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Abstract

The resting human brain exhibits spontaneous patterns of activity that reflect features of the underlying neural
substrate. Examination of interareal coupling of resting-state oscillatory activity has revealed that the brain’s
resting activity is composed of functional networks, whose topographies differ depending on oscillatory fre-
quency, suggesting a role for carrier frequency as a means of creating multiplexed, or functionally segregated,
communication channels between brain areas. Using canonical correlation analysis (CCA), we examined spec-
trally resolved resting-state connectivity patterns derived from magnetoencephalography (MEG) recordings to
determine the relationship between connectivity intrinsic to different frequency channels and a battery of over
a hundred behavioral and demographic indicators, in a group of 89 young healthy participants. We demon-
strate that each of the classical frequency bands in the range 1–40 Hz (d , u , a, b , and g ) delineates a subnet-
work that is behaviorally relevant, spatially distinct, and whose expression is either negatively or positively
predictive of individual traits, with the strongest link in the a-band being negative and networks oscillating at
different frequencies, such as u , b , and g carrying positive function.

Key words: canonical correlation analysis; connectome; networks; oscillations; resting state; variability

Significance Statement

Even at rest, the human brain displays spontaneous coordinated rhythmic patterns of activity. Partitioning
these according to their temporal properties reveals networks of distributed brain areas synchronized at dif-
ferent frequencies. The properties of these networks differ across individuals and are predictive of the
brain’s response to tasks, pointing to a functional substrate underlying variability of task-related responses.
The functional roles of these resting-state networks (RSNs) are yet to be fully elucidated. Here, in the ab-
sence of any task, we exploit the spectral richness of non-invasive magneto-encephalographic recordings
to establish that individual differences in the expression of five spatio-spectrally distinct RSNs predict a di-
verse array of individual behavioral measures, from tobacco consumption to cognitive performance (CP).

Introduction
Even in the absence of any task, the brain expresses

patterns of functional connectivity (FC). Such resting-
state activity is thought to be determined by intrinsic fea-
tures of the underlying neural architecture (Fox and
Raichle, 2007). Thus, spontaneous activity of the brain

provides an insight into endogenous features, which are
increasingly understood to be substantial contributors to
individual differences in behavior. A number of recent
studies have highlighted the extent to which resting-state
connectivity metrics reveal individual “wiring patterns” of
the brain that are significantly predictive of behavioral,
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and even demographic features. Notably, resting-state
fMRI (rs-fMRI) connectivity patterns have been shown to
be predictive of task-related activation patterns (Tavor et
al., 2016) and even to constitute uniquely identifying fin-
gerprints that can distinguish between individuals (Finn et
al., 2015). Such findings suggest that resting-state activity
patterns reflect a neurobiological framework that deter-
mines a large degree of individual differences in brain re-
sponses to tasks, and of individual differences in
behavior. In a sense, they may be considered the brain’s
“priors” (Kersten et al., 2004) for determining how it re-
sponds to input.
A recent effort to relate whole-brain rs-fMRI connectivity

to individual differences in behavior employed canonical
correlation analysis (CCA) to establish how interindividual
differences in connectivity relate to differences in a broad
battery of behavioral and cognitive variables (Smith et al.,
2015), using a sample of 461 participants from the Human
Connectome Project (Van Essen et al., 2013). CCA was
used to find the maximal correlations between combina-
tions of variables in the connectivity and subject measures,
revealing a canonical mode of covariation that is highly
positively correlated with positive cognitive traits as well as
desirable lifestyle indicators. This is a fascinating finding
that highlights the extent to which large-scale neural con-
nectivity of the human brain, even at rest, is functionally rel-
evant. However, this discovery invites further and deeper
inquiry: fMRI is rightly prized for its high spatial resolution,
but its temporal resolution is inherently limited by the slug-
gishness of the hemodynamic response that it records.
Consequently, fMRI cannot be used to discriminate be-
tween neural processes that occur at timescales in the
subsecond range. These are, however, of profound rele-
vance to further elucidating the nature of resting-state
brain activity and its relationship to behavior.
A well-known characteristic feature of the human

brain’s electrical activity at rest is the presence of oscilla-
tory signals (Berger, 1929; Adrian and Matthews, 1934;
Pfurtscheller, 1981). Oscillations are the product of repeti-
tive or cyclical patterns of brain activity, which are ob-
served to occur at different frequencies. Oscillations exist
not only at multiple temporal scales, but also spatially
they range from single neuron membrane potential oscil-
lations, to local field potentials and large-scale magneto-
electric brain signals. Temporally, different oscillatory

frequencies are thought to represent different channels in
which neural activity is communicated, and might there-
fore fulfil different functional roles (Bastos et al., 2015).
Even at a relatively coarse level of spatial resolution, an
extensive literature of M/EEG or electrophysiological
studies has established how neuronal processes occur-
ring in different frequency ranges have different functional
associations, from the relatively slow sleep rhythms (e.g.,
d 1- to 3-Hz waves in NREM sleep; de Andres et al., 2011)
to memory processes in the hippocampus (Buzsaki,
2002; Cantero et al., 2003; mostly in the 4- to 7-Hz u
range), to processes related to sensation (covering the a
and b range of 8–30Hz; Berger, 1929; Pfurtscheller,
1981) or executive functions such as working memory
(Klimesch et al., 1997; Sauseng et al., 2002; Hanslmayr et
al., 2016), up to rhythms in higher frequencies such as g
(30Hz and above), involved in feature binding during vis-
ual and other task processing (Engel et al., 1991; Fries,
2015).
Oscillations can be characterized in terms of frequency,

amplitude and phase. Much of the research into the func-
tional relevance of human neural oscillations has focused
on linking properties of ongoing rhythms such as phase
(Callaway and Yeager, 1960; Dustman and Beck, 1965;
Busch et al., 2009; Mathewson et al., 2009; Varela et al.,
2020) or amplitude (Jasiukaitis and Hakerem, 1988; Rahn
and Basar, 1993; Makeig et al., 2002; Nikulin et al., 2007;
Becker et al., 2008; Mazaheri and Jensen, 2008;
Reinacher et al., 2009), to behavioral and perceptual per-
formance in a variety of experimental task conditions, do-
mains and sensory systems or to modulated task
responses. When also combined with multimodal imaging
this amplitude or phase-informed approach has also
shown that rhythms index different states of neuronal ex-
citability (Goldman et al., 2002; Laufs et al., 2003a,b;
Moosmann et al., 2003; Becker et al., 2011; Haegens et
al., 2011; Scheeringa et al., 2011).
However, while there is consensus that large-scale

rhythms such as a or b rhythms and their functional rele-
vance (as mentioned above) are emergent properties of
an interconnected network of neuronal ensembles
(Speckmann and Elger, 2005), a proper network-centric
view of these large-scale oscillations is a relatively new
approach in M/EEG research, and often M/EEG studies
examining functional relevance of rhythms have con-
ducted analyses that elucidate relationships at the sensor
or source level (for a non-exhaustive list of examples see
Klimesch, 1999; Altenmueller et al., 2005).
Adopting a network-based view in the context of M/

