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Evaluation of product of two 
sigmoidal membership functions 
(psigmf) as an ANFIS membership 
function for prediction of nanofluid 
temperature
Meisam Babanezhad1,2, Ali Taghvaie Nakhjiri3, Azam Marjani4,5*, Mashallah Rezakazemi6 & 
Saeed Shirazian7

A nanofluid containing water and nanoparticles made of copper (Cu) inside a cavity with square 
shape is simulated utilizing the computational fluid dynamics (CFD) approach. The nanoparticles 
made up 15% of the nanofluid. By performing the simulation, the CFD output is characterized by the 
coordinates in the x, y, nanofluid temperature, and velocity in the y-direction that these outputs are 
obtained for different physical time iterations. Moreover, the CFD outputs are examined by one of the 
artificial techniques, i.e. adaptive network-based fuzzy inference system (ANFIS). For this purpose, 
the data was clustered via grid partition clustering, and the type of membership functions (MFs) was 
chosen product of two sigmoidal membership functions (psigmf). After reaching 99.9% of intelligence 
in ANFIS, the nanofluid temperature is predicted for the entire data, which are included in the learning 
processes. The results showed that the method of ANFIS can predict the thermal properties in 
different physical times at different computing points without having a training background at those 
times. Additionally, this study shows that with three membership functions at each input, the model’s 
accuracy is higher than four functions.

The term nanofluid (NF) refers to a mixture which constitutes solid particle at nano scale dispersed in a liquid. 
NFs are usually prepared for applications that need fluids with improved transport properties. Over the past years, 
NF has attracted further attention as a result of its improved features and heat transfer-associated behavior1,2, 
mass transfer3–6, moistening and scattering7, and antimicrobial activities8. Through the nanofluids’ improved 
thermal behavior, a foundation could be provided for a huge improvement on heat transfer strengthening that 
is greatly important in some industrial sectors such as transportation, micro-manufacturing, power generation, 
chemical and metallurgical sectors, oil, and ventilation. Nanofluids are also useful for producing nanostructured 
materials9, complex fluids engineering10, and for cleaning oil from surfaces owing to their superb spreading and 
wetting behavior11. In the literature, the nanofluids’ thermal conductivity has been highlighted in the past decade, 
and within this area it has been focused recently12–14.

Numerical evaluation of natural convection in a square shape is a standard investigation as a result of its 
extensive usage field in engineering, such as cooling the electronic devices. Moreover, in numerous numerical 
and experimental investigations regarding these geometries, the numerical study is still an attractive research 
subject to promote the application of nanofluids15–21. Nevertheless, further cost and time are crucial for con-
ducting detailed research. To decrease the expense of the investigations for complex systems, soft programming 
approaches like Artificial Neural Networks (ANNs) or Fuzzy-logic can be recommended to predict heat analysis 
in the domain22–24. However, they are not frequently used to understand the flow and heat problems fully. For 
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instance, the Adaptive Neuro-Fuzzy Inference System (ANFIS)25 is also utilized for predicting data in some 
engineering problems26. Nevertheless, it has quite limited usage in energy-related studies. For instance, the 
ANFIS technique was utilized by Ryoo et al.27 for controlling the convergence in fluid simulation. In the study 
conducted by Lu et al.28, ANFIS was utilized for optimizing the in-building heating systems.

Other intelligence-based techniques have been employed for physical systems, such as Fuzzy Inference Sys-
tems (FIS) and Fuzzy Logic (FL), which were initially suggested and developed by Zadeh29, offering a great tool 
to make decision in various fields of interest. FL models are represented utilizing IF–THEN rules30. Recently 
machine learning methods stand beside numerical, mathematical, and CFD methods to analyze physical and 
chemical interactions and thermal distributions in engineering processes. By integrating machine learning meth-
ods and numerical algorithms, the optimization of engineering processes is accelerated in terms of computational 
efforts and expenses. Machine learning methods use numerical results and generate a continuous domain of 
datasets that accelerate optimization without running expensive numerical methods26. They are functioning very 
fast in terms of learning and prediction processes. Prior works showed that learning time for machine learning 
methods is very short compared to numerical calculations (e.g. CFD), and the prediction time of machine learn-
ing methods can even less than a few seconds which is much shorter than other methods.

