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ABSTRACT

RBscore&NBench combines a web server, RBscore
and a database, NBench. RBscore predicts RNA-
/DNA-binding residues in proteins and visualizes the
prediction scores and features on protein structures.
The scoring scheme of RBscore directly links fea-
ture values to nucleic acid binding probabilities and
illustrates the nucleic acid binding energy funnel on
the protein surface. To avoid dataset, binding site
definition and assessment metric biases, we com-
pared RBscore with 18 web servers and 3 stand-
alone programs on 41 datasets, which demonstrated
the high and stable accuracy of RBscore. A compre-
hensive comparison led us to develop a benchmark
database named NBench. The web server is available
on: http://ahsoka.u-strasbg.fr/rbscorenbench/.

INTRODUCTION

RNA– and DNA–protein interactions occur in a large
amount of biological processes. The computational predic-
tion of nucleic binding residues on protein is an important
step in understanding protein functions. Although the prob-
lem of binding site prediction is old (1), the prediction algo-
rithms are not so enlightening and effective as expected.

Recently we developed RBscore (2), which linearly cor-
relates feature values to nucleic acid binding probability in
a residue neighboring network approach in order to pre-
dict nucleic acid binding residues. RBscore displays merits
in several aspects. (i) Physicochemical and evolutionary fea-
tures (electrostatics, solvation energy and conservation en-
tropy) can be directly related to nucleic acid binding proba-
bilities. (ii) RBscore, standing for RNA Binding score, was
trained on RNA binding proteins (RBP) but demonstrates
even higher accuracies for DNA binding residue prediction.
This underscores, firstly, that RBP and DNA binding pro-
teins (DBP) employ common driving forces in their bind-
ing to nucleic acid and, secondly, that RBscore has cap-

tured successfully the main factors controlling the binding
propensities. There are more than 100 cases in the PDB
(3) that report the formation of protein–RNA–DNA com-
plexes. Recently, it has been estimated that about 2% of the
human proteome may bind both RNA and DNA, and such
proteins are named DRBP (4). Thus, it is now a major chal-
lenge to be able to predict nucleic acid specificities on the
basis of the protein alone. (iii) One can plot the nucleic acid
binding energy funnel on the protein surface using RBscore,
with the residues closer to the nucleic acid binding region
having higher prediction scores. This shows that a binary
classification of binding sites (binding versus non-binding)
is far from enough for the binding site prediction prob-
lem. Besides, RBscore demonstrates a high-level accuracy
with a high stability in the accuracy on all DBP and RBP
datasets. It guarantees also a weighted arithmetic mean of
Area Under ROC Curve (wAUC) above 0.81, which cannot
be achieved by other predictors. Since the running of the
RBscore web server starting from June 2014, it has handled
more than 5000 jobs submitted by more than 35 users from
11 different countries.

With many strategies to predict RNA- or DNA-binding
sites on protein reported every year, fair and rigorous
benchmarking is a laborious necessity. However, many pro-
grams were only assessed by cross-validation in small-scale
datasets and did not fully demonstrate their predictive abil-
ities. Current assessments of binding site prediction pro-
grams differ in: (i) the definition of nucleic acid binding sites
by distance cutoffs; (ii) the training and test datasets that
can induce dataset bias and (iii) the criteria to measure pre-
diction performance. The comparisons in many of the re-
ported works were only based on single cutoff, binary crite-
ria and small-scale datasets validations, which may include
bias toward certain methods and lead to dangerous conclu-
sions.

Together with RBscore, we assessed 18 web servers and
3 stand-alone programs, 25 different approaches in total,
on 41 different datasets, including more than 5000 protein
chains derived from 3D structures of protein–nucleic acid
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complexes. The results demonstrate: (i) dataset bias and dis-
tance cutoff bias in binding site definition exist in some
methods; (ii) DBP and RBP appear to follow similar driv-
ing forces which have been captured by some of the meth-
ods; (iii) the predictors have been greatly improved over
the years, but there is still room for sorting out the essen-
tial mechanisms of binding for sequence based approaches.
According to the results, RBscore also rank as a top-level
predictor, which shows high but stable accuracies on all
datasets regardless of distance cutoff used to define bind-
ing sites.

This assessment work led us to build a database, NBench
(5), to benchmark all the prediction programs and to pro-
vide all the prediction result data to the scientific com-
munity. Hopefully, later development of new nucleic acid
binding site prediction programs can take the advantage of
NBench database and make direct comparison with the ex-
isting 25 approaches to avoid unnecessary bias of dataset,
binding site definition or assessment metrics.