EEG imaging is particularly attractive given the high tem-
poral resolution of the method, opening up new possibil-
ities in terms of exploiting the rich spectro-temporal
information that can be derived from M/EEG recordings.
This adds an entire new dimension to the analysis of func-
tional networks, namely the frequency these networks are
operating at, which, in the mammalian brain can span
ranges from ultraslow (,0.1Hz) to ultrafast (.100Hz) fre-
quency regimes (Buzsáki et al., 2013). By examining the
whole-brain networks defined by synchronous resting
state in delineated frequency ranges, we can shed light
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simultaneously on not only the relationships between os-
cillatory frequency and behavior but also how different os-
cillatory networks are spatially organized (Sadaghiani and
Wirsich, 2020).
Generally, synchronized patterns of modulation of acti-

vation at separate loci are believed to reflect coupled acti-
vation (Speckmann and Elger, 2005) and consequently to
reveal connected areas, ultimately constituting functional
networks. This would (technically) allow in M/EEG to look
at these functional networks in different frequency re-
gimes. However, what is not known is how meaningful
these spectrally resolved networks are. Initial evidence for
the multispectral nature of M/EEG connectivity is pro-
vided by findings from resting-state activity that highlight
the existence of spectrally resolved large-scale brain con-
nectivity networks (Brookes et al., 2011a,b; Hillebrand et
al., 2012; Hipp et al., 2012; Sadaghiani and Wirsich,
2020). Recent efforts have identified large-scale (i.e.,
whole-brain) electrophysiological networks with topo-
graphical and spatial structures comparable to the resting-
state networks (RSNs) established by fMRI studies. For ex-
ample, motor or visual RSNs, analogous to those previ-
ously described in fMRI (Biswal et al., 1995; Damoiseaux et
al., 2006) have been reported in magnetoencephalography
(MEG; Brookes et al., 2011a,b; Hillebrand et al., 2012).
Interestingly, these networks, while spatially similar to
fMRI-derived RSNs, had distinct spectral properties. That
is, they exist as coherent activity in different frequency re-
gimes: the motor network being most pronounced in the b
range (14–30Hz), whereas networks incorporating visual
areas were most visible in the a range 8–12Hz. The find-
ing of different topographies in spectrally distinguished
networks hints at the potentially different function these
spontaneous networks might serve, but beyond the
more intuitively interpretable sensory-related and motor-
related networks mentioned above, the roles and partic-
ular functional relevance of the spatial networks that
emerge at different frequencies, remains elusive (see, for
example, discussion in Sadaghiani and Wirsich, 2020).
At this point, it is worth highlighting that all neural com-
munication is constrained by the underlying anatomic
connectivity, and that any network of information trans-
fer that is discovered is necessarily a reflection of intrin-
sic brain architecture (“Structure defines function,”
Buzsaki, 2006). Consequently, any relationship eluci-
dated between FC patterns and behavior depends on
neuroanatomy, but they are not fully determined by it
(Uddin, 2013). One indicator of this view is the existence
of connectivity in different frequency ranges which, if
anything but noise, is suggestive of the possibility that
the anatomically constrained connections can be ex-
ploited to multiple ends.
The precise role of network communication at different

frequencies is the subject of ongoing and increasing inter-
est. One overarching notion is that of “multiplexing,”
namely, that different oscillatory frequencies comprise
different communication channels allowing the same ana-
tomic connections to be used for different functional roles
(Akam and Kullmann, 2014). An influential theory with a
very broad scope, communication through coherence

(CTC), proposes that the observed spectrally-resolved
networks, i.e., networks that share a common rhythm on a
carrier frequency, reflect activity of cell assemblies that
are in communication with each other, e.g., when binding
different sensory modalities together (Fries, 2015).
Coherence in the faster g-band (40Hz and above) in par-
ticular, is well examined and seems to confirm the pro-
posals of CTC theory. CTC also affords the existence of
similar mechanisms in other frequency bands, although
these are less well explored and less is known about their
likely functional role or roles.
Another recent focus of enquiry underscoring the impor-

tance of neural activity in different frequency bands, has
been how different frequencies reflect the activity of neurons
having different roles in the directionality of neuronal com-
munication. For example, it is known that bottom-up proc-
esses are preferentially mediated by higher-frequency (e.g.,
g ) activity, while top-down processes have principally been
associated with rhythms in lower frequencies (Bastos et al.,
2012). In sum, there is compelling evidence indicating that
spectrally confined, oscillatory activity may serve different
purposes in network communication, be it in directing infor-
mation flow or in circumscribing the neural assemblies that
preferentially operate as coherent ensembles.
Despite these advances, a holistic analysis of the func-

tional role of oscillatory networks, taking into account the
full spectral richness of the underlying constituents of
human spontaneous brain activity, and its relationship to
an extensive range of behavioral factors has, so far, been
beyond our reach. Here, we seek to expand on and com-
plement the existing rs-fMRI findings by exploring the re-
lationships between the same set of Subject measures
and spectrally-resolved connectomes derived from rs-
MEG, also made available as part of the HCP dataset
(Larson-Prior et al., 2013).
Specifically, we address the following questions. First,

can we identify and characterize a global mode linking
brain connectivity and behavior using spectrally resolved
MEG? Second, is this mode comparable to that revealed
for rs-fMRI? And thirdly, what, if any, additional informa-
tion can we glean from the spectral richness afforded by
the high temporal resolution of MEG? By exploring these
questions, we will shed light on the spatial structure and
functional contributions of the spectral components of
resting-state connectivity and how they relate to a broad
spectrum of behavioral indicators.

Materials and Methods
Subjects and data
rs-MEG data from the Human Connectome Project were

used for this study. A total of 89 subjects had complete rest-
ing-state recordings (i.e., three recording sessions of ;6
min). Mean age: 296 4years, sex distribution: 41 female/48
male. Subjects were recorded in supine position and in-
structed to remain relaxed, with eyes open.

Subject and behavioral measures
Following along the lines of a previous study showing

CCA-derived brain-behavior mode with fMRI (Smith et al.,
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2015), we extracted a large number of subject measures
from the HCP dataset. We excluded gender related sub-
ject measures and structural measures, but kept all other
measures [cognitive, emotional, sensory performance
tests, psychiatric and personality tests, family history of
mental or other disorders, consumption of alcohol, tobac-
co or other drugs, in-scanner (fMRI) task performance].
From those, we excluded variables that did not fulfil the
following criteria: (1),80% of values in a subject measure
should have same discrete values; (2) at least 49 out of 89
subjects should have non-missing values for a given sub-
ject measure (compared to previous studies; Smith et al.,
2015, we chose this conservative number since our data-
set is considerably smaller); and (3) the maximum value of
any given value across subject measures should not ex-
ceed 100 times the mean of the group.
These exclusion criteria resulted in 131 behavioral vari-

ables that were used for further analysis.
We also deconfounded, i.e., regressed out, effects of

age, handedness, gender, height, blood pressure (systolic
and diastolic) and brain volume for all subjects to remove
connectivity related effects mediated by these that might
distort and confound connectivity measures (independent
of the imaging modality, i.e., MEG or fMRI, since both
were used in the control analyses). Finally, all variables
were further subjected to rank-based inverse normal
transformation to ensure Gaussianity of distributions and
demeaned. The general approach followed preprocessing
of behavioral variables as previously conducted for an
fMRI-derived brain-behavior mode (Smith et al., 2015).