Additionally, using machine learning (ML) methods results in avoiding numerical issues and difficulties, 
such as numerical instability for numerical methods, a convergence of CFD results, the complexity of boundary 
conditions, meshing geometry, and the creation of high specification mesh in the domain. The ML was used to 
train local thermal characteristics in the square shape cavity. The results indicated that there was a good agree-
ment between CFD and ML data. In another study, different locations (computing points) of cylindrical bubble 
column reactors participated in the training method, and flow characteristics, such as velocity components, gas 
fraction, and turbulence properties were predicted with the ANFIS method. They also used sparger specification 
as input in the training method and developed a mathematical correlation to predict flow properties as a function 
of sparger specification26,31. In addition to that, several studies concentrated on finding proper model parameters 
regarding models’ accuracy and prediction capability. They used different membership function specifications 
(such as number membership functions and type of membership functions) on the model’s accuracy. This type 
of analysis has been conducted to predict flow properties in the bubble column reactor and thermal properties in 
the cavity32. Several learning algorithms were also used to examine machine learning methods, such as ANNs, ant 
colony optimization (ACO) algorithms, particle swarm optimization (PSO), and genetic algorithm (GA). Apart 
from changing learning methods, membership functions, and model parameters, they examined the number of 
input parameters, number of epoch numbers (numerical iteration), and percentage of training datasets. Their 
analysis showed that tuning model parameters, and sensitivity study around the number of input, percentage of 
training datasets, and membership specification should be considered in new datasets and physical processes26,31.

In predicting thermal properties in the domain, iterative physical time, computing direction nodes, and 
velocity distribution in the cavity are considered in the training campaign. This combination of CFD calculated 
values and CFD input parameters can generate a new way to predict the domain’s temperature. In this regard, the 
connection and the complexity of input and output parameters are considered in the training framework. This 
consideration enables researchers to probe into the process and find effective parameters in the process. Apart 
from different input patterns during training processes, in this research, the product of two sigmoidal member-
ship functions (psigmf) function’s impact is considered in translating the training process on the fuzzy interface 
system for the final decision and prediction framework. Thus, the focus of the current work is to utilize ANFIS 
for predicting innovative matters based on saving exertion and calculation time in numerical investigations. In 
the above-mentioned literature, it is obviously shown that few studies exist on analyzing the natural convection 
through soft computing codes. This study evaluated CFD’s output data using the ANFIS method as one of the 
artificial intelligence methods. The CFD outputs were simulated by a cavity containing nanofluid with copper 
nanoparticles. By changing parameters such as the model’s inputs involved in ANFIS method and changing the 
number of membership functions (MFs), we investigated different conditions for intelligence. With the obtained 
intelligence, we predicted the nanofluid temperature for different physical time iterations. We predicted that 
the nanofluid temperature distribution for physical time iteration that was not included in the learning process 
and was based entirely on the ANFIS prediction capability. The impact of the number of MF and the number of 
inputs on the model’s accuracy is also considered.

Mathematical modeling
For the modeling, a square cavity was simulated considering the boundary conditions. Constant-temperature 
boundary is assumed as the boundary condition for the right and left sides of geometry. Their values without 
dimensions are equivalent to 1. The right wall consists of less temperature compared to the left side. Adiabatic 
circumstances are maintained in the top and bottom boundaries for the simulations. NF used here comprises 
copper (Cu) in H2O, and CIP is employed for optimizing the numerical diffusion in this work23.

For the modeling, energy and vorticity equations were determined in terms of the dimensionless analysis33, 
where the thermal diffusivity term is expressed as:

The detailed description of the model can be found elsewhere23,33–35.

(1)αnf =
knf

(ρcp)nf



3

Vol.:(0123456789)

Scientific Reports |        (2020) 10:22337  | https://doi.org/10.1038/s41598-020-79293-z

www.nature.com/scientificreports/

ANFIS model
ANFIS is classified as a fuzzy inference system that is able to predict the performance of highly complex 
processes36. In ANFIS, Takagi and Sugeno model is mainly employed which is based on if–then rules23,26,37. The 
structure of the utilized ANFIS technique is represented in Fig. 1 to predict the thermal properties in the cavity 
domain. In this study, (x and y coordinates (x and y computing nodes), nanofluid velocity in the y-direction, and 
iteration time) are considered to achieve the nanofluid temperature as output. In the first layer of the network’s 
topology, the inputs split into different numbers of MFs. In this method, ith rule’s function is expressed as38:

where si represents the outcoming signal of the node of the second layer and A, B, C and D stand for the sig-
nals incoming from the running MFs on inputs, x-coordinate (x), y-coordinate (y) and nanofluid velocity in 
y-coordinate (v) and time (time), to the node of the second layer. Detailed explanation of this method has been 
reported by Takagi and Sugeno37.

