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Two recent articles, one by Vandenbroucke, Broadbent and Pearce

(henceforth VBP)1 and the other by Krieger and Davey Smith (hence-

forth KDS),2 criticize what these two sets of authors characterize as

the mainstream of the modern ‘causal inference’ school in epidemi-

ology. The criticisms made by these authors are severe; VBP label the

field both ‘wrong in theory’ and ‘wrong in practice’, and KDS—at

least in some settings—feel that the field not only ‘bark[s] up the

wrong tree’ but ‘miss[es] the forest entirely’. More specifically, the

school of thought, and the concepts and methods within it, are

painted as being applicable only to a very narrow range of investiga-

tions, to the exclusion of most of the important questions and study

designs in modern epidemiology, such as the effects of genetic vari-

ants, the study of ethnic and gender disparities and the use of study de-

signs that do not closely mirror randomized controlled trials (RCTs).

Furthermore, the concepts and methods are painted as being poten-

tially highly misleading even within this narrow range in which they

are deemed applicable. We believe that most of VBP’s and KDS’s criti-

cisms stem from a series of misconceptions about the approach they

criticize. In this response, therefore, we aim first to paint a more ac-

curate picture of the formal causal inference approach, and then to

outline the key misconceptions underlying VBP’s and KDS’s critiques.

KDS in particular criticize directed acyclic graphs (DAGs), using three

examples to do so. Their discussion highlights further misconceptions

concerning the role of DAGs in causal inference, and so we devote the

third section of the paper to addressing these. In our Discussion we

present further objections we have to the arguments in the two papers,

before concluding that the clarity gained from adopting a rigorous

framework is an asset, not an obstacle, to answering more reliably a

very wide range of causal questions using data from observational

studies of many different designs.

An introduction to the formal approach to
quantitative causal inference in epidemiology

Labels

VBP characterize the mainstream view within what they

call the ‘causal inference movement in epidemiology’ as be-

longing to the ‘restricted potential outcomes approach’,

which they define to be the approach in which only the ef-

fects of exposures that correspond to currently humanly

feasible interventions can be studied. KDS focus instead on

DAGs (rather than potential outcomes) as the main target

of their criticism. However, in many places they appear to

(wrongly) conflate DAGs and potential ouctomes, and

they certainly share the misconception that only currently

humanly feasible interventions can be studied within this

approach.

As we discuss later (see misconception 1), we strongly

disagree with this characterization. We also don’t much like

the term ‘movement’, and so—for want of a better label,

and to avoid cumbersome repetitive descriptions—we’ll call

the school of thought that both VBP and KDS have in their

sight the ‘Formal Approach to quantitative Causal inference

in Epidemiology’, or FACE. In the next sections we describe

what we see as the core principles of this approach, with ex-

amples of where these have been illuminating and enabled

causal analyses under less restrictive assumptions.

The core principles of the FACE

The broad features that characterize the majority of the work

done by the FACE are, having first thought carefully about

the nature of the causal question to be addressed, to convert

this into a precise quantity to be estimated (i.e. a causal esti-

mand), typically using the notation of potential outcomes.

The causal question one ideally wishes to address may often

be replaced by a similar causal question that can more feas-

ibly be addressed given the constraints of the data at hand.

There is a trade-off here. No one wants ‘the right answer to

entirely the wrong question’; indeed, this is what has led the
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FACE to recommend against ‘retreating into the associational

haven’ but rather ‘to take the causal bull by the horns’.3 But

presumably equally uncontroversial is the observation that

‘an entirely wrong answer to the right question’ is also futile.

Arriving at a good compromise between these two competing

concerns is one of the many important tasks facing applied

researchers. Explicitly formulating the causal estimand may

seem like an obvious first step, but one that is often ignored

in applied practice where researchers may jump to modelling

associations and presenting their results in terms of, for ex-

ample, odds ratios or hazard ratios, while foregoing the more

interesting and concrete scientific questions such as ‘what

would the risk of this outcome be if one could eliminate the

exposure?’ This clarity moreover allows one to be rigorous

about the assumptions (e.g. consistency, conditional ex-

changeability and positivity) under which the estimand can

be identified from the data at hand, and then for flexible esti-

mation strategies to be developed that are valid under these

assumptions. Finally, tools are recommended to assess quan-

titatively the sensitivity of the results to plausible departures

from the assumptions, to aid interpretation, and to discuss

possible misinterpretation, of the results. In the

Supplementary material (available at IJE online) we give ex-

amples of causal estimands and describe the most commonly

invoked assumptions for their identification in the context of a

simplified investigation of the effect of maternal urinary tract

infections during pregnancy on low birthweight.

The advantages of adopting this approach

In many settings (problems involving time-dependent

confounding and mediation are good examples4–9), the

increased formality characteristic of the FACE has high-

lighted the implausibility of the assumptions (e.g. no ‘feed-

back’ between exposure and confounder) required for

standard analysis strategies to give meaningful answers to

the causal questions being posed, and has led to improved

alternatives (e.g. g-methods) that are increasingly widely

used in practice.10–13 The FACE has moreover given rise to

an array of methods for nonlinear instrumental variable

analysis14–16 and for nonlinear mediation analysis9,17–23

where only ad hoc and biased approaches existed before.