MEG preprocessing and parcellation, source leakage
correction
For MEG acquisition, MEG data were recorded by a

whole-head MAGNES 3600 (4D NeuroImaging). Data
were acquired in three runs of resting-state recordings,
lasting 6min each. The MEG recorded from 248 magne-
tometer sensors, with 23 reference channels. Sampling
rate was at 508.63Hz, and data were down-sampled for
further processing to 200Hz. The standard preprocessing
pipeline as offered by the HCP (“tmegpreproc”) was used
which applied independent component analysis to re-
move potential artefacts from ocular, muscular or cardiac
sources. For source reconstruction, single shell volume
models were used, based on the individual anatomic MRI
T1 images provided by the HCP consortium. Linearly con-
strained minimum variance (LCMV) beamforming was em-
ployed onto a regular 3D grid in normalized MNI source
space with a resolution of 8 mm3 using normalized lead
fields and data covariance estimated in the 1- to 48-Hz
broadband frequency range. Source activity was normal-
ized by the power of the projected sensor noise. Using
principal component analysis (PCA), the first principal
component at each 3D source voxel location was ex-
tracted resulting in 5798 (1D) source-voxels. These were
parcellated into 100 source parcels using a semi-data
driven parcellation approach. Parcels were derived on the
basis of a 246-region anatomic brain atlas (Jiang, 2013)
that covers the two hemispheres (including subcortical
structures). However, at this resolution, parcels are

sometimes too closely related, resulting in rank deficien-
cies in the covariance matrix which in turn makes the fol-
lowing source leakage correction infeasible. Reducing
them to 100 parcels averts this problem and offers a good
compromise between spatial resolution and robustness
for subsequent analysis. In order to obtain an optimal
(maximally independent) reduced set of parcels from the
original atlas73, we performed a k-means clustering of
group (and session) average correlation matrices of the
raw time series (parcellated into the initial 246 parcels per
subject and session). This clustering identified parcels
that were most correlated the most (in absolute terms)
and these were subsequently merged, resulting in a final,
set of 100 parcels with minimum correlation to each other.
Parcellation at higher dimensionality, e.g., with N= 200,
led to failure of the multivariate source leakage correc-
tion, which requires full rank covariance matrices. This
apparent rank deficiency suggested that 200 parcels
represents an overparameterization of the data, i.e., they
data contain there are fewer than 200 independent di-
mensions. A visualization is provided in Extended Data
Figure 1–1 (for a labeled list of parcels, see Extended
Data Fig. 1-2).
This parcellation is different to that used to analyse the

relationships between fMRI connectivity maps and be-
haviour (Smith et al., 2015) and also offered as part of the
HCP1200 release. We chose to use the above data-driven
customized parcellation based on the rationale that the
fMRI-derived parcellation is a spatial ICA capitalizing on
the high spatial resolution available in fMRI data, which
sometimes results in spatially fine-grained components.
This level of spatial resolution is not always a given in
MEG data (as attested by the rank deficiency of the 200
parcel model described above). For control analyses that
employed fMRI-derived measures of functional connec-
tivity we employed the previously published approach
(Smith et al., 2015), but chose the lower resolution of
N=100, corresponding to the dimensionality chosen for
MEG analysis.
To obtain parcel-time series, the first principal compo-

nent over all voxels belonging to any given parcel was ex-
tracted. After extraction, resulting parcel time-series
underwent reduction of source leakage by using a multi-
variate leakage reduction approach (Colclough et al.,
2015), effectively orthogonalising all parcel time-series
and removing zero-lag correlations.
All analyses were conducted on a Linux server with a

16-core Intel(R) Xeon(R) Gold 6130 CPU at 2.10GHz and
with 96GB of RAM, running Ubuntu 18.04. Analysis
scripts were run using Matlab R2018b.

Analysis of functional connectivity
After source-leakage correction, we estimated function-

al connectivity (FC), separately for each individual and
session. Functional connectivity was estimated using the
Oxford software library (OSL) toolbox (https://github.com/
OHBA-analysis/osl-core). We first computed envelopes in
20 contiguous frequency bins, with a frequency range of
0.5 to 40 Hz, and a resolution of 2 Hz, using the resulting
envelopes in each bin after Hilbert transformation of the
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narrow-band filtered time-series. Within each bin, full line-
ar Pearson correlation was computed between all possible
pairings of parcel-based envelope time-series, resulting in
a 100 x 100 connectivity matrix for each resting state run,
frequency bin and subject. After FC estimation, all three
runs were then averaged to increase stability of FC estima-
tions. After averaging, connectivity measures, i.e. the cor-
relation coefficients were first Fisher z-transformed.
We observed that functional connectivity in spectrally

resolved MEG data is not always independent of spectral
power or frequency, but that higher spectral power is
linked to higher group-average envelope correlations, with
connectivity being stronger (on average) in lower frequency
bands (which tend to have higher power due to the well-
known 1/f behaviour of human brain power spectra). In order
to avoid that our findings were not simply confounded by
these effects, we removed this systematic variation by pair-
wise regressing out of spectral power from connectivity
measures (i.e. envelope correlation coefficients) from all pos-
sible pairings (i.e. edges). This resulted in subject-specific
connectivity estimates without power-induced low-frequency
bias. After this, we removed the other previously defined con-
founds (seeMethods, “Subjects and Behavioural measures”).
Subsequently, the resulting connectivity matrices were renor-
malized to ensure zeromean and unit variance.
For further analyses we chose to further reduce the

number of frequency bins to 5 bands, so we averaged
the initial spectrally resolved connectivity data to ap-
proximately follow conventional frequency band ar-
rangement: delta-band [0.5 - 3 Hz], theta-band [3-7 Hz],
alpha-band [7-13 Hz], beta-band [13-25 Hz] and lower
gamma-band [25-40 Hz]. Before further analysis, we
extracted the upper triangle from each symmetric con-
nectivity matrix, concatenated the resulting matrices
(5x4950x89) frequency bands (yielding a 24750 x 89
matrix FC1).