Results and discussion
In this study, a square shape was simulated with the CFD method, first. In the domain of cavity, the nanofluid 
was considered for the acceleration of heat transfer. Temperature distribution in the cavity was based on x and 
y computing nodes, velocity distribution (velocity of the fluid in the y-direction), and CFD iteration time was 
defined as a training dataset for the machine learning method. The whole process of prediction was based on 
four inputs (velocity distribution, x, y computing nodes, and CFD iteration time) and temperature in the cavity 
as the output parameter.

To start clustering data, grid partition clustering was used, and membership function (MF) type was also 
considered as psigmf in the model. For another ANFIS setting, the P-value representing % of the training process’s 
data was considered 70, and the maximum epoch was considered 500.

Given the assumptions and by incorporating the first and second inputs, which are coordinates in the x and 
y directions, the learning process for the number of MFs equal to 2, 3, 4 was performed. Regarding the training 
process, as can be seen in Fig. 2a with the increasing number of MFs from 2 to 3 and 4, training error inclines 
more towards zero, and the area under the curve (blue part) decreases. Also, in Fig. 2b which shows the MFs 
error for the testing process considering different MFs, a decrease in the error value can be seen.

To achieve higher prediction capability and model’s accuracy, another ANFIS parameter was changed and 
fluid speed along y-direction was postulated as third input, and the learning process was repeated again. The 
results show that number of MFs rose from 2 to 3 with a noticeable change in the system intelligence, but the 
change in the number of MFs from 3 to 4 in accordance with Fig. 3a,b did not have much effect on ANFIS 
intelligence. Therefore, iteration was designed in the model as the input 4, and learning process was repeated.

Figure 4a,b show that the error range compared with a similar situation in terms of using three inputs had a 
decent decline and increased the number of MFs from 2 to 3.

By comparing ANFIS output, which is the CFD output of nanofluid temperature, the ANFIS target (nanofluid 
temperature) is observed that is predicted by ANFIS. It is observed that we have reached to 99.9% in testing 
processes with three membership functions. In this analysis, the impact of two different numbers of MFs in each 
input was examined on the model’s ability. The outcomes showed that three membership functions enhance 
the accuracy of the model, while by the increasing number of functions to four, there is a divergence in model 

(2)si = A(x)B
(

y
)

C(v)D(time)

Figure 1.   ANFIS structure with four inputs and psigmf as MF. 
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Figure 2.   (a) Training mean errors with two inputs and psigmf. (b) Testing mean errors with two inputs and 
psigmf.
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Figure 3.   (a) Training mean errors with three inputs and psigmf. (b) Testing mean errors with three inputs and 
psigmf.
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behavior. Therefore, these results showed that the increment of the functions could not guarantee a high level of 
accuracy or prediction capability (Fig. 5).

To achieve a high amount of intelligence according to Fig. 6, four inputs with the number of MFs equal to 
3, the type of MFs was psigmf and the number of rules created by ANFIS was 81 rules. In Fig. 7, four inputs 
and 3 MFs are psigmfs. The ANFIS intelligence can predict different points of the cavity. As shown in Fig. 8, the 

Figure 4.   (a) Training mean errors with four inputs and psigmf. (b) Testing mean errors with four inputs and 
psigmf.
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matching between CFD output points and ANFIS predictions is quite evident, confirming the validity of the 
designed ANFIS structure. As shown in Fig. 8, there was an excellent agreement between CFD and ANFIS results 
for different input parameters.

