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Cathepsins are proteases with functions in cellular homeostasis, lysosomal degradation
and autophagy. Their role in the development of neurodegenerative diseases has been
extensively studied. It is well established that impairment of proper cathepsin function
plays a crucial role in the pathophysiology of neurodegenerative diseases, and in recent
years a role for cathepsins in mental disorders has emerged given the involvement of
cathepsins in memory function, hyperactivity, and in depression- and anxiety-like
behavior. Here we review putative cathepsin functions with a special focus on their role
in the pathophysiology of psychiatric diseases. Specifically, cathepsins are crucial for
maintaining cellular homeostasis, particularly as part of the autophagy machinery of neural
strategies underlying acute stress response. Disruption of cathepsin functions can lead to
psychiatric diseases such as major depressive disease (MDD), bipolar disorder, and
schizophrenia. Specifically, cathepsins can be excreted via a process called secretory
autophagy. Thereby, they are able to regulate extracellular factors such as brain-derived
neurotrophic factor and perlecan c-terminal fragment LG3 providing maintenance of
neuronal homeostasis and mediating neuronal plasticity in response to acute stress or
trauma. In addition, impairment of proper cathepsin function can result in impaired
synaptic transmission by compromised recycling and biogenesis of synaptic vesicles.
Taken together, further investigations on cathepsin functions and stress response,
neuroplasticity, and synaptic transmission will be of great interest in understanding the
pathophysiology of psychiatric disorders.

Keywords: cathepsins, autophagy, memory function, neuronal plasticity, neuroinflammation
INTRODUCTION

Cathepsins are molecular proteases found in all organisms. They are categorized into three groups
according to their active site amino acid: cysteine cathepsins (B, C, F, H, K, L, O, S, V,W, and X), aspartic
cathepsins (D and E), and serine cathepsins (G) (1). Apart from their protease activity, they are best
known for their involvement in lysosomal degradation. In addition to these intracellular processes,
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extracellular activities of cathepsins have been recently described (2).
Cathepsins are particularly involved in neuroregulation as many
proteins produced by neurons are known substrates of cathepsins.
The aim of this article is to highlight current research into
cathepsin functions as well as their role in psychiatric disorders.
Considering the current literature, we propose potentialmechanisms
of cathepsin involvement in the underlying pathophysiology of
these conditions.

In the context of neurodegenerative diseases, such as
Alzheimer’s disease (AD), it is well established that cathepsins
are strongly implicated in disease progression (3). Since AD is
characterized by hippocampal-dependent dysfunction, it is not
surprising that cathepsins are also central to hippocampal-
dependent learning and memory (4). Malfunction of memory
performance is a common feature in most psychiatric disorders,
making cathepsins an interesting target in understanding the
pathophysiology underlying psychiatric diseases. Considering
psychiatric illnesses account for a considerable amount of the
global burden of disease, it is of great interest to identify altered
genes and proteins that can be targeted by novel therapeutics to
improve disease management. Autophagy is a process governed
by cathepsins and also of emerging interest in the study of
psychiatric conditions (5, 6). Classically, autophagy was
considered as a non-selective, bulk degradation system.
Recently, accumulating evidence revealed that autophagy can
indeed selectively target proteins for degradation or can exert
secretory functions via a process termed secretory autophagy (7).
Thereby cathepsins can be secreted into the extracellular space
with extracellular effects on neuroprotection and synaptic
plasticity (2). To this end, a role for cathepsins in mental
disorders is of emerging interest. In recent years, a number of
studies have been published presenting cathepsins as crucial
factors for maintaining proper memory function, as well as
regulating hyperactivity, depression-, and anxiety-like behavior.
However, the specific role of cathepsins in the development of
psychiatric conditions is in its infancy.
CATHEPSINS ARE RESPONSIBLE FOR
HIPPOCAMPUS-DEPENDENT LEARNING
AND MEMORY

Several studies in both humans and animals have demonstrated
that cathepsins have fundamental functions related to learning
and memory. For example, hippocampal cathepsin D (CTSD)
tissue protein levels of post mortem brains were shown to display
a quadratic relationship with cognitive function and episodic
memory (8). That means, patients with ante mortem mild
cognitive impairment have greater hippocampal CTSD levels
compared to healthy controls and patients with AD (8). This
finding could indicate that elevated CTSD levels characterize
early stages of cognitive decline and function as a compensatory
mechanism in response to mild neuronal damage.