Dimension reduction and analysis of brain-behaviour
mode by means of canonical correlation analysis
(CCA)
Behavioural as well as connectivity data were subjected

to principal component analysis (PCA). PCA is a popular
choice for dimension reduction and pre-whitening of input
into linear regression models in general, but also a popu-
lar choice of dimension reduction in the specific context
of a subsequent canonical correlation analysis (Correa et
al., 2008, 2010a,b; Smith et al., 2015; Tsatsishvili et al.,
2015; Yang et al., 2019). For connectivity, PCA is per-
formed on the concatenated connectivity data sets (i.e.
on the 24750 x 89 concatenated connectivity matrix
(FC1), see Extended data Figure 1-3 for visualised ap-
proach), for behaviour it is performed on the 131 x 89 be-
havioural data set. Aiming for a ratio of 1 to 4 regarding
variables vs observations, for both data sets, we retained
22 components per subject (22 PCs or latent variables, vs
89 subjects or observations, thus reducing the chance of
overfitting (see also Methods “Validation” section for
more details) in downstream analyses. This ratio, while
being rather conservative, still ensured sufficient detail re-
tained in the reduced model, meaning that after reduction

to 22 components, 74.1% and 64.5% of the total variance
was still explained for the behavioural data and the con-
nectivity data, respectively. This resulted in a 22 x 89
PCA-reduced connectivity matrix, FC2 and a 22 x 89
PCA-reduced behavioural matrix (B2).
After PCA-derived dimension reduction we applied ca-

nonical correlation analysis (CCA) to the PCA-reduced
data. CCA is a method that identifies the linear combina-
tion in each of two sets of features that transforms them
to produce a maximal match of the two sets. The linear
combinations that maximize correlation between the two
sets of features or matrices are typically referred to as
“modes”. We employ CCA here to examine whether there
is such a match, or mode, of brain-behaviour population
covariation for MEG functional connectivity and behaviou-
ral data. In contrast to fMRI approaches, MEG contains
the additional dimension of frequency, here characterised
in five frequency bands. CCA is then performed on these
two identically-sized matrices (FC2 and B2), finding the
linear combination of weights (or mode) that transforms
each of the two matrices into new matrices (FC3 and B3)
where each row is maximally similar to each other. Each
row in FC3 and B3 corresponds to a newly formed canon-
ical variate that is orthogonal to all other canonical vari-
ates within FC3 and B3, representing the linear weighting
of connectivity (FC2) and behavioural features (B2) to best
align brain and behavioural covariation across subjects.
Each row with their corresponding canonical variates cor-
responds to a “mode”, with decreasing degree of correla-
tion. Consequently, CCA result in a maximum of 22
canonical modes with 2x22 canonical variates that are
also orthogonal within FC3 and B3. Each mode’s statisti-
cal significance, that is, the significance of the correlation
between rows in FC3 and B3 is then established by per-
mutation testing (with n = 10000), which corrects for multi-
ple comparisons. For permutation testing, subject labels
were swapped while respecting family structure in the
data. For running CCA and permutation testing we used
an adapted version of the scripts made available in a pre-
vious CCA study (Smith et al., 2015).

Visualisation of post-CCA results
For characterization of the observed CCA mode(s) with

respect to the underlying behavioural variables and con-
nectivity, the resulting behavioural CCA weights (i.e. one
per subject, n=89 in total) were correlated with the full, de-
confounded behavioural variables (i.e. 131 x 89), and the
mode-derived connectivity weights (n=89), in turn, were
correlated with the full, deconfounded individual FC net-
works (i.e. the original 5 x 4950 x 89 connectivity matrix),
yielding interpretable results, i.e. the composition of
modes in terms of the correlated behavioral variables as
well as the edges, of which their connectivity strength, on
a subject-by-subject level, correlated with the mode, fur-
ther termed “mode-by-connectivity correlations (MCC)”, or
“MCC edges”, corresponding to the concept of “edge mod-
ulations” used previously (Smith et al., 2015). For visualiza-
tion of connectivity and these resulting MCC edges, we
used the freely available Circos software suite (Krzywinski et
al., 2009) (http://circos.ca/software/download/circos/). We
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also derivedMCC nodes from the data to reflect the average
functional relevance i.e. the average MCC value, of the cor-
responding node. This essentially collapses one dimension
of the 100x100 MCC edge matrices by averaging over edge
connections. For visualizing the results, the parcellation
functionality of OSL was used.

Validation of CCA results
CCA is highly efficient in maximizing correlation be-

tween data sets, finding the features (or a linear combina-
tion thereof) that are maximally aligned. However, this
naturally leads to concerns of overfitting. While it already
has been shown that similar approaches have yielded ro-
bust and stable results for larger data sets (with a similar
parametrization of CCA input regarding the ratio of fea-
tures to sample size), the current dataset is smaller. Thus,
while we are confident that our choices, e.g. a low number
of retained components, a relatively modest number of
parcels etc. are conservative and ensure robustness, we
performed several additional control analyses to rule out
overfitting and to add confidence in the stability of the pre-
sented results. The following analyses were performed:

1. In a first cross-validation test, we split each subject’s
MEG resting state data set into two parts: One part
consisted of the first two resting state sessions, the
other part consisted of the last session. CCA was ap-
plied to the first, acting as a training set - identifying the
best matching mode in the first two sessions - whereas
the second data set (the remaining resting state ses-
sion) acted as test set - by applying the identified
weights from the training set on the test set, effectively
predicting subject and connectome weights for the test
set. These predicted subject measure and connectome
variates for the test subjects were then correlated with
each other to obtain an estimate of how well the
weights identified by the CCA on the training set still
work in the test set. Mean correlation in the first mode,
i.e. between the first canonical variate of subject meas-
ures and the corresponding first canonical variate of
connectome data in the training set (FC3(1)train vs B3(1)
train) was 0.9X, while the brain-behaviour correlation co-
efficient in the test set (FC3(1)test vs B3(1)test) was at
0.79. As a reference, the mean correlation of the per-
mutation null distribution in the test data set was 0.02,
with a standard deviation of 0.11. At the observed cor-
relation of r=0.79, significance of the observed correla-
tion was at max p = 1x10�4 (the threshold for r at a 5%
alpha-level (corrected) being r = 0.21).

2. For a second, complementary cross-validation test, we
used a leave-one-subject-out approach to test whether
there is overfitting on a cross-subject level.
Accordingly, CCA was applied to a first training set of
all subjects apart from the left-out subject (n = 88) -
identifying the best matching mode in these subjects -
and applying these weights (that form the first canoni-
cal variates) on the left-out subject set effectively ob-
taining predicted subject and connectome canonical
variates for the left-out, test subject. Subsequently, this
approach was repeated for all 89 subjects, resulting

predicted subject measure and connectome scores for
all subjects. These predicted subject measure and con-
nectome scores for the test subjects were then corre-
lated and tested for significance. For this type of cross-
validation, correlation coefficient r in the first mode, i.e.
between the first canonical variate of subject measures
and the corresponding first canonical variate of con-
nectome data in the training set (FC3(1)train vs B3(1)train)
was at r = 0.67. Mean correlation coefficient r of the
permutation null distribution was ,0.01, with a stand-
ard deviation of 0.11. Significance of the correlation of
the first mode was at maximum of p = 0.001 (with a 5%
significance threshold of a correlation coefficient r
being 0.1930).

3. In this control analysis, we tested the stability of our
spectrally resolved approach with regard to the result-
ing band-specific MCC edges, i.e. the functionally rele-
vant networks identified in each of the five bands. To
do so, we now split the connectivity data, for each sub-
ject, into 5 sets, each containing only a single fre-
quency-band specific connectivity matrix and then ran
the described PCA-CCA pipeline separately on those.
We then compared the resulting separate MCC matri-
ces (MCCsep) with the corresponding band-specific
MCC matrices of the original, integral CCA analysis
(MCCorig), where all 5 bands entered CCA in their en-
tirety (we chose this correlation as a test criterion here,
since in this case neither canonical subject measure
variates nor functional connectivity variates (FC3, B3)
are directly comparable to the one integral main analy-
sis. The resulting correlation coefficients between
MCCsep and MCCorig were: in delta band 0.76, theta
band 0.48, alpha band 0.80, beta band 0.48, and in the
gamma band 0.32. For interpretation of these results it
needs to be said that a holistic, integral CCA of all five
band-specific connectomes is not expected to give
identical results in each band as the band-separate
analysis in the control condition, but it answers the
question whether the general relevance, for example
the quality of each identified band-specific network is
preserved (see the “CP positive and negative” section
in Discussion). All bands show, on average, the same
qualitative relevance – being predominantly either CP
positive or negative, as in the original analysis. For an
exemplary illustration of the alpha-band MCC edges in
analysis 2 and 3 see Extended data Figure 2-1.