Other examples where this approach has led to new in-

sights and/or methods include the low birthweight and

obesity ‘paradoxes’24–27 (see further discussion in

‘Example 2: Birthweight paradox’, below), the comparison

of dynamic regimes,28 the impact of measurement

error,29,30 noncompliance in clinical trials,31 distinguishing

confounding from non-collapsibility32 and many more.

More recently, and looking to the future, the advent of

omics technologies, electronic health records and other set-

tings that lead to high-dimensional data, means that ma-

chine learning approaches to data analysis will become

increasingly important in epidemiology. For this to be a suc-

cessful approach to drawing causal inferences from data, the

predictive modelling aspects (to be performed by the ma-

chine) must be separated from the subject matter consider-

ations, such as the specification of the estimand of interest,

and the encoding of plausible assumptions concerning the

structure of the data-generating process (to be performed by

humans). Whereas traditional epidemiological approaches

to the analysis of data naturally blur the two aspects, the

FACE makes the distinction explicit, and hence allows ma-

chine learning methods to be successfully employed.33

An enabling or a paralysing approach?

Its emphasis on definitions and assumptions has sometimes

given the false impression that the FACE is a ‘paralysing’

approach. How should the applied epidemiologist proceed

in settings where clear definitions are hard and assump-

tions are violated, but nevertheless quantitative causal in-

ference is needed? The advice that accompanies the theory

is pragmatic, for example:

The more precise we get the higher the risk of nonposi-

tivity in some subsets of the study population. In prac-

tice, we need a compromise.34

The emphasis is on adding to the statistical toolbox so

that a greater range of questions can be addressed under

less strict assumptions, and sensitivity analyses carried out

so that appropriate transparency and scepticism enter the

interpretation of results:

Methodology almost never perfectly corresponds to the

complex phenomena that give rise to our data.

Methodology within a field ought to advance in ex-

panding the range of questions that can be addressed, in

relaxing the assumptions required, and in allowing in-

vestigators to assess the sensitivity of conclusions to vio-

lations in the assumptions.35

The focus of causal enquiries in epidemiology

We contrast two statements:

Statement 1: Exposure E is a cause of disease D.

Statement 2: The effect of exposure E on disease D, ex-

pressed as a risk ratio, comparing exposure level 1 vs 0,

is 1.2, and this 20% increase in risk is (or is not) of suf-

ficient magnitude to be scientifically meaningful.

Recalling the extensive discussions at the turn of this cen-

tury on P-values vs confidence intervals,36–38 the consensus

among the epidemiological community—probably more so

than in any other scientific community—is that knowing

whether or not an exposure causes a disease (Statement 1) is
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less important than knowing whether or not an exposure

causes a disease to at least a minimally scientifically mean-

ingful extent (Statement 2). To be able to judge whether a

scientifically meaningful effect is attained, it should there-

fore be clear from the results of an epidemiological study: (i)

what is the meaning of the exposure; and (ii) what effect

size measure is being used. For example, to understand

statements such as ‘weight loss which was unintentional

or ill-defined was associated with excess risk of 22 to

39%’,39 one needs to understand the distribution of

weight loss.

We believe that some of the apparent discrepancies be-

tween the philosophical and epidemiological standpoints

on causality stem from a failure to acknowledge the differ-

ence between the two statements above, and the different

levels of care and detail required when inferring such state-

ments from data. It is well-known in many settings that ef-

fect estimation requires additional assumptions on top of

what is required for testing the causal null hypothesis, for

example methods that use instrumental variables.40

Misconceptions about the FACE
in VBP and KDS

There are three main shared misconceptions on which VBP

and KDS build their arguments. We discuss each in turn

below.

Misconception 1: The dominant view in the FACE

is that hypothetical interventions must be

currently humanly feasible

This idea is central to much of VBP’s and KDS’s criticisms

of the FACE, but we do not believe it to be a correct charac-

terization of the dominant views within the field. The FACE

advocates having in mind hypothetical interventions that

are ideally (close to being) unambiguously defined, and this

is what is evident from the quotations chosen by VBP. We

do not agree with their deduction from these quotations

(nor do we interpret from the opinions expressed in the field

more generally) that these hypothetical interventions need

be currently humanly feasible, except of course when the

purpose of the investigation is to guide imminent practical

policy decisions. The statement by VBP on page 6, ‘in order

for an intervention to be well specified . . . it is not necessary

that the intervention can be done; there is a difference be-

tween specifying and doing’, is uncontentious in our view.

Sufficient specificity is the ideal, and not feasibility.

In spite of this, the work from the FACE makes explicit

that the results from a causal analysis relate to all hypo-

thetical interventions, whether feasible and/or unambigu-

ously defined or not, that—as well as the usual conditional

exchangeability assumptions—satisfy the so-called consist-

ency assumption. This includes all hypothetical interven-

tions which are non-invasive in the following sense: if they

were applied to set the exposure to some value x for all

subjects, they would not change the outcome in subjects

who happen to have that exposure level x, from what was

actually observed.