RBscore WEB SERVER

RBscore

Several normalization steps were processed before calcu-
lating RBscore: (i) alternative locations are cleaned leaving
only the first state; (ii) residues with incomplete backbone
atoms (N, CA and C) are dropped; (iii) Selenomethionines
are taken as methionine, while other HETATM lines in the
file are deleted; (iv) incomplete side-chain atoms are pre-
dicted by RASP (6,7). The calculation of RBscore is based
on electrostatics potential, solvation energy and sequence
conservation entropy feature values. Electrostatics potential
is measured by programs pdb2pqr (8,9) and APBS (10) in a
similar way as PatchFinderPlus (11); implicit model of sol-
vation energy is derived from accessible surface area calcu-
lated by NACCESS (12), while sequence conservation en-
tropy is measured by Shannon entropy (13) using Weblogo
(14) according to the multiple sequence alignment (MSA)
generated by HHblits (15). The program DMS (16) is used
to generated the surface grid around the protein surface and
to define the residue level neighboring interaction network.
A total of 104 weighing factors were trained in the model.
Details of the RBscore scoring function were described pre-
viously (2).

Besides the structure-based binding site predictor RB-
score, we also provide a sequence-based predictor RB-
score SVM, which exploits the facility of machine learn-
ing approach, when no structure information is provided.
RBscore SVM first searches a small sequence database of
Uniprot (17) for homologous sequences to derive Position
Specific Scoring Matrix (PSSM) with PSI-BLAST (18), and
then uses a slide-window approach to generate input fea-
ture vector for support vector machine (19) (SVM) to build
the prediction model. Similar to other sequence-based pre-
dictors, RBscore SVM is less stable in accuracy (5), more
dataset dependent, and more distance cutoff dependent and
without the ability to depict the binding energy funnel on
protein surface. However, it still achieves top-level accu-
racy among sequence-based predictors, which guarantees a
wAUC value >0.71 offering a still good choice when only
sequence information is available.

Input

The web server integrates structure-based predictor RB-
score and sequence-based predictor RBscore SVM. When
the protein structure is available, the prediction accuracy is
generally better than only sequence information as well as
more information can be visualized. The input of protein
structure can either be a four-letter PDB code or by upload-
ing a PDB formatted file.

When only protein sequence is available, users need to in-
put FASTA formatted sequences or upload a FASTA file
of sequences. More than one sequence in the same FASTA
file is possible and the prediction results will be in the same
order. There are optional parameter settings for the RB-
score SVM model: (i) to set the specificity or sensitivity of
the prediction to determine the cutoff value used in binary
prediction of binding sites. By default, the specificity is set
to 85%; (ii) SVM models used in prediction. The models are
derived from RBP or DBP alone or both RBP and DBP.
According to the results in NBench, the model trained on
both RBP and DBP dataset achieves highest accuracy. Fi-
nally, users can input an email address to receive the results
after the job finish. Otherwise, the web page is automati-
cally refreshed to show the running log until the prediction
results are generated.

Output

The output of the RBscore includes three sections:

(i) Summary of prediction (Figure 1A). It provides basic
information of the protein and of the prediction results,
including job ID, length of the protein, rough estima-
tion of nucleic acid binding site number based on pro-
tein sequence and download link of all the results. For
RBscore SVM prediction, the summary lists the esti-
mated sensitivity, specificity, the resulted threshold for
SVM classifier and the predicted number of binding
sites.

(ii) Plots of prediction scores and feature scores on pro-
tein. The graphical plots of the prediction scores on
protein surface are illustrated by JSmol (20) in rainbow
color, where blue shows the region with highest predic-
tion scores that most likely to bind nucleic acid, while
red shows the least likely parts. Together with RBscore,
RBscore predictions based on single features (electro-
statics, conservation or solvation energy) as well as fea-
ture values of conservation entropy and electrostatics
potential are also provided for plotting on protein sur-
face. Feature value plots are similar to CONSURF
(21) and APBS tools in pymol (22). Comparing feature
values with RBscore plotted on protein, users can in-
tuitively verify the prediction of nucleic acid binding
region. Conceptually, nucleic acid are more likely to
bind positively charged parts on a protein, since nucleic
acids are normally negatively changed resulted from
the phosphate group, while functional sites are more
conserved than other residues to maintain the func-
tion in evolution. Positively charged region and con-
served region are also plotted as blue to correspond to
the high RBscore region. Additionally, users can load
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Figure 1. Example of outputs from RBscore. (A) Summary of prediction. (B) Prediction score mappings on protein structure demonstrated by RBscore
(2), RBRDetector (30) and aaRNA (26). (C) Detailed residue-wise results.

other molecules or save the figure or molecule coordi-
nates.
Figure 1B compares three existing demonstrations of
prediction score mapping schemes. RBRDetector uses
a binary color scheme on a cartoon model of the pro-
tein while highlighting the predicted binding sites with
stick model. Such plots can clearly show the bind-
ing sites when the prediction is good but can hardly
explain some ‘orphan’ binding sites that without any
other binding site neighbor around. It can neither
show the hierarchical binding energy funnel on pro-
tein surface. aaRNA uses a hierarchical color scheme
of ‘blue white red’, but a cartoon model of protein
structure excludes all side-chain atoms which are most
important to protein–nucleic acid binding. A rainbow

color scheme in RBscore can clearly show the bind-
ing energy funnel on protein surface to help users find
the binding region intuitively, while a surface model of
the protein structure counts for the accessibility of the
residues easily excluding unreasonable buried residues
as binding sites. Following the hierarchical coloring of
binding energy funnel, ‘orphan’ binding sites can be
easily excluded demonstrating a clearer picture of the
nucleic acid binding probability.

