed by fragmentation and biotin labeling

Data set Expression Platforms

GSE57065
  Normal 25 GPL570

  Sepsis 82

GSE65682
  Normal 42 GPL13667

  Sepsis 760

GSE145227
  Normal 12 GPL23178

  Sepsis 10
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Identification of DEGs in the GSE57065 dataset
A total of 786 DEGs, including 427 upregulated genes 
and 359 downregulated genes, were obtained (Supple-
mentary Table 1). A heatmap and a volcano plot for the 
top 50 upregulated or downregulated genes are shown in 
Fig. 3A-B.

WGCNA analysis of GSE57065 dataset
Gene co-expression networks were constructed using 
the WGCNA package. The power of β = 6 (Fig. 3C) was 
selected as the soft-thresholding to ensure a scale-free 
network. After identifying gene modules by the dynamic 
shearing method, the eigenvectors of each module were 

Fig. 2  A Comparison of single-sample gene set enrichment analysis (ssGSEA) immune scores in samples from patients with sepsis and normal 
samples from the GSE57065 dataset; B Comparison of ESTIMATE immune scores in samples from patients with sepsis and normal samples from 
the GSE57065 dataset; C Comparison of MCPcounter immune scores in samples from patients with sepsis and normal samples from the GSE57065 
dataset. D Correlation of immune scores evaluated by different software and algorithms in the GSE57065 dataset. E Comparison of single-sample 
gene set enrichment analysis (ssGSEA) immune scores in samples from patients with sepsis and normal samples from the GSE65682 dataset; F 
Comparison of ESTIMATE immune scores in samples from patients with sepsis and normal samples from the GSE65682 dataset; G Comparison of 
MCPcounter immune scores in samples from patients with sepsis and normal samples from the GSE65682 dataset. H Correlation of immune scores 
evaluated by different software and algorithms in the GSE65682 dataset
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calculated, modules were clustered, and nearer modules 
were merged into new modules by setting the following 
parameters: height = 0.25; deepSplit = 2; minModule-
Size = 80. Finally, 15 modules were obtained (Fig. 3D).

The correlations between each gene module within 
samples from patients with sepsis and normal samples 
and the immune Score, stromal score, and ESTIMATE 
score were further analyzed, as shown in Fig.  3E. The 
blue module had the most significant negative correla-
tion with scores of samples from patients with sepsis 
and the most significant positive correlation with scores 
of normal samples. The blue module had a significant 
positive correlation with the immune score. In addition, 
the brown module had the most significant positive cor-
relation with scores of samples from patients with sepsis 
and the most significant negative correlation with scores 
of normal samples. The brown module had a significant 
negative correlation with the immune score. A total of 
3301 genes contained in the blue module and 3023 genes 
contained in the brown module are shown in Supplemen-
tary Table 2.

Functional annotation analysis of DEGs in the blue 
and brown co‑expression module
Then, we extracted the genes from the blue and brown 
modules that intersected with co-expressed DEGs in 
the GSE57065 data set. We obtained a total of 328 inter-
sected genes (Supplementary Table  3), which included 
26 intersected genes between the blue module genes 
and the upregulated DEGs and 302 intersected genes 
between the blue module genes and the downregulated 
DEGs. Simultaneously, there were a total of 333 inter-
sected genes (Supplementary Table  4), which included 
307 intersected genes between the blue module genes 
and upregulated DEGs and 26 intersected genes between 
the blue module genes and the downregulated DEGs 
(Fig.  4A). Further, the “WebGestaltR” (V0.4.2) pack-
age in R was used to perform KEGG analysis and GO 
functional enrichment analysis on 328 genes in the blue 
module that were positively related to the immune score. 
GO analysis was performed for functional annotation of 
biological process (BP). Ninety GO terms with a signifi-
cant difference in BP between samples from patients with 
sepsis and normal samples were annotated (FDR < 0.05). 

Fig. 3  A Volcano plot of the differentially expressed genes (DEGs) in the GSE57065 dataset. B Heat map of the DEGs in the GSE57065 dataset. C 
Analysis of network topology for various soft-thresholding powers; D Gene dendrogram and module colors; E Correlation between the expression 
profiles of 15 gene modules and immune scores
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The top 10 significantly enriched terms included immune 
biological processes such as T-cell receptor signaling 
pathway, adaptive immune response, and T-cell activa-
tion (Fig. 4B).

Similarly, GO functional enrichment analysis was per-
formed on 333 genes in the brown module that were 
negatively related to the immune score. Eighty seven GO 
terms with a significant difference in BP between sam-
ples from patients with sepsis and normal samples were 
annotated (FDR < 0.05). The top 10 terms included neu-
trophil-related biological processes such as neutrophil 
degranulation, neutrophil activation involved in immune 
response, neutrophil activation, and neutrophil-mediated 
immunity (Fig. 4C).