Furthermore, since consistency at an individual level can

be relaxed to a slightly weaker version of the same assump-

tion, Hernán and VanderWeele41,42 show that it is possible

to proceed even when a single non-invasive hypothetical

intervention seems inconceivable, provided that a non-

invasive ensemble of hypothetical interventions is conceiv-

able. The exact form of this depends on the context but, for

example, it is often consistency in expectation given con-

founders; i.e. that if a hypothetical intervention were applied

to set the exposure to some value x for all subjects, this

would not change the conditional expectation of the out-

come given confounders in subjects who happen to have

that exposure level x, from the conditional expectation of

the observed outcome given confounders among these sub-

jects with exposure level x. For example, in an observational

study of the effects of obesity, the work by Hernán and

VanderWeele41 shows how the interpretation of any causal

effect measure estimated from a typical observational study

pertains (under all other relevant assumptions) to a stochas-

tic complex hypothetical intervention that shifts the distri-

bution of many different obesity-related exposures.

Knowledge about the effects of such a hypothetical interven-

tion is of limited value for immediate practical policy deci-

sions, but is relevant for scientific understanding.

A growing body of work from the FACE is therefore

focused on epidemiologically important exposures for

which certainly no humanly feasible intervention is known,

and often no single non-invasive hypothetical intervention

could be conceived of for which the observational data are

informative. For example, Bekaert et al.43 investigate the

impact of hospital-acquired infection on mortality in critic-

ally ill patients, with the aim of estimating the intensive

care unit mortality risk that would have been observed had

all such infections been avoided. Their analysis aims to

give insight on how harmful these infections are, even

though no feasible intervention exists that could prevent

infection for all. By the consistency assumption, the au-

thors view their results as being informative about the net

effect of infection. This effect may differ from the effect of

an intervention to prevent infection, which—if it could be

designed—would likely do more than just prevent infec-

tion. Other exposures that have been recently studied in

this context are, for example, socioeconomic position,
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delirium in critically ill patients, weight change, viral clear-

ance and depression.44–50

Petersen and van der Laan51 discuss the feasibility and

specificity issue in a recent overview of the FACE, stating

that:

There is nothing in the structural causal model frame-

work that requires the intervention to correspond to a

feasible experiment … if, in addition to the causal as-

sumptions needed for identifiability, the investigator is

willing to assume that the intervention used to define

the counterfactuals corresponds to a conceivable and

well-defined intervention in the real world, interpret-

ation can be further expanded to include an estimate of

the impact that would be observed if that intervention

were to be implemented in practice.

Much of the recent work stemming from the FACE has

been dedicated to the study of mediation,9 in particular

using so-called natural direct and indirect effects. These ef-

fects have been criticized by some52 precisely because they

concern hypothetical interventions that are, by their

very definition, humanly unfeasible (irrespective of the

variables being studied); in other words, no randomized

experiment could even in principle be constructed

that would allow the estimation of these effects under as-

sumptions guaranteed to hold by design. The dominant

view within the FACE is that these effects, because of the

importance of the epidemiological questions they aim to

address, are worthy of our attention despite the very strong

unfeasibility of the hypothetical interventions they demand

be imagined.

Misconception 2: The FACE sees the RCT as the

best choice of study design for causal inference

In order to dispel this misconception, we start by propos-

ing what we believe the characteristics of the ideal study to

be, when inference about the total effect of a single (time-

fixed) exposure is the goal. By ‘ideal’ we mean the study

we would run if our concerns were only scientific, with no

regard whatsoever for practicality, ethics or cost. We be-

lieve that such a study would have (at least) the following

characteristics (and many more, of course):

i. no inclusion/exclusion criteria [so that the effect of the

exposure in a variety of different groups can be separ-

ately estimated, as well as standardized effects to dif-

ferent (sub-)populations if relevant];

ii. large sample size (also thereby ensuring a large number

of events if relevant);

iii. an unambiguously defined set of levels for the exposure

(often more than two if dose–response is of interest)

allocated at random;

iv. long follow-up (so that short-, medium- and long-term

effects can all be separately estimated);

v. rich baseline covariate data (so that effect modification

can be explored);

vi. and no attrition, other forms of missing data, noncom-

pliance or measurement error.

It is true that point (iii) says that the ideal study would be

randomized (hence the fact that the FACE often talks of

‘the idealised randomized experiment’), but does this imply

that realistic RCTs are necessarily to be viewed as better

than realistic observational studies for causal inference?

No; because observational studies in practice are more

likely to get closer to points (i), (ii), (iv) and often also (v).

The ideal study, which has as one of its characteristics that

it is randomized, is in some respects closer to a realistic

RCT and in other ways closer to a realistic observational

study. Only by knowing the specific context can a judge-

ment be made on which is better for that context, if indeed

both are feasible, ethical and practical. In many settings,

when a RCT would be unfeasible, the FACE advocates

having in mind the ideal (randomized) study, merely as a

mental device to ensure that the observational study is de-

signed and analysed in the most sensible fashion. This is

even more valuable in complex longitudinal studies such as

those that attempt to determine the optimal dynamic deci-

sion strategy.53,54

Since a key difference between a realistic observational

study and the ideal study above is that (iii) doesn’t hold, a

major focus of the methods arising from the FACE is how

the realistic observational study can be analysed in such a

way that it emulates the ideal study with respect to (iii). This

does not equate to the view that the FACE strives to analyse

realistic observational studies in such a way that the results

obtained are close to those that would have been obtained

from a realistic RCT on the same exposure. The ultimate

aim is to analyse realistic observational studies in such a

way that the results obtained are close to those that would

have been obtained from the ideal study, one feature of

which is that the exposure is randomized. These two aims

are different, and an investigation of this difference led to

important insights regarding the hormone replacement ther-

apy (HRT) controversy by Hernán et al.55 Taken out of con-

text, the title of the article by Hernán et al. ‘Observational

studies analyzed like randomized experiments’ could

wrongly be taken to strengthen this misconception, that:

Proponents of [the FACE] assume and promote the pre-

eminence of the randomized controlled trial (RCT)

for assessing causality; other study designs (i.e. observa-

tional studies) are then only considered valid and

relevant to the extent that they emulate RCTs. [VBP,

page 2]
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On the contrary, Hernán et al. were not advocating that

observational studies should be analysed like randomized

experiments. Note that the same lead authors have written

articles with the following titles: ‘Randomized trials ana-

lyzed like observational studies’56 and ‘Observational stud-

ies analyzed like randomized trials, and vice versa’.57

Hernán et al. dropped many years of follow-up from their

data, together with many subjects who would not have

met the trial’s eligibility criteria, and ignored the informa-

tion they had on treatment discontinuation, in order to

emulate the intent-to-treat analysis performed in the RCT:

it would be madness to advocate any of these measures as

the best analysis of the observational data. Rather, Hernán

et al’s aim was merely to show that if one did analyse the

observational study so as closely to mimic a randomized

trial, the contradiction between the results from the RCT

and observational studies would be nearly eliminated.This

served to challenge the dominant view at the time that the

contradiction was due to unmeasured confounding in the

observational studies. Incidentally, this work by Hernán

et al. on the HRT controversy is an example of hypothesis

elimination, as advocated by VBP and KDS. As further evi-

dence that this misconception is unfounded, we refer here

to the large body of work from the FACE on the analysis

of data from retrospective study designs (e.g. case–control

studies).58–71

Misconception 3: The FACE believes that sex, race

and genes can’t be causes; furthermore (in KDS)

that racism can’t be a cause

Sex, race, sexism and racism as causes

This issue, particularly with respect to race, has been the

source of recent controversy72 in part in response to

VanderWeele and Hernán,73 and VanderWeele and

Robinson.74 We see this controversy (‘is race a cause’?) as

something of a storm in a teacup as far as epidemiology is

concerned, brought about perhaps by the different focuses

that philosophers and epidemiologists have when it comes to

causality (note that both Glymour and Glymour72 and VBP,

which has two joint lead authors, have philosophers as lead

authors, and KDS also refer extensively to the philosophical

literature on causality). Referring back to Statements 1 and

2 given earlier, philosophers tend to concern themselves

with the meaning of statements of type 1, whereas epidemi-

ologists are more concerned with statements of type 2 and—

very importantly—whether or not it is justified to make a

statement such as statement 2 from the data at hand. It

would be very strange to claim that sex and race cannot be

considered in place of E in Statement 1. However, using

them in place of E in Statement 2 requires some care.

It is the dominant view within the FACE (and we agree)

that asserting that ‘this group of Caucasians would have

had a 20% lower risk of disease D had they been Afro-

Caribbean’ is meaningful only if the statement’s readers

share a near to common understanding of what ‘had they

been Afro-Caribbean’ means, and evidently this requires

further details. In the counterfactual world are they to be

Afro-Caribbean from conception? And in what sense? Are

their genes hypothetically being switched for genes that are

drawn from the distribution of genes seen in Afro-

Caribbeans? Are they to be brought up in their biological

Caucasian families, or similar Afro-Caribbean families?

What constitutes similar? Again, the consistency (and con-

ditional exchangeability) assumption rules out many (or

all) of the above hypothetical interventions. In order to

understand which, further details must be specified, for ex-

ample whether the Afro-Caribbean study participants were

brought up in biological Caucasian families or not.

Why do we think that this is a storm in a teacup?

Because epidemiologists are rarely interested in what

would have happened to these males had they been fe-

males, nor in what would have happened to these

Caucasians had they been Afro-Caribbeans; rather, they

are interested in one of three possible things: (i) sex and

race as effect modifiers; (ii) describing gender and ethnic

inequalities, and then in seeing what can be done to reduce

them which, as VanderWeele and Robinson show, can be

done without needing to define hypothetical interventions

on sex/gender/race/ethnicity; or (iii) the effect of the per-

ception of race and sex, that is in the effect of racism and

sexism; this is what KDS talk about in their third example.

None of these requires defining hypothetical interventions

on sex/gender/race/ethnicity. For (iii), the hypothetical

intervention would be on the perception of race/sex, rather

than on race/sex itself.75

We stress that the FACE is not saying that studying sex

and race is not important; evidently these factors are cen-

tral to many important epidemiological research questions.