For the remaining control analyses we will present the
validation and control analysis results in the following
order: CC1, CC2 and CC3; with CC1 being the correlation
coefficient between the first canonical variates, represent-
ing the first canonical mode in FC3orig and FC3control, and
CC2 being the correlation between first canonical variates
in B3orig and B3control, while CC3 is the resulting brain-be-
haviour correlation (FC3alternative vs B3alternative) in the first
canonical mode:

1. In this control analysis, we ran a CCA on the same 89
subjects, where we only used fMRI derived connectivity
measures, analogous to previous reported approaches.
Similar to our main result and previously reported fMRI
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results, we found one significant mode arraying sub-
jects on a positive-negative axis of behavioural varia-
bles. Resulting connectome (FC3MEG(1)) and subject
measure scores (B3MEG(1)) for the first canonical mode
of the MEG derived main analysis (5-bands), and the
fMRI derived canonical scores (FC3FMRI(1) and B3FMRI(1)

for the first mode correlated by CC1 = 0.26 and CC2 =
0.27, respectively. When comparing these fMRI derived
CCA results against the full 20-frequency-bin MEG-
CCA correlations were slightly higher: CC1 = 0.3 and
CC2 = 0.32, respectively. While these correlations
seem relatively low, qualitatively, the fMRI-derived CCA
approach identified a positive-negative axis within the
first canonical mode similarly to previously reported
and identified here by the main MEG CCA analysis, see
Extended data Figure 1-4 for the behavioural variables
associated with and their ranking within this mode. The
resulting first canonical mode yielded a correlation co-
efficient of CC3 = 0.92.

2. We compared the CCA outcome of our 5-band ap-
proach to the outcome using the initially estimated,
‘fully’ spectrally resolved 20-bin connectivity data (see
Methods above). Correlations of subject measure
scores and connectome scores (i.e. FCorig vs FC3control
and B3orig vs B3control) were at CC1 = 0.8 and CC2 =
0.85, respectively. The resulting mode gave a brain-be-
havior correlation coefficient of CC3 = 0.93.

3. In this control analysis we did not perform source leak-
age. Correlations between the original, full-source leak-
age corrected model and the non-corrected model
were: CC1 = 0.25 and CC2 = 0.27 for the first canonical
variates (FC3orig vs FC3control and B3orig vs B3control).
Resulting brain-behaviour correlation was CC3 = 0.89.

4. A model where we only used 50 parcels (fMRI-derived
parcellations from the HCP initiative, HCP1200 release
available from https://db.humanconnectome.org/data/
projects/HCP_1200) for parcellation of MEG data in-
stead of the 100 in our original analysis, correlation to
the original canonical variates were CC1 = 0.14 and
CC2 = 0.16 respectively (FC3orig vs FC3control, B3orig vs
B3control). Resulting brain-behaviour correlation was
CC3 = 0.90.

5. In another control analysis, we chose an approach
where connectivity was defined as broadband connec-
tivity (1-40Hz) only, so instead of several bands or bins
there was only one connectivity measure per parcel.
Correlations with the original canonical variates (FC3orig
vs FC3control and B3orig vs B3control) were CC1 = 0.36
and CC2 = 0.38. Resulting brain-behaviour correlation
was CC3 = 0.90. The correlation coefficient of each
identified first mode for control analyses 4-8 can be
found visualized in Extended data Figure 1-5A.

6. In a last control analysis, we tested whether MEG and
fMRI connectivity show some overlap in explaining var-
iance across the subject population, i.e. we tested the
link between these two independently acquired and
modality-specific connectomes. This test was per-
formed by using only connectivity data as input to the
CCA, i.e. one set of variables being the fMRI connectiv-
ity data while the other one was the MEG based

connectivity data (from the same subjects), asking for
the existence of a connectome-connectome mode of
population covariation. As result, we observed one sig-
nificant mode, tying together MEG and fMRI connectiv-
ity across subjects was identified (resulting brain-
behaviour correlation coefficient in first mode was r =
0.92). Apart from the demonstration of the existence of
such a link, we did not perform further analyses to look
into spatial or spectral components of this link or visual-
ize them, since it was beyond the scope of this study.

We also computed the explained variance of the first
and all following canonical variates, i.e. the first and signif-
icant CCAmode until the last computed mode with regard
to the set of behavioural variables. Results are shown in
Extended data Figure 1-6, demonstrating that the first ca-
nonical mode explains significantly more variance in be-
haviour than the permutation based null model where we
swapped subject label n=1000 times. For a comparison of
the explained variance in the control analyses 4-8, see
also Extended data Figure 1-5B.

Data availability
The sensor space MEG resting state data and the corre-

sponding subject measures are available online on
https://db.humanconnectome.org, however they are not
publicly accessible without registration. Due to privacy
concerns, access to these data needs registration and ap-
proval by the HCP consortium. All authors have been ap-
proved and have accepted the terms of use for the open
and restricted part of the HCP data.
The processed and derived data (functional connectiv-

ity, CCA results etc.) that support the findings of the study
can be made available upon reasonable request to the
corresponding author. Since derived from the HCP data,
the processed data are not publicly available due to them
containing information that could potentially comprise re-
search participant privacy and/or violate HCP terms of
use and thus will be only shared accordingly.

Code accessibility
The code used in this study comes from several publicly

available toolboxes and software. A previous implementa-
tion of CCA with respect to HCP functional connectivity
and subject measures has been used elsewhere (Smith et
al., 2015) and can be found on https://www.fmrib.ox.ac.
uk/datasets/HCP-CCA/. Circos software is available on
http://circos.ca/software/download/circos/. OSL soft-
ware is available on https://github.com/OHBA-analysis/
osl-core. Customized Matlab scripts for source recon-
struction, use of PCA/CCA, post-CCA visualizations using
OSL and Circos will be made available upon reasonable
request to the corresponding author.