(iii) Detailed residue-wise result (Figure 1C). It lists the
prediction results for each residue, including residue
name, conservation entropy, RBscore, RBscore SVM
value and other three prediction values based on sin-
gle feature applied in RBscore model. Binary binding
site prediction is based on the pre-defined specificity or
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Figure 2. Structure of NBench and examples of heat map. (A) Structure of NBench database. The database includes detailed information and raw data of
41 reported datasets of protein–nucleic acid interactions, and it lists all information about the currently available predictors. Besides, it benchmarks all the
predictors with various criteria considering datasets and distance cutoffs in defining binding sites. (B) Examples of heat maps exported from NBench for
comparison.

sensitivity value and the resulted threshold. Generally,
binding sites normally have an RBscore > 300 while
RBscore SVM > −0.44. It is more likely to be a nucleic
acid binding site, when both RBscore, RBscore SVM
and conservation entropy show high scores.

NBench DATABASE

It is a non-trivial task to compare a new binding site predic-
tor with existing ones to demonstrate its effectiveness. Such
a comparison is prone to dataset bias, binding site defini-
tion bias and assessment metric bias, as well as the detailed
treatments of the datasets. For example, PRBR (23) does
not predict binding sites of the N-terminal and C-terminal
residues, and may lead to an unfair comparison with other
programs who predict on the whole sequence. To minimize
the possibility of biased conclusions, NBench contains pre-
diction results of 25 different approaches on 41 datasets to
directly benchmark all the programs at the same level.

Data availability

NBench lists all the detailed information of the 41 datasets:
number of protein, resolution, sequence identity, structural
similarity and year of publication and PDB ID list. It pro-
vides all the PDB IDs, curated PDB files, sequence files in
FASTA format and binding sites definition based on RB-
score criterion which considers both distance cutoff and
accessible surface area change. Besides, NBench stores all

the assessment results of the programs and exhibit them in
terms of 2D heat map, as shown in Figure 2. Users of the
database can select their interested program, dataset, dis-
tance cutoff to define binding sites, assessment criterion and
plot the 2D heat map accordingly. In this way, the compar-
ison can be more specific and concrete. Finally, users are
allowed to export these heat maps in different formats.

Potential benchmarking

Many predictors targeting the nucleic acid binding site pre-
diction problem are being developed every year, NBench
makes the validation of the new predictors easier and
straightforward: on one hand, new predictor developers can
download the datasets from NBench to run their predictor
and compare with the results of other predictors obtained
from NBench. Developers can perform their assessments
on all the results for comparison, it avoids repeated call-
ing of the other web servers. On the other hand, develop-
ers are also encouraged to submit their prediction results
to NBench, so new predictions can be benchmarked in a
more systematic way by NBench during the maintenance
of the database. New data is added to NBench during regu-
lar maintenance of the database or upon request. Both ap-
proaches suggest better validations of the new upcoming
predictors.
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SOFTWARE IMPLEMENTATION

The web server was developed on Ubuntu 14.04 linux OS
and is running on an Apache2 server and PHP5.3 as server-
side scripting language. The server pipeline was written in
python2.7 and interacts with RBscore program written in
C++. Data of prediction results in NBench is organized and
indexed by MySQL. The web pages were written in boot-
strap HTML with Javascript, and were tested on the latest
versions of Firefox and Chrome.

DISCUSSION

RBscore highlights the point that a nucleic acid binding site
prediction is not a binary classifier but is to find the po-
tential binding region to help understanding the underly-
ing essence of protein–nucleic acid interaction, as well as to
find the potential binding energy funnel. It is the first au-
tomated web server reported to predict DNA- and RNA-
binding sites within the same prediction model. Besides, it
directly combine feature values into a probability score of
nucleic acid binding without complexion and achieves high
level accuracy on all datasets regardless of binding site def-
inition bias.

Nucleic acid binding site prediction is an active field of
work, no fewer than eight papers (24–31) targeting this
problem were published in 2014. Validation of new predic-
tors is a crucial necessity but prone to bias. NBench directly
provides normalized datasets and related results from exist-
ing approaches, which can be a valuable resource for new
predictor validation. We hope RBscore&NBench can help
our understanding the essence of protein–nucleic acid bind-
ing and support the biological community as a useful tool.

AVAILABILITY

The web server is available on: http://ahsoka.u-strasbg.fr/
rbscorenbench/.
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