The ‘alarm’ that KDS feel follows precisely from the confu-

sion that ensues when causal inference is too informally

discussed; they have misconstrued the observation made by

the FACE that it is difficult to answer the question of

‘what would happen if we changed sex/race’ and that in

any case we are more likely interested in one of (i), (ii) or

(iii) above, as saying that we should not study sex and race

(or even sexism and racism) at all. They write, ‘One alarm-

ing feature of [the FACE] is the re-appearance of previ-

ously rebutted causal claims that ‘race’ [. . .] cannot be a

‘cause’ because it is not ‘modifiable’’, before going on to

explain that it is the effect or racism, rather than the effect

of race, that is of interest to them.
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It can be seen from the applied literature on investiga-

tions of ethnicity, for example, that these investigations are

indeed described using associational (not causal) language,

for example:

Māori and Pacific infants were twice as likely

as European infants to have a mother who was

obese … ethnic differences in overweight were less

pronounced.76

The same is seen when sex/gender is studied. For ex-

ample, in the recently published UK Chief Medical

Officers’ guidelines on safe alcohol drinking,77 gender

played a key role. The committee of experts reviewed a

large body of evidence on the causal effect of alcohol

consumption on health outcomes, in men and women sep-

arately, and concluded that the guidelines on safe con-

sumption limits should be the same for both genders. This

was based on a study of effect modification by gender.78

Such effect modification is associational with respect to

gender (but causal with respect to alcohol consumption).

The pertinent question in this context did not therefore re-

quire imagining hypothetical interventions on gender.

States, including genes, as causes

VBP discuss the FACE’s view of statements such a

‘100 000 deaths annually are attributable to obesity’ and

correctly characterize one of the FACE’s objections to this

statement as stemming from its vagueness. The statement

implies something along the lines of had there been no

obesity, there would have been 100 000 fewer deaths annu-

ally, or were we hypothetically to eradicate obesity, there

would be 100 000 fewer deaths annually. As discussed by

Hernán and Taubman,79 the words in italics are ambigu-

ous; for example have those who have hypothetically lost

weight lost weight from their waist, or their hips or both,

and if so in what combination? Current evidence from car-

diovascular epidemiology suggests that the consequences

of these different possibilities would be different. Once

more, the consistency assumption helps to resolve this am-

biguity, but understanding its implications requires a de-

tailed appreciation of the distribution of obesity-related

exposures in the study population, as discussed by Hernán

and VanderWeele.41,42

What is relevant to the current misconception, in par-

ticular in relation to genes as exposures, is the following

characterization of the FACE given by VBP on page 6.

They extrapolate from the issue concerning obesity and

conclude that under the precepts of the FACE:

‘States’ like obesity (or hypercholesterolaemia, hyper-

tension, carrying BRCA1 or BRCA2, male gender) can

no longer be seen as causes.

Thus, they have concluded that the FACE believes that

the causal effects of genes (along with many other things)

cannot be studied. We strongly oppose this conclusion.

Hypothetical interventions on body mass index (BMI) are

too ambiguous (to imagine an obese person as not obese,

there are many other changes that need also be imagined,

and a myriad possibility for these) unless one elaborates

further. However, the idea that a mutation in the BRCA1

gene inherited at meiosis could instead hypothetically not

have been inherited, although currently unfeasible to im-

plement, is sufficiently well-specified. This is so in the sense

that imagining that all other inherited genes and all envir-

onmental conditions at the time of meiosis remain the

same as in the actual world, would reasonably suffice for

the hypothetical intervention to be non-invasive. There are

many instances in the key texts cited by VBP, KDS and be-

yond where the causal effects of genetic variants are dis-

cussed by the FACE.67,69,80–84

Further misconceptions in KDS about the
role of DAGs in causal inference

The description by KDS of the role played by DAGs in

causal inference is counter to what is written in the key

textbooks and papers in this area, and counter to what is

taught in introductory courses to causal inference. We

start, therefore, by clarifying the role of DAGs in causal in-

ference, before pointing out the key misconception that

underlies many of KDS’s criticisms. We end this section by

pointing out further errors in their discussion of the DAGs

relating to their three examples.

DAGs in statistics

As used generally in statistics, DAGs are pictorial represen-

tations of conditional independences. The absence of an

arrow between two nodes in a DAG is used to represent

conditional independence between the two variables repre-

sented by these two nodes, conditional on the variables

represented by the nodes’ parents in the graph; let us call

these conditional independences ‘local’. The advantage of

representing local conditional independences graphically is

that ‘global’ conditional independence statements (i.e. con-

ditional independences between two variables given sets

other than those represented by the nodes’ parents in the

graph) can be deduced from the local conditional inde-

pendences used to construct the graph, via an algorithm

known as d-separation.85

DAGs in causal inference

DAGs are appealing for causal inference since the causal

effects of interest can be characterized in terms of specific
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conditional dependencies between exposure and outcome.

DAGs provide insight as to which conditional dependences

characterize the effect of interest, by elucidating the causal

structures that would render exposure and outcome condi-

tionally dependent. Causal structures are here implied by

the data-generating mechanism, which involves informa-

tion on the direction of causal effects, the absence of com-

mon causes between variables, the absence of direct effects

between variables and study design. Such information,

which is not contained in the data but may be available

from subject-matter knowledge, can be encoded in the

causal DAG.