Results
MEG-derived functional connectivity reveals a global
brain-behaviour mode along a positive-negative axis
of subject measures
We used canonical correlation analysis (CCA) to exam-

ine the relationship between spectrally resolved resting-
state MEG connectivity and a battery of 131 behavioural,
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demographic and personality variables in 89 healthy young
individuals. CCA is a method that identifies an optimal linear
combination of features (a mode) in two separate data sets
that maximizes correlation between them – in our case func-
tional, spectrally resolved MEG connectivity and subject
measures. MEG connectivity was examined in five conven-
tional frequency bands in the range 1-40Hz (delta [0.5 - 3
Hz], theta [3-7 Hz], alpha [7-13 Hz], beta [13-25 Hz] and
lower gamma [25-40 Hz]). Connectivity was determined for
the whole brain divided into 100 functionally-defined parcels
(see Extended data Figure 1-1 and Extended data Figure 1-
2).To remove simple effects of resting-state power, average
resting-state spectral power was regressed out of connec-
tivity strength variations across subjects in a pairwise man-
ner, i.e., for each connection, and frequency band, power of
both nodes was regressed out. CCA was then performed on
a PCA reduced subspace of this data, examining the poten-
tial link between subject-wise variations of connectivity
strength and behavioral performance (see Materials and
Methods), identifying one significant canonical mode after
permutation testing (r=0.94, p , 10�4; for a visualization of
the CCA approach, see also Extended Data Fig. 1-3). This
mode links spectrally resolved brain connectivity and behav-
ior. The existence of a significant mode indicates that there
is a significant relationship between resting-state connectiv-
ity and the subject measures. This first canonical mode is
also unique in that it explains more variability in behavior
than the other modes (or permutation-based null models),
as shown in Extended Data Figure 1–6.
In order to provide a functional characterization of this

mode of maximum covariation between subject measures
and connectivity, we evaluated how the mode (i.e., the ob-
served first canonical variates) covaries with the individual
subjects’ scores on each of the subject measures and con-
nectivity measures. This procedure reveals the way in which
the mode that best aligns the full set of subject measures with
the connectivity patterns explains the interindividual variation
in each of the subject measures. Thus, positive correlation be-
tween a subject measure (SM) and the canonical variate sug-
gests that the higher a subject is ranked on this subject
measure, the larger this subject’s score for the canonical vari-
ate. Conversely, a negative relationship between an SM and
the canonical variate indicates that higher scores on that SM
are associated with lower subject scores on the canonical
variate.
The behavioral variables most strongly positively and

negatively associated with this mode are shown in Figure
1A. The subject measures are arranged along a positive-
negative axis that is qualitatively the same as that previ-
ously described for an fMRI-derived CCA mode (Smith et
al., 2015). It ranges from subject measures that entail to-
bacco consumption and somatic problems (which may
quite reasonably be characterized as “negative”) to sub-
ject measures indicating high cognitive performance (CP;
at the other end of this ranking, interpreted as “positive”).
The nature of the positive relationship between the mode
and performance on a working memory task is further il-
lustrated in Figure 1B, where a clear pattern emerges
demonstrating that higher individual scores on the subject
measure and connectome canonical variate are predictive
of superior list sorting performance.

This outcome alone is remarkable, despite using a differ-
ent imaging modality and having access to only a substan-
tially smaller sample (89 vs 461 datasets), the nature of the
mode revealed is highly consistent with that previously dem-
onstrated for the same set of subject measures and rs-fMRI
connectivity. A quantitative comparison with rs-fMRI-based
CCA results, as well as the impact of parcellation scheme
and subdivision into the selected frequency bands on the
outcome, is presented in Extended Data Figure 1–5.
Although this MEG-derived canonical mode resembles

and partially even reproduces a previously identified fMRI-
derived brain-behavior mode, we are at pains to point out
that this does not automatically render it the “universal”
brain-behavior mode. Given a different array of subject met-
rics, or a qualitatively different array of brain metrics, the
principal brain-behavior mode uncovered by CCA could be
different to the one at hand. This possibility is, however,
speculative. What we may state with confidence is that, in-
dependent of the underlying imaging modality, a canonical
brain-behavior mode, optimally matching spectrally re-
solved connectomes and subject measure, can be identi-
fied, which arranges subjects on a positive-negative axis
consistent with a study in which connectivity was derived
from hemodynamic measures of brain activity.

The CCAmode is composed of spatio-spectrally
segregated subcomponents
In a second step, we characterize the connectivity com-

ponents of the identified brain-behavior mode, for each of
the five frequency bands and their connectomes. In order
to do this, the connectivity patterns across subjects in
each band were correlated with the individual connec-
tome weights of the significant CCA mode. This reveals
which connections (hereafter referred to as edges) of the
connectome are more, or less, related to the mode, and
therefore associated with individual differences over sub-
ject measures. The outcome of this analysis is shown in
Figure 2. The correlation coefficients calculated in this
analysis are referred to as MCC or MCC edges. The pat-
terns of within-band MCC edges significantly related to
the mode are clearly differently distributed over the brain
and have distinctly negative or positive relationships with
the mode in each of the analyzed frequency bands.
Figure 3A shows the top 50MCC edges across all five fre-

quency bands, providing an overview of the diversity of con-
nectivity patterns in each of the frequency ranges analyzed.
To reveal the relative functional importance of each node in
terms of its relationship to the mode, averaging was per-
formed over all the MCC correlation matrices in which the
respective node is involved. We thus derive maps of accu-
mulated MCC nodes, which are shown in Figure 3B. As de-
scribed above, the distributions of these accumulated MCC
maps across bands is primarily unipolar, each of the five fre-
quency bands preferentially showing either a positive or a
negative relationship with the mode, but not both (Fig. 3B).

Connectivity of spectrally-resolved brain activity is
preferentially positively or negatively linked to CP but
not mixed
The discovery of frequency-specific connectivity com-

ponents that correlate either negatively or positively with

Research Article: New Research 8 of 16

September/October 2020, 7(5) ENEURO.0101-20.2020 eNeuro.org

https://doi.org/10.1523/ENEURO.0101-20.2020.f1-1
https://doi.org/10.1523/ENEURO.0101-20.2020.f1-2
https://doi.org/10.1523/ENEURO.0101-20.2020.f1-2
https://doi.org/10.1523/ENEURO.0101-20.2020.f1-3
https://doi.org/10.1523/ENEURO.0101-20.2020.f1-6
https://doi.org/10.1523/ENEURO.0101-20.2020.f1-5


the CCA-derived mode, and as a consequence, nega-
tively or positively with CP, invites the conclusion that
some connectivity patterns are positive, while others are
negative. We will refer to them further as CP positive and
CP negative. This interpretation is somewhat consistent
with previous reports from rs-fMRI data (Smith et al.,
2015), which also showed that certain subcomponents
(especially areas pertaining to the default mode network)
of the whole-brain connectome are positively, and others
(mostly visual areas) negatively, associated with the posi-
tive-negative axis behavioral exposed by CCA.