Enhanced cathepsin B (CTSB) levels, on the other hand, were
recently shown to improve cognition and memory function.
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Physical treadmill training over a four-week period was described
to induce increased CTSB gene expression in the plasma of mice,
monkeys, and humans (4). Its expression levels also correlated with
hippocampus-dependent memory function (4). The same study
provides evidence that CTSB crosses the blood–brain barrier and is
capable of inducing the production of doublecortin and brain-
derived neurotrophic factor (BDNF) in the brain (4), both
important drivers of neuroplasticity (4, 9, 10).

However, an inverse correlation between both CTSB and
BDNF protein levels, and weekly hours of exercise could be
observed in a study with longer term physical training (>15
years) (11). In the study by de la Rosa and colleagues, the sample
collection was performed at least 24 h after exercise, suggesting
that physical exercise induces CTSB and BDNF acutely, but long-
term adaptation results in lower expression, even compared to
sedentary individuals (7).

In addition, experiments with mutant mice have
demonstrated an involvement of cathepsin A (CTSA) and
cathepsin K (CTSK) in spatial and non-spatial memory
functions due to metabolic and structural changes in the
hippocampus (12, 13). The catalytically inactive CTSA enzyme
yields increased levels of oxytocin and endothelin-1. Both
peptides are regulators of cellular pathways promoting long-
term potentiation and spatial memory functions (14, 15).
Specifically, oxytocin enhances long-term memory and long-
term synaptic plasticity through the activation of the MAP kinase
cascade and the consequent cyclic AMP-responsive element
binding protein phosphorylation (15). Oxytocin and endothelin-1
are both substrates of CTSA, disruption of which yields
accumulation of these peptides in the hippocampus (12),
which is likely the cause for the deficits in learning and
memory consolidation. CTSK is also highly active in the
hippocampus. Its disruption has led to perturbated architecture
of neuronal layers and decreased maturation of astrocytes (13).
Consequently, a range of cathepsins are closely associated with
proper hippocampus function. The hippocampus plays an
important role in the pathophysiology of psychiatric disorders
and abnormalities, e.g. atrophy, have repeatedly been observed in
patients with major depressive disorder (16), posttraumatic
stress disorder (17), and schizophrenia (18). Given their role in
memory functions, cathepsins are likely involved in the
pathophysiology of psychiatric disorders.
AUTOPHAGY PROCESSES ARE
ORCHESTRATED BY INTRACELLULAR
CATHEPSINS

Cathepsins are involved in cellular homeostasis by regulating
apoptosis and autophagy. Different forms of autophagy
(macroautophagy, microautophagy and chaperone-mediated
autophagy) exist (19), but all pathways ultimately converge at the
level of lysosomes, where engulfed biomolecules are degraded by
cathepsins. Due to its role in protein degradation and recycling,
autophagy is an essential process to ensure protein quality control
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and cellular homeostasis, and autophagy dysregulation has been
implicated in a wide range of human diseases, including psychiatric
disorders (5, 6). Constitutive autophagy is critical for neuronal
survival. Mice with nervous system specific ablation of important
autophagy genes (Atg5 (autophagy-related 5) and Atg7) develop
behavioral abnormalities like motor dysfunction and show
cytoplasmatic inclusion bodies in the neurons (20, 21).
Furthermore, recent studies point to a role of autophagy in the
regulation of synaptic plasticity and neurotransmission by
maintaining a counterbalance between protein synthesis
and degradation (22), as well as maintaining the integrity of
crucial organelles (e.g. synaptic vesicles) (23). Congruently,
pharmacological upregulation of autophagy by rapamycin
alleviated deficits in synaptic plasticity and improved cognitive
impairments in male rats (24). The etiology and pathophysiology
of psychiatric disorders is still very limited, but it was shown that
impaired autophagy might contribute to the pathophysiology of
psychiatric disorders, including schizophrenia (25), major
depressive disorder (26), and bipolar disorder (27). Although the
key factors are still unknown, it has been repeatedly proposed that
disrupted synaptic plasticitymediated by impaired autophagy leads
to the progression of psychiatric diseases. For example, autophagy
dependent deregulation of activity-depended neuroprotective
protein, an important factor for neuronal plasticity, was observed
in post mortem hippocampus of schizophrenia patients (28).
Congruently, mood stabilizers and antidepressants have been
reported to affect autophagy. Specifically, lithium and
antidepressants (amitriptyline, citalopram, paroxetine) were
shown to enhance autophagy (29–32).