The DAGs used in causal inference can be interrogated

(using d-separation, after some slight manipulation, e.g.

removing arrows emanating from exposure, or construct-

ing the corresponding single world intervention graph

(SWIG)) to see if, for example, a given set of variables is

sufficient to adjust for confounding given the assumptions

encoded in the causal DAG. DAGs have thus proved very

useful in this process since humans are well-known to have

poor probabilistic intuition about the consequences of con-

ditioning or adjusting. By explicitly visualizing the conse-

quences of conditioning, DAGs help to circumvent the

intuitive errors that might happen when this process is at-

tempted informally.

We stress that the DAGs used in causal inference ex-

press a priori knowledge and hypotheses; see, for example,

the paper by Robins86 in which he shows how identical

data can be analysed in different ways, when guided by dif-

ferent causal DAGs, according to the different possible

study designs, questions of interest, and subject matter

knowledge that underpin/accompany these data.

Misconceptions regarding DAGs in KDS

In the light of the above clarifications, it is now possible to

address KDS’s criticisms of DAGs. They point out many

times that data alone are not sufficient to arrive at the

DAG nor at causal inferences (‘data never speak by them-

selves’). This is indisputable, and is precisely why DAGs

are useful in causal inference: to make the assumptions

based on a priori knowledge explicit, and to facilitate the

translation of a priori knowledge into a suitable statistical

analysis. They write that ‘there is no short cut for hard

thinking about the biological and social realities and proc-

esses that jointly create the phenomena we epidemiologists

seek to explain’, and we agree. Causal DAGs don’t purport

to provide such a short cut; the causal DAG is the result of

the hard thinking, not a substitute for it, and the short cut

provided is via d-separation, which enters the next step in

helping the transition from the result of this hard thinking

to a sensible statistical analysis. Many of their criticisms

are along similar lines and follow from the same underly-

ing confusion, for example when they write, ‘Nor can a

DAG provide insight into what omitted variables might be

important’. We agree of course: it is the background know-

ledge that leads to the DAG, and not vice versa.

On page 9, KDS indicate that the world is too compli-

cated to hope to understand all the relevant causes of the

exposure in question (‘one would need infinite knowledge,

after all, to generate an exhaustive list’) and we, once

more, agree. However, the many examples from the FACE

have demonstrated that even when the DAGs are unavoid-

ably simplistic, they do provide much insight into the

biases inherent in certain statistical analyses.87

KDS’s examples

We found the discussion by KDS of their three examples

rather difficult to follow, precisely since the DAGs they al-

lude to are not drawn. This in itself points to the usefulness

of DAGs for clarity of thought and communication in these

settings.

Example 1: Pellagra

In Figure 1, we have drawn a DAG capturing KDS’s dis-

cussion of the pellagra example. KDS describe the two

leading hypotheses (germs and contaminated food) as con-

taining the same elements but with arrows ‘that pointed

in entirely opposite directions’. We don’t believe this to

correspond to their description nor to the plausible rela-

tionships involved. In the ‘germ theory’, those with a high

infection rate were believed to be more likely to be institu-

tionalized, but it would not be plausible that the infection

caused institutionalization; rather, both would share com-

mon causes (depicted by U in our diagram) such as pov-

erty (and hence the capitalism hypothesis is also

depicted). In the remaining hypotheses they describe, there

is a causal effect of institutionalization on pellagra infec-

tion, but via different potential mediators: contaminated

food, stress and vitamin B3 deficiency. Each hypothesis

Figure 1. A casual DAG representing all the hypotheses discussed by

KDS in relation to the effect of institutionalisation on pellagra infection.
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introduces a new element(s) into the DAG and all can be

depicted in a single DAG, as we have done in Figure 1; no

reversal of any arrows is involved. Of course, subject mat-

ter knowledge is needed to reach the DAG, and data ana-

lysis is then required to evaluate which are the strongest

pathways, in order to determine which hypothesis (or

hypotheses) is correct. The DAG in isolation is insufficient

for arriving at an explanation (or for ‘alone wagging the

causal tale’), of course, but we are unaware of claims to

the contrary.

Example 2: Birthweight paradox

Figure 2, which is the DAG alluded to by KDS in reference

to the birthweight paradox, shows that, even if we had

measured and adjusted for all confounders C of smoking

and infant mortality, as long as there exist unmeasured

common causes U of birthweight and infant mortality,

then a comparison of the mortality rates of low birth-

weight babies between smoking and non-smoking mothers

does not have a causal interpretation. This is because strat-

ifying on birthweight induces a correlation between smok-

ing and U, in such a direction that it could explain the

paradox. As VanderWeele writes in a recent review article

on this issue:88

The intuition behind this explanation is that low

birthweight might be due to a number of causes: one

of these might be maternal smoking, another might

be instances of malnutrition or a birth defect. If we

consider the low birthweight infants whose mothers

smoke, then it is likely that smoking is the cause of

low birthweight. If we consider the low birthweight

infants whose mothers do not smoke, then we know

maternal smoking is ruled out as a cause for low

birthweight, so that there must have been some other

cause, possibly something such as malnutrition or a

birth defect, the consequences of which for infant

mortality are much worse. By not controlling for the

common causes (U) of low birthweight and infant

mortality, we are essentially setting up an unfair com-

parison between the smoking and non-smoking moth-

ers. If we could control for such common causes, the

paradoxical associations might go away.