d -Band and a-bandMCC show negative relation to CP
a-Band and d -band connectivity were almost exclu-

sively negatively associated with the CCA mode, i.e., neg-
atively correlated with CP. The parcels with the highest
incidence of significant connectivity-behavior relation-
ships in the a-band are principally concentrated in visual-
posterior areas, consistent with the usual distribution of a
power at rest. Given that spectral power was regressed
out of these analyses (see Materials and Methods), we
may conclude that higher connectivity in the a-band, ab-
sent the biasing effects of the typically higher power in

this frequency range compared with the rest of the spec-
trum, is predictive of lower CP and higher incidence of
negatively associated health and behavior indicators.
d -Band connections also correlate negatively with behav-
ior. The majority of implicated nodes are differently dis-
tributed compared with a-band MCCs, incorporating
bilateral inferior posterior and anterior temporal lobes and
inferior and orbitofrontal areas.
The negative relationship of the a-band posterior MCC

edges to the canonical behavioral mode is comparable to
the accumulated MCC nodes known from fMRI-derived
CCA analysis (Smith et al., 2015). By means of spectrally
resolved CCA analysis, we can assign a neuro-spectral
profile to some of these previously reported MCC net-
works. For example, the fMRI-derived negative-posterior
MCC nodes in early visual areas (Smith et al., 2015) are
putative equivalents of the MEG-derived negative-poste-
rior a-band MCC nodes, exhibiting similar locus and func-
tional relevance (i.e., higher connectivity = lower score in
a similar CCA mode).
The components of the d -band are less easy to map

onto previous results. The finding of d -band-specific
MCC values negatively related to the mode is
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Figure 1. CCA of spectrally resolved MEG data and a large set of behavioral and other subject measures results in one significant
mode (r = 0.94, p , 10�4, corrected for multiple comparisons by permutation testing). For the used parcellation, see Extended Data
Figure 1-1, with anatomic labels found in Extended Data Figure 1-2. A visualization of the analysis approach is shown in Extended
Data Figure 1-3. A, The canonical mode arranges behavioral variables and subject measures on a positive-negative axis, similar to
what has been previously reported for hemodynamic measures of brain connectivity (Smith et al., 2015; for comparison, see also
Extended Data Fig. 1-4, showing the fMRI-based brain-behavior mode for the set of subjects used here). At maximum positive cor-
relation, there are mostly subject measures indexing CP such as reading skills and vocabulary knowledge, while on the negative
end of the spectrum are subject measures like somatic problems, and tobacco consumption (thresholded at a correlation coefficient
of |r| . 0.25). B, Correlation of CCA-derived subject measure scores and connectivity scores for the first canonical variates identi-
fied, i.e., the first canonical mode. In color the behavioral score for the working memory test is shown per subject. For a detailed
overview of how certain methodological choices impact results see Extended Data Figure 1-5. The first CCA mode as visualized
here also explains a significant amount of variance in the data (Extended Data Fig. 1-6). Penn matr. = Penn matrix test; ASR =
Achenbach Adult Self Report; DSM = Diagnostic and Statistical Manual; MMSE = mini mental state examination; SSAGA = Semi-
Structured Assessment for the Genetics of Alcoholism; unadj = unadjusted for age effects. Please note that some secondary meas-
ures (e.g., similar metrics for tobacco consumption) are left out to avoid redundancy.
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suggestive of a negative impact of increased low-fre-
quency neural coupling at rest on cognitive function.
Usually, pronounced d oscillations are found during
sleep, while in the awake human brain, d is most often
recorded in pathologic situations such as in the pres-
ence of lesions or tumors. Unusually elevated d cou-
pling may also be a sign of slowed u oscillations, a
phenomenon often observed in pathologic cognitive
decline, such as Alzheimer’s disease, caused by cho-
linergic loss (Speckmann and Elger, 2005). While we
do not propose that the young, healthy cohort exam-
ined here suffered from any neurologic pathologies, it
is intriguing to note the fact that slow oscillatory activ-
ity is not typically associated with optimal brain func-
tion during wakefulness.

u -band, b -band, and g-band MCC edges show positive
relationship to CP
b -band, u -band, and g-band MCC edges exhibit a

substantially different relationship to the canonical mode,
compared with a and d MCC edges. This is the case both
in terms of the polarity of the relationship, and the spatial
distribution of the relevant nodes. For the observed ca-
nonical mode, subjects scoring high in frontal and pre-
frontal b -band connectivity also score highly in the
identified canonical mode, indicating higher CP. The pat-
terns that arise from b -band accumulated MCC maps,
especially in medial areas, show good correspondence to
previous results for fMRI connectivity (Smith et al., 2015).

For u MCC edges and accumulated MCC maps, spatially
we see a more precentral pattern with a functionally simi-
lar interpretation, the more pronounced the connectivity is
in these edges, the higher the subject scores in the ca-
nonical mode, i.e., the higher the subject is ranked on the
positive-negative axis identified by the significant CCA
mode. The properties of g-band MCC edges are particu-
larly noteworthy. While the overall g MCC network is
somewhat patchy, featuring what appear to be a greater
number of short-range connections, its connectivity is still
relevant for the global mode of behavior. It also seems to
have fewer sinks or hubs where connections emerge or
terminate, resulting in the absence of significant accumu-
lated MCCs, in contrast to the more clustered network
patterns in frequency bands at lower frequencies.
Considering that g in general is known to be an index of
local activation, offering often relatively fine spatial resolu-
tion (e.g., down to mapping the representation of individu-
al digits of the hand; Miller et al., 2009), this is not
altogether surprising.
This striking dichotomy of either CP positive or CP neg-

ative connectivity, when looking at spectrally resolved
connectomes, is both novel and unexpected. Previous re-
sults, using fMRI connectivity that is agnostic to the
underlying frequencies of neuronal communication, have
so far only shown patterns of mixed positive or negative
relationship to the observed brain-behavior mode. We
tested whether this segregation does arise from the CCA
trivially by creating MCC edges from surrogate data, by

Figure 2. A–E, MCC (i.e., edges whose connectivity on a subject-by-subject level covaries with the mode, and thus behavior, in
short MCC) for each frequency band, from d -band, u -band, a-band, and b -band to g-band. MCC values of frequency bands are
color coded (two colors per band, positive and negative, encoding the correlation coefficients, in a range from –0.5 to.5 to the ob-
served canonical mode). Edges rendered on the brain templates are thresholded at the 0.5th bottom and 99.5th top percentile (of
the permutation-based null distribution) for visualization. Each of the bands shows a preference for either positive or negative rela-
tionship to the mode but not a mixture of both. This is also visible in the histograms in the bottom row that depict the distributions
of all (i.e., unthresholded) correlation coefficients, with comparison to null distributions generated by a permutation test (n=10,000,
in gray). For additional control analyses demonstrating the robustness of results, see also Extended Data Figure 2-1.
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permuting the subject-labels and recomputing the (pseu-
do-)MCC patterns. The resulting null-distributions of cor-
relation coefficients are shown in Figure 2, bottom row;
they do not exhibit any polarity preference or skewedness
as the actual MCCs do.

ResolvedMEG connectivity model shows results
comparable to fMRI connectivity
In terms of the resulting canonical mode and its maxi-

mum alignment of connectivity and subject measures, the
MEG connectivity model used here (five bands, 100 par-
cels) shows comparable results with regard to the results
obtained with fMRI connectivity (for identical subjects,
subject measures and number of principal components
entering CCA, see Extended Data Fig. 1-5A). Also, with
regard to explaining the full set of subject measures, the

MEG connectivity used here performs similarly well as the
fMRI-based connectivity (Extended Data Fig. 1-5B).
Interestingly, what was also observed is that an entirely
unresolved, i.e., 1D broadband connectivity model per-
forms less well in terms of maximum alignment and ex-
plained variance of subject measures. Even when using
the initially available spectral resolution (20 2-Hz wide
bins instead of five bands), results did not outperform the
five-band model.