As summarized above cognition and psychiatric disorders
exhibit characteristics of aberrated autophagy, which in turn
results in impaired neuronal plasticity and protein aggregation,
thereby contributing to disease pathophysiology. This process is
likely to be partly orchestrated by cathepsins. Many cathepsins
exhibit endopeptidase activity, i.e. they are capable of breaking
peptide bonds of amino acids within the molecule, whereas some
cathepsins exhibit exopeptidase activity, i.e. they are able to break
peptide bonds of the end pieces of amino acids (1). If the
function of cathepsins, and hence lysosomal function, is
compromised, pathological conditions like inclusion body
accumulation, impaired neurotransmission, and reduced
neuroplasticity, can arise.
CATHEPSINS IN PSYCHIATRIC
DISORDERS: EVIDENCE FROM PATIENTS,
POST MORTEM BRAINS AND ANIMAL
MODEL STUDIES

In studying the pathophysiology of psychiatric disorders,
cathepsins B, C, D and K are of particular interest. The
following section provides an overview of the most intriguing
findings of the involvement of these cathepsins in the
pathophysiology of psychiatric disorders, in murine models,
patients and post mortem brains.
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Anxiety- and Depressive-Like Disorders:
Evidence From Murine Models
Transcriptome analysis of inbred mouse lines, selecting for low or
high anxiety-related behavior with depression-like behavior,
revealed higher CTSB levels in low anxiety mice (33).
Accordingly, loss of CTSB expression resulted in an increase in
anxiety-like and depression-like behavior (33). This effect, however,
was only present in female mice. On the other hand, Zhanaeva and
colleagues have demonstrated that when mice underwent chronic
social defeat, a behavioral paradigm that leads to the development of
a depressive-like phenotype in rodents, they demonstrate increased
activity of CTSB in the hypothalamus and caudate nucleus (34). In
line with these findings, paroxetine, a potent antidepressant, has
been shown to downregulate CTSB protein abundance (35). A
study describing a CTSK knockout mouse model revealed a
reduction of anxiety-like behavior that was associated with an
increase in dopamine and dopamine receptor D2 levels (13). This
is in agreement with the finding that D2 receptor agonists induce
learning impairments (36) and decrease anxiety levels in mice (37).
Cathepsin C (CTSC) has also been suggested to play a critical role in
the development of depression. In another study, CTSC
overexpression and CTSC conditional knock-down mice were
subjected to acute stress (lipopolysaccharide (LPS) injection) and
chronic stress (6-week unpredictable chronic mild stress).
Behavioral testing in these mice revealed that an overexpression
of CTSC promoted the induction of depression-like behavior whilst
CTSC knock-down was protective against this behavior (38).
Depression-like behavior in CTSC overexpression was also shown
to be associated with increased neuroinflammation and decreased 5-
hydroxytryptamin (serotonin) levels (38). This finding is in
accordance with the monoamine theory postulating decreased
serotonergic neurotransmission as one of the prevailing causes for
the development of depression (39).

In sum, studies with animal models revealed that deleterious
CTSC and CTSK protected against anxiety- and depressive-like
behavior. Furthermore, high levels of CTSB seem to have
protective effects against these disorders in one study, while
they promote depressive-like behavior in another. It will
therefore be of great importance to further investigate the
specific patterns of altered cathepsin expression among
different cathepsins and across various brain areas to fully
understand how cathepsins contribute to these disease entities.