VanderWeele chooses malnutrition and birth defects

as possible Us, whereas KDS choose ‘harms during their

fetal development unrelated to and much worse than those

imposed by smoking, e.g. stochastic semi-disasters that

knock down birthweight as a result of random genetic or

epigenetic abnormalities affecting the sperm or egg prior to

conception or arising during fertilization and embryogen-

esis’. Is this not just a biologically more detailed descrip-

tion of the sort of phenomenon involved in the

development of a birth defect, in which malnutrition could

also play a part? In other words, the ‘DAG explanation’

and KDS’s explanation are almost the same, and indeed,

since the ‘DAG explanation’ only posits that such a U

may exist, it subsumes KDS’s slightly more detailed ex-

planation. We don’t understand their claim, therefore, that

the former explanation is incorrect, while the latter is

‘lovely’.

Their comment that, having identified the potential for

collider bias in a DAG, ‘it is another matter entirely, how-

ever, to elucidate empirically, whether the hypothesized

biases do indeed exist and if they are sufficient to generate

the observed associations’ is of course entirely unconten-

tious. This is precisely why, having identified the possibil-

ity that the paradox could be explained in this way, the

FACE went on to evaluate whether or not plausible magni-

tudes for the effects of such U on birthweight and infant

mortality would suffice to explain the reported paradox-

ical associations.25,89,90

In summary, DAGs are neither the beginning (they

arise from subject matter knowledge) nor the end (they

guide the subsequent data analysis and/or sensitivity ana-

lyses), but neither has the FACE made claims to this

effect.

Example 3: Racism

As we discussed under Misconception 3 above, KDS are

in agreement with the FACE in their discussion of their

third example, since hypothetical interventions on racism

don’t suffer from any of the specification problems that

accompany hypothetical interventions on race discussed

above and in the literature that they criticize. Rather

than saying that the FACE is ‘bark[ing] up the wrong

tree, and indeed miss[ing] the forest entirely’, KDS

should surely aim this criticism at their fellow critics of

the FACE, such as VBP, who are the ones advocating

studying the causal effects of race and sex; the FACE

has merely outlined the difficulties in doing so, and en-

tirely agrees that it is unlikely to be the true question of

interest.

Figure 2. A casual DAG for the ‘birthweight paradox’.
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Discussion

Formality and non-invasive

hypothetical interventions

In view of the difficulties of making causal enquiries based

on observational data, epidemiologists have historically

tended to speak only of associations. VBP rightly say that

the FACE has been a response to this ‘retreat to the associ-

ational haven’. Although prudence is imperative, inciden-

tally, this ‘retreat’ has tended to result in a lack of prudence

in data analysis. Indeed, since essentially all statistical ana-

lyses are designed to measure associations, adjusted or not,

the lack of a formal framework makes it impossible to dis-

tinguish clearly between analysis strategies that target the

envisaged causal enquiry from those that do not. The unfor-

tunate result has been reflected in analysis strategies that

tend to induce bias, even in the ideal setting where all rele-

vant confounding variables are perfectly measured.4–7

To be able to identify, from across the many possible as-

sociations between exposure and outcome that one could

measure, the one that targets the causal enquiry at stake, the

FACE has adopted the notion of hypothetical interventions.

Using such hypothetical interventions, effect measures of

interest can be clearly expressed, identifying assumptions

can be explicated and analysis strategies developed that are

valid when these assumptions are met. The FACE thus

merely aims to provide a principled framework under which

causal enquiries can be approached. It does not eschew the

many sources of epidemiological information, such as time

trend data, retrospective designs, negative controls etc., but

rather aims to understand under what conditions such infor-

mation enables causal enquiries to be answered; there are

examples of this work by the FACE in relation to time trend

data and negative controls.91–97 In addition, it aims to cau-

tion epidemiologists that a good understanding of a reported

effect requires a specific understanding of the exposure and

considered effect measure.

Adopting the specific interventionist framework as a

philosophy, we have argued that the formality that under-

lies the FACE does not require the existence of humanly

feasible interventions, as it targets ‘non-invasive interven-

tions’ in the sense implied by the consistency assumption.

We believe that many epidemiological enquiries, except

those that aim to evaluate the impact of public health inter-

ventions, implicitly have such interventions in mind.

Alternative frameworks

A number of causal theories have attempted to move away

from the mainstream approach as described above, by not

using potential outcomes.99–101 Some of these, in particu-

lar the decision-theoretical framework, have been useful in

highlighting some strong assumptions entailed in

approaches based on potential outcomes, particularly

when joint or nested counterfactuals are involved. The

decision-theoretical framework adheres to the same prin-

ciples (one might argue even more strongly) of clearly ex-

pressing the causal target of estimation and the

assumptions under which this can be identified. Indeed, in

terms of data analysis, the decision-theoretical approach

reproduces existing results from the potential outcomes ap-

proach, and we view it as a part of the FACE. Other causal

theories, in their attempt to avoid potential outcomes, have

tended to be less explicit, thereby obscuring and eventually

ignoring certain selection biases. VBP and KDS similarly

recommend that other philosophical frameworks for caus-

ality be adopted in epidemiology. We hope that their alter-

natives, which are not sufficiently specific to be fully

evaluated, will not run into the same difficulties.