Analysis of PPI networks in co‑expressed genes
The STRING database was applied to analyze PPI of 661 
co-expressed DEGs in the blue and brown modules. The 
Molecular Complex Detection (MCODE) a plugin from 
Cytoscape (Version: 3.7.2) was used to screen modules 
of the PPI network. Finally, four modules were obtained: 
MCODE1, MCODE2, MCODE3, and MCODE4 (Fig. 5A-
D). Next, the “WebGestaltR (v0.4.2)” package in R was 
used to perform KEGG and GO functional enrichment 
analysis on 49 DEGs of the MCODE1 module. We identi-
fied 308 terms with a significant difference in BP between 
samples from patients with sepsis and normal sam-
ples (FDR < 0.05). The top 20 terms included neutrophil 
degranulation, neutrophil activation involved in immune 
response, neutrophil activation, and neutrophil-mediated 

Fig. 4  AVenn diagram showing the intersection of co-expressed genes and differentially expressed genes. B Gene Ontology (GO) analysis of 
differentially expressed genes (DEGs) in the blue co-expression module. C Biological process (BP) annotation of DEGs in the brown module
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immunity (Fig. 5E). Forty-one GO items with a significant 
difference in CC between the two groups were annotated 
(FDR < 0.05), and the top 20 terms are shown in Fig. 5F. In 
addition, 9 terms were significantly different in terms of 
MF (FDR < 0.05) between the two groups (Fig. 5G). In the 
KEGG pathway analysis of MCODE module genes, 10 
terms, including Primary immunodeficiency、Th1- and 
Th2-cell differentiation, T-cell receptor signaling path-
way, and NK cell-mediated cytotoxicity, with a signifi-
cant difference between the two groups were annotated 
(FDR < 0.05) (Fig. 5H).

Identification of hub genes
For the PPI network of 661 co-expressed DEGs, three 
methods in the cytoHubba plugin from Cytoscape (Ver-
sion:3.7.2), namely MNC, Degree and Closeness, were 
used to select the key genes in PPI. The top 10 genes 
were selected as key genes, and the PPI networks of 
genes screened by these three algorithms are shown as 
Fig. 6A-C.

Then, the genes obtained from these three algorithms 
were intersected with those in the MCODE1 module, and 
final four hub genes were obtained: lymphocyte cell-spe-
cific protein-tyrosine kinase (LCK), C-C motif chemokine 
ligand 5 (CCL5), integrin Subunit Alpha M (ITGAM), 
and matrix metallopeptidase 9 (MMP9). The Venn dia-
gram of the four genes is shown in Fig. 6D.

Moreover, we compared the expressions of these four 
hub genes in samples from patients with sepsis and 

normal samples in different datasets. The results sug-
gested that the expressions of LCK and CCL5 were sig-
nificantly higher in normal samples than in samples from 
patients with sepsis, while the expressions of ITGAM and 
MMP9 were significantly lower in normal samples than 
in samples from patients with sepsis in the GSE57065 
dataset (Fig. 6E). The same results were observed in the 
external independent datasets GSE65682 and GSE145227 
(Fig. 6FG).

Construction and verification of a diagnostic model
The default parameters of the SVM algorithm function 
in the R package e1071 (V1.7.6) was used to train the 
GSE57065 cohort, and then used the trained classifier 
to verify the cohorts GSE65682 and GSE145227. Four 
hub genes were used as features in the training dataset 
to obtain their corresponding expression profiles and 
were subsequently utilized to construct the SVM. All 107 
samples were correctly classified with an overall accuracy 
of 100%. The sensitivity and specificity of the correctly 
classified model were 100%, and the receiver operating 
characteristic (ROC) area under the curve (AUC) was 1 
(Fig. 7A). Moreover, the GSE65682 dataset was verified, 
and out of 802 samples, 796 samples were correctly clas-
sified was an overall accuracy of 99.3%. The sensitivity 
and specificity of the correctly classified model were 99.6 
and 92.9%, respectively, and the AUC was 0.962 (Fig. 7B).