Bipolar Disorder: Evidence From Murine
Models and Patients
In two distinct studies, CTSD knockout mice exhibited
hyperactivity (40, 41), a hallmark of attention deficit
hyperactivity disorder (ADHD) and mania. Behavioral testing
of CTSD heterozygous knockout mice revealed a behavioral
phenotype similar to human bipolar disorder (BD). This
phenotype was comprised of increased general locomotor
activity, decreased habituation, sleep disturbances as well as
less anxious and more exploratory depression-like behavior
(40). Furthermore, these behavioral features were sensitive to
treatment with the mood stabilizers lithium and valproic acid
(40), two classical therapeutics used in the management of BD.
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Interestingly, in a study aiming for biomarkers to distinguish
BD from ADHD it was shown that CTSB and CTSD gene
expression is elevated in patients suffering from ADHD
compared to BD patients (42), supporting that CTSD plays a
central role in the pathophysiology of these disorders. However,
it is important to note, that this study lacks information on
CTSD levels of healthy subjects as control.

A genetic mouse model with deleterious CTSD resulted in a BD
phenotype, while in patients high levels of CTSD is rather indicative
for ADHD compared to BD. It is therefore likely that CTSD is
downregulated in BD and ADHD, but to different extent.

Autism Spectrum Disorder (ASD):
Evidence From Murine Models and Post
Mortem Brains
In an ASD murine model, elevated CTSB protein expression in
neutrophils was observed (43). Given the role of neuroinflammation
and microglia activation in the pathophysiology of ASD (44) this
finding points to a mechanistic role of CTSB in inducing
neurovascular inflammation. In addition, CTSD protein
expression was found to be significantly increased in different
regions of post mortem brains of ASD patients associated with
increased apoptosis capacity (45). Table 1 offers an overview of
the most intriguing findings of cathepsins involved in the
pathophysiology of psychiatric disorders found in post
mortem brains.

Schizophrenia: Evidence From Patients
and Post Mortem Brains
In post mortem brains of patients with schizophrenia, CTSD
protein abundance has been observed to be reduced in
schizophrenia, compared to healthy controls (47). On the other
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C
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hand, an upregulation of CTSK seems to be associated with
schizophrenia. An analysis of post mortem brains of individuals
with schizophrenia has identified an upregulation of CTSK
expression, compared to matched controls (51). CTSK has
been suggested to contribute to disease development by
liberating enkephalin from beta endorphin (50). However,
treatment with neuroleptics also upregulates CTSK in rat brain
tissue (52). Therefore, it is difficult to differentiate whether the
increase in CTSK expression is due to the long-term drug
treatment rather than a result of the condition itself.
EXTRACELLULAR CATHEPSINS
MAINTAIN NEURONAL HOMEOSTASIS
AND INDUCE NEURONAL PLASTICITY

Although cathepsins are important proteases in the endolysosomal
pathway, extracellular activity of these proteases is of emerging
scientific interest (for a comprehensive review, see (2)). Cathepsins
were shown to be involved in specific and non-specific degradation
of proteins of the extracellular matrix (53). These findings
point to a crucial role of cathepsins in shaping the (neuronal)
microenvironment and maintaining tissue homeostasis.
Therefore, attention has been drawn towards investigating their
extracellular role as therapeutic and diagnostic targets. Recently, this
has been seen within the context of neuroinflammation and axon
growth. Extracellular cathepsin L (CTSL), for example, was shown
to be capable of inducing axonal growth in neurons (54). Similarly,
CTSB was found to degrade chondroitin sulfate proteoglycans, an
inhibitor of axonal growth, thereby enhancing axonal outgrowth
(54, 55). Furthermore, CTSL and CTSB elevate levels of the perlecan
ABLE 1 | Findings on cathepsin involvement in psychiatric conditions from post mortem brains.

arget Brain area Disease (n) Method Finding Ref.