Both VBP and KDS mention the need for the synthesis

of evidence across multiple studies and settings. We agree

with this, and view the concepts and methods of the FACE

as aiding rather than impeding this endeavour, in two

ways: (i) more reliable causal analyses of the individual

studies contributing to a synthesis improves the reliability

of the synthesized conclusion; and (ii) by being clear what

question is being addressed, and under what assumptions

the analysis strategy used can be deemed successful, evi-

dence from different studies can be more reliably com-

bined. We cite a recent example of where a meta-analysis

came to suspect conclusions based on shortcomings in

both these aspects.102

VBP and KDS suggest the analysis of time trend data, the

use of negative controls and the elimination of alternative

hypotheses, but as we have discussed, these are already done

within the FACE.91–97 Arguably, the vast section of the

FACE literature dedicated to sensitivity analyses has at its

core the elimination (or at least consideration or evaluation)

of alternative hypotheses. A novel approach to the elimin-

ation of alternative hypotheses is described by Rosenbaum.98

VBP also imply that Pearl’s framework [specifically non-

parametric structural equation models (NPSEM)]85 is more

amenable to epidemiological enquiries. Whereas of course

we view the NPSEM framework as belonging to the FACE, it

is well-known that the NPSEM framework is more demand-

ing in terms of the assumptions it makes than alternative

frameworks within the FACE.103 These are specifically as-

sumptions similar to consistency. Instead of making the con-

sistency assumption only with respect to hypothetical

interventions on the exposure, the NPSEM assumptions

imply consistency with respect to hypothetical interventions

on every variable in the causal diagram. We fail to follow

therefore why VBP might be prepared to accept this more
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restrictive sub-framework while viewing the larger frame-

work that contains it as too restrictive.

Historical success stories

Both VBP and KDS draw attention to a few historical ex-

amples from epidemiology’s past in which successful causal

inferences were achieved without the formality advocated by

the FACE. We should be cautious of basing future strategy

on these ‘cherry-picked’ success stories, without mentioning

the numerous failures. Indeed, a similar reasoning would

lead one to conclude that science does not need a formal de-

ductive theory at all, since there are obviously many ex-

amples, e.g. in prehistoric times, where science and

knowledge acquisition progressed without formal theories.

The logical error in this reasoning is that no consideration is

given to the many examples where plain intuition and infor-

mal deduction have been misleading. This does not mean

that informal approaches have no value; they should and do

guide the design of studies and statistical analysis, but object-

ive science eventually calls for a formal theory and approach.

We view the FACE as precisely offering formal tools to

investigate cause–effect relationships. They are always

guided by what KDS call IBE (inference to the best explan-

ation). Indeed, IBE is often how one comes to investigate the

specific cause–effect relationship in the first place. Given

how associations can be distorted in complicated ways due

to implicit/explicit conditioning or not conditioning, and

how intuition, for example in mediation analysis and instru-

mental variable methods, breaks down as soon as nonlinear

relationships are at play, there is no question in our opinion

that a formal theory is needed to guide data analysis.

Concluding thoughts

Throughout its history, aspects of the FACE have been

misconceived by some. Its tendency to be explicit about as-

sumptions has often been misunderstood as if this frame-

work needs more assumptions than traditional

alternatives. This has then led people to use ‘associational

analyses’ instead, the conclusions from which they eventu-

ally interpret causally, where causal interpretation is only

justified under even stronger assumptions.

These papers by VBP and KDS highlight further miscon-

ceptions which, if true, would mean that many important

exposures would be excluded from being studied within the

FACE framework and many tools, such as causal DAGs, re-

jected as misleading. In this response, we have attempted to

correct these misconceptions and, while stressing the clarity

that comes from having a rigorous framework based on

clear definitions and assumptions, we have highlighted the

pragmatic considerations that should and do accompany the

theory when applied in practice, together with the central

role played by subject matter knowledge. We are glad to

learn about these concerns, and to be able to clarify that the

FACE does not refute epidemiological questions that cannot

be linked to humanly feasible interventions, nor epidemiolo-

gical designs that cannot emulate aspects of randomized

studies, and nor does it claim that graphical or statistical

methods lessen the importance of subject matter knowledge.

Rather, the FACE aims to provide insight on what can be

learned about these questions and from these designs under

the most plausible assumptions possible, given the data, de-

sign and subject matter knowledge at hand.

As Hernán104 concluded in a recent debate on similar

issues, relating to whether or not left-truncated data can

meaningfully be used in causal inference:

Exceptions to this synchronizing of the start of follow-

up and the treatment strategies may be considered when

the only available data (or the only data that we can af-

ford) are left truncated. If we believe that analyzing

those data will improve the existing evidence for

decision-making, we must defend the use of left-

truncated data explicitly, rather than defaulting into

using the data without any justification.

We understand from this, and agree, that no data and

no questions are ‘off limits’ as long as the data are inform-

ative about the question. The core theme of the FACE is

that formality allows one to assess to what extent the data

at hand are informative about a particular question given

subject matter knowledge. A rejection of this framework in

favour of an alternative would either mean that the new

framework could do away with the need to link the data to

the question, or that the required link would remain but in

an obscured and less explicit fashion. The former would be

miraculous, and the latter would increase the risk of confu-

sion and misinterpretation.

Supplementary Data

Supplementary data are available at IJE online.
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