The GSE145227 dataset was further verified, and out 
of 22 samples, 20 samples were correctly classified with 

Fig. 5  Identification of modules from the analysis of protein-protein interaction (PPI) networks using the Molecular Complex Detection (MCODE) 
plugin in Cytoscape. A-D Four modules, namely MCODE1, MCODE2, MCODE3, and MCODE4, were obtained. E Bubble chart of biological process 
(BP) function of MCODE1 module genes. F Bubble chart of cellular component (CC) function of MCODE1 module genes. G Bubble chart of 
molecular function (MF) function of MCODE1 module genes. H Bubble chart of KEGG pathway of MCODE1 module genes
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Fig. 6  Protein-protein interaction (PPI) network analysis of hub genes. A PPI network of hub genes obtained by Degree algorithm. B PPI network 
of hub genes obtained by Closeness algorithm. C PPI network of hub genes obtained by MNC algorithm. D Venn diagram of identified hub genes. 
E Expression profile of hub genes in the GSE57065 dataset. F Expression profile of hub genes in the GSE65682 dataset. G Expression profile of hub 
genes in the GSE145227 dataset

Fig. 7  Classification and receiver operating characteristic (ROC) curve analysis of diagnostic models constructed using hub genes. A Results of 
classification and ROC curve analysis of the diagnostic model in the GSE57065 dataset. B Classification results and ROC curves of the diagnostic 
model in the GSE65682 dataset. C Classification results and ROC curve of the diagnostic model in the GSE145227 dataset
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an overall accuracy of 90.91%. The sensitivity and speci-
ficity of the correctly classified model were 80 and 100%, 
respectively, and the AUC was 0.9 (Fig. 7C). These results 
suggested that the diagnostic model could effectively dif-
ferentiate between normal samples and samples from 
patients with sepsis, and the four genes can be used as 
reliable biomarkers for the diagnosis of sepsis.

Discussion
In this study, we evaluated the immune infiltration in 
patients with sepsis based on GSE57065 and GSE65682 
datasets and found that the immune score was signifi-
cantly lower in samples from patients with sepsis than 
in normal samples. We identified a total of 786 DEGs 
between the two groups. Meanwhile, the results of 
WGCNA analysis revealed that the expression of genes 
in the blue module was significantly negatively corre-
lated with in both samples from patients with sepsis 
and normal samples, while the expression of genes in 
the blue module was significantly positively correlated 
with the immune score in both groups. The results of 
the WGCNA analysis of genes in the brown module 
were the opposite of those of genes in the blue mod-
ule. By intersections of blue and brown module genes 
and DEGs, we obtained 328 DEGs that were positively 
correlated with the immune score and 333 DEGs that 
were negatively correlated with the immune score 
were obtained. We constructed a PPI network of 661 
DEGs using the STRING online database and screened 
for network modules using the MCODE plugin in 
Cytoscape. The MCODE plugin identified four mod-
ules, and through functional annotation analysis, 
these modules were found to be related to the immune 
response.KEGG analysis and GO functional enrichment 
analysis were performed on 49 genes of the MCODE1 
module. The results showed that biological processes 
such as neutrophil degranulation, neutrophil activation 
involved in immune response, neutrophil activation, 
and neutrophil-mediated immunity were significantly 
enriched in the DEGs. KEGG pathway analysis revealed 
that pathways such as primary immunodeficiency, Th1- 
and Th2-cell differentiation, T-cell receptor signaling 
pathway, and NK cell-mediated cytotoxicity were sig-
nificantly enriched in the DEGs. Studies have shown 
that neutrophil activation leads to the release of neu-
trophil extracellular traps, which are involved in both 
pathogen confinement and phagocytosis as well as acti-
vation of the coagulation cascade [19, 20]. Therefore, 
neutrophils are a key factor in vascular cell dysfunction, 
immune response, and hemostasis caused by septic 
shock in the host. Moreover, Yoon et al. suggested that 
the overexpression of heme oxygenase-1 (HO-1) con-
tributes to sepsis-induced immunosuppression during 