TSD Brodmann Area 9 Schizophrenia and control (sample
size not stated)

Enzyme assays No significant differences in CTSD activity (46)

TSD Anterior hippocampus Schizophrenia (n = 7) vs. controls
(n = 7)

2-D gel electrophoresis and
mass spectrometry

Reduced CTSD protein expression in
schizophrenia

(47)

TSD Mid hippocampus: cornu
ammonis (CA) regions 1 through
4, dentate gyrus (DG)

Schizophrenia, bipolar disorder, and
control subjects (n = 20 per group)

Laser-assisted microdissection
to enrich for tissue from the
hippocampal regions and
2-dimensional difference gel
electrophoresis to compare
protein profiles

Schizophrenia: DG and CA2/3 CTSD
differentially expressed
Bipolar disorder: no difference in CTSD
expression level

(48)

TSD Prefrontal cortex Broadmann’s
Area 10

Bipolar disorder, major depression,
schizophrenia, and control subjects
(n = 15 per group)

RNA microarray, real-time
quantitative PCR

Upregulation of CTSD with aging; no
between group comparison.

(49)

TSD Cerebellum, frontal cortex,
hippocampus

Autistic subjects and age-matched
control subjects (n = 7)

Immunhistochemistry, Western
blots

Upregulation of CTSD expression in patients
with autism in investigated brain areas

(45)

TSK Arcuate nucleus, paraventricular
nucleus

Schizophrenia (n = 7) vs. control
(n = 7)

Immunohistochemistry and
morphometric analysis

Upregulation of CTSK expression in many
brain regions of schizophrenic patients
including the hypothalamus.
Increase of the density of CTSK expressing
hypothalamic and extrahypothalamic
neurons in schizophrenia

(50)

TSK Cortex, Hypothalamus,
supraoptic nucleus neurons and
cerebellar Purkinje cells

Schizophrenia (n = 4) vs. controls
(n = 4)

Immunohistochemistry, Western
blots

Upregulation of CTSK expression in
schizophrenia in investigated brain areas

(51)
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c-terminal fragment LG3, thereby mediating the beneficial effects of
this fragment, including astrogliosis and neuroprotection (56). In
addition, CTSD affects neuronal differentiation by processing
members of the seizure-related gene family (SEZ6L2), which
extracellularly exert differentiation (57).

It has been proposed that mental illness is caused by functional
and structural changes in the brain. These are associated with axonal
growth, neuroinflammation, and changes in cortical microglia,
among a number of other effects (58). Changes in microglia
markers have been reported in a number of psychiatric
conditions including anxiety (59), depression (60, 61), and
schizophrenia (62). Besides often reported cytokines, such as
proinflammatory interleukin b (IL-1b), activated microglia excrete
high levels of cathepsins (63). A secretome analysis of monocytes
suggested that cathepsins A, B, C, D, S, and Z are secreted via a
proteostatic process called secretory autophagy (7). Figure 1
illustrates this highly specialized mechanism by which cathepsins
are excreted into the extracellular space in more detail. Once
secreted into the extracellular space, cathepsins are involved in
mediating neuroplasticity through various processes. Cathepsins are
capable of inducing BDNF (4), a well-known regulator of neuronal
plasticity, synaptic plasticity, cell survival and differentiation, as well
as doublecourtin, an important factor for neuronal migration (47).
CONCLUSION AND OUTLOOK

Over the past few decades, a plethora of studies have been published
investigating the pathophysiology and treatment of psychiatric
Frontiers in Psychiatry | www.frontiersin.org 5
disorders. Despite great progress, the underlying mechanisms still
remain far from well-understood. Psychiatric disorders pose a
particular challenge to research due to lack of reliable biomarkers
and hence limitations to experimental design by relying on the
individuals’ perception of their environment rather than
objective measurements.

Disrupted cathepsin function or expression levels in animal
models leads to behavioral phenotypes similar to BD, MDD, and
anxiety like disorders in humans (13, 33, 34, 38, 40, 41). In post
mortem brains of patients suffering from schizophrenia or ASD
alterations of cathepsin levels have been found (45–51). The
underlying molecular mechanisms of how cathepsin dysfunction
contributes to the pathophysiology of psychiatric disorders
remain unknown.