To better understand the model implementation (selection of model parameters and inputs) and the ability 
of model prediction in terms of evaluation algorithm, the flow chart of model implementation is fully illustrated 
in Fig. 9. In selecting input parameters, x, y computing points (nodes), velocity distribution, and CFD iteration 
time are considered as input parameters, while the output of the model is thermal distribution. In the next step, 
the grid partition clustering along with psigmfs is defined in the model. Additionally, the number of epoch or 
numerical iteration, percentage of training data, and the numbers of data are considered in the third level of 
defining the model parameters. Then, the initial FIS structure is generated based on the definition of grid parti-
tion clustering and psigmf. In the next step, the training of the FIS structure with the ANFIS method is started. 
However, to assess the model’s accuracy, the model’s error is considered in the algorithm. If the high value of 
error is recorded in the algorithm, the number of inputs and membership functions are changed. After passing 
error assessment and finding the final and proper membership function to predict the temperature in the cavity, 
the ANFIS method predicts thermal distribution for different time (60, 70, 90, and 100 s). These results are also 
compared with CFD results. However, they participated in the training processes at the beginning. To fully evalu-
ate the model, the ANFIS method is called a model for 80 s iteration time. In this regard, the machine learning 
algorithm can predict the results that the ANFIS method did not train in the previous steps. Figure 10 shows the 
distribution of temperature as a function of x and y computing nodes. The results show that the ANFIS method 
could correctly track the domain’s temperature, and the results are in good agreement with CFD results. In the 

Figure 5.   Training and testing with four inputs and psigmf.

Figure 6.   FIS structure with four inputs and psigmf.
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beginning, this examination is for training time, and all datasets participated in the training method. However, 
to test the prediction capability, the ANFIS method also predicts the non-train time, a well. The results showed 
that there is also a great agreement between CFD and the ANFIS method in terms of thermal distribution in the 
domain, particularly at the right-hand side of the cavity domain. For a better prediction of the thermal and flow 
characteristics in the cavity domain at the left-hand side, more datasets are required at the boundary conditions.

Figure 7.   Degree of membership with four inputs and psigmf.

Figure 8.   ANFIS validation with various inputs and psigmf.
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For a better comparison between the CFD and the ANFIS method results, the results of two different methods 
are also plotted against each other (Fig. 11). The figure shows that the method of ANFIS can show the thermal 
distribution from the right-hand to the left-hand side. These results are in good agreement with CFD results. 
However, very close to the left solid walls, there is a marginal difference between the two different methods. In 
this regard, the ANFIS method at the left solid walls shows a lower temperature than the CFD method.

Conclusion
In this study, the two-dimensional cavity containing nanofluid was simulated with the CFD. Then, fluid char-
acteristics such as temperature and velocity distributions as a function of x and y computing nodes and CFD 
iterations, were considered as a training dataset in the machine learning framework, ANFIS method. However, 
the temperature distribution in the domain is considered as the output of the model. Two different processes 
were considered for the assessment of the machine learning method, such as training and testing framework. 
This method contained a high level of accuracy and prediction capability in the training and testing with R > 0.9. 
The results showed that the machine learning approach could accurately predict the process with high prediction 
ability. In this regard, the machine learning method can accurately track the temperature distribution in the cavity 
domain with similar behavior as the CFD calculation. However, there were some differences near CFD boundary 
conditions. To improve this minor numerical discrepancy, more CFD data set is required for the training process 
of the machine learning method, or dataset filtration is necessary near the boundary conditions. The ANFIS 

Figure 9.   Flowchart for the selection of model parameters and prediction steps.
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Figure 10.   Prediction of nanofluid temperature at different times.
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results also show that increment of the number of membership functions cannot guarantee the improvement 
of the model in terms of model’s accuracy and prediction capability. This method is also a capable tool to track 
temperature distribution for different physical times in the cavity domain without any information or training 
background.

For further studies, machine learning methods can be a great option to train the flow characteristics in the 
cavity as a function of physical time with different learning methods (GA, ACO, and PSO) to understand better 
the process and development of more reliable prediction tools in engineering processes. Prediction of the dif-
ferent regimes of heat and mass transfer in the cavity can be defined as the main limitation of the current study 
and a combination of numerical and machine learning methods. The machine learning method cannot estimate 
the change of flow property due to geometry differences or different operating conditions that explain differ-
ent physics (not in the training process). Additionally, learning big data requires parallel computing and high 
specification cloud computing. To improve the model for faster learning and prediction, dimension of datasets 
should be normalized based on significant process parameters. This combination can be used for an unpredicted 
environment in the engineering process, and it can be defined as a game-changer in the modeling area.

Figure 10.   (continued)
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