the late phase of sepsis by promoting Th2 polarization 
and Treg function [21]. Then, the genes identified using 
the three algorithms (MNC, Degree, and Closeness) 
were intersected with the MCODE1 genes to obtain 
the final four hub genes: LCK, CCL5, ITGAM, and 
MMP9. All these four genes have important roles in 
the immune reaction and inflammatory reaction after 
inquiry. The LCK gene is a protein-coding gene that 
encodes a key signaling molecule for T-cell selection 
and maturation. LCK-related diseases include immune 
deficiency and autoimmune cardiopathy. LCK plays a 
crucial role in the selection and maturation of T cells in 
the thymus, the function of mature T cells, and the sig-
nal transduction pathway associated with T-cell antigen 
receptor (TCR). Cytoplasmic binding with CD4 and 
CD8 surface receptors and the association of TCR with 
the MHC complex binding peptide antigen promote 
the interaction between CD4 and CD8 receptors with 
leads to the recruitment of relevant LCK proteins to the 
vicinity of the TCR/CD3 complex. Next, the interaction 
of LCK with the cytoplasmic tail of TCR/CD3, which 
contains three subunits of immunoreceptor tyrosine-
based activation motifs (ITAMs), leads to the activation 
of the TCR/CD3 signaling pathway and phosphoryla-
tion and activation of tyrosine kinase ZAP70, eventu-
ally promoting T-cell activation. Then, LCK induces 
the secretion of a large number of signaling molecules, 
eventually leading to the release of the lymphatic fac-
tor. Additionally, LCK also participates in other recep-
tor signaling pathways [22–24]. The CCL5 gene is a 
chemokine-encoding gene located on the q arm of 
chromosome 17. CCL5, a member of the CC chemokine 
family, is involved in the host immune response and 
inflammation process and acts as a chemoattractant for 
blood monocytes, memory T helper cells, and eosino-
phils [25–27]. The ITGAM gene is a protein-coding 
gene associated with itGAM-related diseases, includ-
ing systemic lupus erythematosus and the Shwartzman 
phenomenon. Moreover, ITGAM promotes the adher-
ence of monocytes, macrophages, and granulocytes as 
well as mediates the uptake of opsonized particles and 
pathogens. The ITGAM protein is identical with CR-3, 
which is the receptor for the iC3b fragment of the third 
complement component, and may help in the identifi-
cation of C3b RGD peptides. Integrin ITGAM/ITGB2, 
which acts as a receptor for fibrinogen, factor X, and 
ICAM1, recognizes the fibrinogen gamma chain of P1 
and P2 peptides, regulates neutrophil migration. Fur-
thermore, the CD177-PRTN3 complex mediates the 
activation of TNF-alpha primed neutrophils in asso-
ciation with the beta subunits ITGB2/CD18, eventually 
leading to the phagocytosis of neutrophilic infiltrates 
[28–30]. Finally, we used SVM to construct the four 
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gene-based diagnostic model, which showed good per-
formance in the GSE57065, GSE65682, and GSE145227 
datasets. Previous studies have used a series of bio-
markers to better identify patients at risk for sepsis. In 
2007, Kofoed et al. showed that three or six pro-inflam-
matory biomarkers could be used to identify patients 
with bacterial infections more accurately than using a 
single biomarker [31]. In 2009, Shapiro et  al. applied 
this method to the diagnosis of patients with severe 
sepsis [32]. The three best predictors were identified 
as IL-1 receptor (IL-1RA), protein C, and neutrophil 
gelatinase-associated lipoprotein (NGAL), all of which 
could be used as biomarkers for sepsis [33]. The best 
biomarkers for diagnosing sepsis or evaluating the 
occurrence of severe sepsis may include a combination 
of both pro-inflammatory and anti-inflammatory mark-
ers. Some studies showed that a mixture of pro-inflam-
matory and anti-inflammatory cytokines could identify 
patients at risk of severe sepsis at an early stage, thus 
leading to predict patient outcomes [34].

Previously, the use of gene-related network analysis in 
the regulation of sepsis has been explored, differential 
gene expression analysis and enrichment analysis were 
performed using transcriptome data to investigate the 
potential biological pathways that regulate the develop-
ment of sepsis [35–38]. For example, Zhongheng Zhang’s 
study identified co-expression modules in sepsis through 
WGCNA method, and found that they were associated 
with clinical features and functional biological pathway 
[39]. In our study, we evaluated immune scores in septic 
patients and normal samples, and then analyzed immune 
invasion-related genes and potential transcriptome bio-
markers by WGCNA for septic patients, and finally 
established a diagnosis model of sepsis based on the SVM 
classification algorithm, which were the innovation of the 
study. In addition, compared with the single data set of 
previous studies, this study integrated multiple sets of 
data. For example, SVM algorithm was used to train the 
GSE57065 cohort, then used the classifier to verify the 
cohorts GSE65682 and GSE145227 to make the results 
more accurate.

However, there are some limitations. This study is 
based on a public database with a limited number of sam-
ples, which may lead to selection bias. So, further studies 
with larger sample sizes will be needed to support these 
findings, and more cell and animal studies, as well as clin-
ical practice, will be needed to validate our results.

Currently, huge efforts have been put into the detection 
of biomarkers that could help clinicians make an early 
diagnosis of sepsis. It is vital to find diagnostic markers 
of sepsis at the genomic level. According to the abun-
dance of immune infiltration-related genes, we identified 
four hub genes involved in the PPI network to establish 

a four-gene diagnostic model for sepsis. These genes 
play an important role in the immune and inflammatory 
response to sepsis, indicating the reliability of the model 
in diagnosing sepsis.
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