On a cellular level, cathepsins can influence axonal growth
either directly via stimulation or indirectly via degradation of
inhibitors (54–56). We deduce that these processes take place in
response to acute stress or trauma to protect the brain as a short-
term adaptation. However, not all cathepsins are protective for the
brain. For example, overexpression of CTSC in the brain resulted
in a depression-like phenotype (38). Furthermore, as observed
from animal models lacking proper cathepsin function, the
protective capabilities of cathepsins do not seem to be a simple
cause and effect relationship. While short term cathepsin release
could be beneficial, prolonged excretion might be harmful to the
organism. During secretory autophagy, other factors such as high
concentrations of chemokines, especially IL-1b, are also released
(7). Prolonged secretion of IL-1b induces neuroinflammation
thereby contributing to disease conditions. In agreement with
this, CTSD was shown to trigger cytokine secretion (64) and
A

B C

FIGURE 1 | Cathepsin secretion, intracellular and extracellular cathepsin function. (A) Intracellular cathepsin function. Autophagosomes are generated at
subdomains of the endoplasmic reticulum (ER). Upon closure of the membrane sac, the biomolecules to be degraded are enclosed in a double-membrane vesicle,
called an autophagosome. Degradation is achieved by fusion with a lysosome to form an autophagolysosome. (B) Secretory autophagy pathway. Upon lysosomal
damage, cathepsins are released into the cytosol. Cathepsins and other lysosomal proteins activate the galectin-8–TRIM 16 complex. TRIM16 binds to the cargo
(here: cathepsins) to be excreted by secretory autophagy. A complex with TRIM16 and Sec22b is formed to transfer molecules (here: cathepsins) to the lipidated
LC3 (often referred to as LC3-II) membrane. Sec22b then mediates fusion with the plasma membrane in conjunction with the SNARE molecules SNAP-23 and
SNAP-29 as well as syntaxin 3 (STX3) and 4 (STX4). By this process, the cargo (here: cathepsins) is released into the extracellular space where it can exert their
functions. (C) Extracellular cathepsin function. Once secreted into the extracellular space, cathepsins are involved in mediating neuronal plasticity. This is mediated
through induction of BDNF, doublecourtin (DCX) and the perlecan c-terminal fragment LG3 (LG3) and by inhibition of chondroitin sulfate proteoglycans (CSPG). PM,
plasma membrane; CTSS, cathepsin S; CTSZ, cathepsin Z (modified from (7), permission obtained from the authors).
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cathepsin Z-deficient mice have significantly lower levels of IL-1b
and reduced neuroinflammation (65). If cathepsins are highly
excreted into the extracellular space, their intracellular
concentration is reduced, thereby compromising their lysosomal
capacity, i.e. the cell capacity to degrade molecules. This may lead
to pathologies like neurodegenerative disorders (66) but also to
psychiatric disorders (67). For example, in post mortem brain
samples of schizophrenic patients and patients suffering from
affective disorders protein aggregates of disrupted-in-
Schizophrenia 1 (DISC1) (68) and dysbindin-1 (69) were found.
The disposal of damaged proteins is essential for maintaining
neuronal homeostasis, predominantly governed by autophagy and
carriedoutbycathepsins.Congruently, inautophagy-compromised
neurons protein accumulation was observed (20, 21). Suppressed
autophagy also leads to reduced synaptic neurotransmission,
while increased autophagy enhances transmission (70). This
describes a central role for cathepsins in synaptic regulation.
Thus, disruption of cathepsin signaling, such as CTSD, was
shown to compromise the biogenesis of GABAergic synaptic
vesicles and GABAergic synaptic transmission (41). Specifically,
this led to reduced amplitudes of inhibitory postsynaptic
currents, while excitatory postsynaptic currents were largely
unaffected reflecting an imbalance between excitatory and
inhibitory synaptic activity (41).
Frontiers in Psychiatry | www.frontiersin.org 6
In light of the complex pathophysiology of psychiatric disorders,
we are still far away from understanding the comprehensive
mechanisms of cathepsins in these conditions. Induction of
secretory autophagy and cathepsin-mediated neuroplasticity in
response to acute stress are likely involved, but clarification is
necessary before this can be confirmed. It will be of great interest
to further investigate the conditions under which cathepsin
expression and release into the extracellular space change and to
further look into the effects of varying cathepsin levels on a cellular
level, particularly in terms of synaptic neurotransmission. The
diversity of roles for this class of proteases evidenced in the brain
and throughout the body is important in the pathophysiology of a
number of conditions and particularly of psychiatric disorders.
Better understanding their effects within these systems may
provide new avenues for better understanding how to combat
some of the most complex human disorders.
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