Discussion
In summary, we show that exploiting the spectral rich-

ness of MEG connectivity patterns by using a spectrally
resolved connectome reveals a brain-behavior mode not
unlike previous results uncovered via hemodynamic con-
nectivity metrics. Beyond simply reproducing these, our
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Figure 3. A, Connectogram-style visualization (Irimia et al., 2012) of the MCC edges presented in Figure 2. This figure shows
the top 50 MCC edges (i.e., the top 50 positive and negative edges, respectively), across all five frequency bands (globally tre-
sholded across all bands pooled). Nodes are represented on the outside of the ring, in an approximately anatomically-faithful
anterior-posterior and left-right arrangement. Anatomically labeled parcel identities are listed in Extended Data Figure 1-2.
Each parcel’s grayscale value indicates its average relationship to the CCA mode, i.e., its average accumulated MCC values
across frequency bands, white indicates a positive relationship to the mode, and black indicates a negative relationship (aver-
aged over bands and all edges, i.e., connections of that parcel). The five-band histograms on the outer ring indicate the band-
specific accumulated MCC values for each node (same color coding as for the top edges in Fig. 1A and the maps in Fig. 1B,
histograms pointing outwards are positive, inward histograms indicate negative accumulated MCC values). B, Maps of accu-
mulated MCC values for all frequency bands. These represent the average MCC values, over all connections, for each parcel.
Thus, these accumulated maps represent the overall involvement of each parcel in predicting behavior and provide comple-
mentary information to the MCC edges by showing the presence of connectivity foci, i.e., nodes of particular importance to the
MCC network, acting as sinks or hubs. Thresholded at the 10th and 90th percentiles for negative and positive accumulated
MCC values, respectively. NB, no suprathreshold accumulated MCC values are observed in the g-band. L = left; R = right;
pos. = positive; neg. = negative; SUBCORT = subcortical.
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results demonstrate the existence of functionally distinct
networks across a broad range of conventional frequency
bands. Even neighboring bands, e.g., a and b , can have
opposing functional roles with respect to a brain-behavior
mode arranging behavioral measures on a positive-nega-
tive axis.
Regarding the approach taken in this study, the con-

cept of spectrally resolved connectivity, which can also
be considered neuronal communication at multiple time
scales or channels, is not new. Some models of how neu-
ronal assemblies communicate have focused on activity
confined to certain frequency bands (Fries, 2005), while
more recent perspectives also incorporate multichannel or
multifrequency scenarios (Fries, 2015). Furthermore, em-
pirical studies, mostly MEG, have also increasingly shown
connectivity and networks at multiple frequencies or show-
ing features or states with specific spectral features or pro-
files (Hipp et al., 2012; Brookes et al., 2016; Colclough et
al., 2016; Vidaurre et al., 2018) and first reviews about the
accumulated literature emerge (Sadaghiani and Wirsich,
2020). What was, however, hitherto missing was a func-
tional characterization of these spectrally resolved features
or parameters, specifically of connectivity, because of the
absence of an attested link to behavior. Here, to the best of
our knowledge, for the first time, we have demonstrated
the nature of the relationship between a spectrally resolved
connectivity estimate to not just one, but an entire battery
of behavioral and other subject variables.
Although the classification of brain activity into several

predefined frequency bands is already an extension of
spectrally unresolved approaches, it still might be an
oversimplification of the richness of neuronal dynamics in
the brain. However, it can be useful, and the fact that
using predefined, canonical, spectral ranges and the cor-
responding connectomes reveals a global brain-behavior
mode with little overlap between bands lends support to
the idea of spectrally resolved, functionally meaningful
networks. The relevance of these bands is underscored
firstly by the comparison with two analyses reported
above. First, the analysis using broadband connectivity
showed a brain-behavior mode that was both less capa-
ble of explaining variance in behavior than the spectrally
resolved approach. Second, analysis using the fully (i.e.,
20-bin) spectrally resolved connectome failed to reveal
any additional insights into brain-behavior associations
compared with of the five conventional bands. Of course,
this does not mean that deploying the standard five-band
model is the optimum for identifying brain-behavior links,
but it suggests the existence of well-defined and function-
ally distinct frequency ranges and the networks that
emerge from them.
Our study and its results add several novel aspects

here. First, we show that an observed link between brain
and behavior cannot be attributed to a single isolated fre-
quency band but is what appears to be a rich multilevel
spatio-spectral connectivity pattern. Second, the holistic
analysis that we offer here is identifying a clear, interpreta-
ble, and plausible brain-behavior axis which has been re-
ported before, and in the present case of M/EEG
connectivity adds a novel component which is looking at

neural communication in a spectrally resolved and spa-
tially interpretable manner, in a healthy population. By vir-
tue of this analysis, we were able to reveal different
contributions of the spectrally resolved connectome(s),
with the striking observation is that the frequency bands
and their functionally relevant connectomes often can
have very different functional roles, some of them having
a positive functional relationship with CP and others a
negative relationship.

Themultispectral character of positive and negative
MEG connectivity
This strong preference for either positive or negative re-

lationships with the mode, corroborated by numerous
control analyses, seems to be supportive of the existence
of different channels of neuronal communication, charac-
teristic of and confined to these frequency bands and the
edges involved. Furthermore, we do not find that a single
frequency band completely dominates the CCA-derived
brain-behavior mode. Rather, analyses of both the func-
tionally relevant patterns of connectivity, the MCC edge
correlations, as well as the accumulated MCC node corre-
lations, point to a relatively distributed and balanced con-
tribution of network components indicative of behavior.
The fundamental and qualitative difference between the

observed patterns of MCCs in a-band and b -band is a
good illustration of our observations regarding the posi-
tive or negative nature of spectrally resolved connectivity.
While both rhythms, a and b , at rest, express FC network
patterns that are relatively amenable to interpretation
(Brookes et al., 2011b, 2016; Hipp et al., 2012), i.e. they
resemble visual or motor related networks, the resulting
MCC edges, for the observed mode at least for b , are
more frontally or prefrontally localized and can be less
easily assigned directly to sensorimotor functions. In ad-
dition, higher b -band connectivity is beneficial, while
higher a connectivity (in the predominantly visual nodes
implicated by CCA) is apparently deleterious for CP linked
to the observed mode. This implies that higher connectiv-
ity strength is not always better, but its impact on the
mode (and thus behavior) appears to be a function of fre-
quency. The finding of negative MCC values in the a
range may appear somewhat surprising, however, all ad-
ditional control analyses we had performed support our
finding of posterior, a-band-specific connectivity being
detrimental to CP. With regard to existing studies that fo-
cused on a-band connectivity, most of them were exam-
ining patient populations. Of these studies, one study did,
in line with our findings, report increased occipital a con-
nectivity in schizophrenic patients compared with healthy
controls (Liu et al., 2019), which is interesting because
schizophrenia often involves cognitive impairment. Other
studies dealing with cognitive impairment arising from
Alzheimer’s disease (Stam et al., 2006; Ranasinghe et al.,
2014) reported decreased a-band connectivity related to
cognitive deficits, but more in frontal or unspecific re-
gions. Thus, while there are some clinical studies that fo-
cused on a-band connectivity (or other bands), we are not
aware of a healthy M/EEG cohort where a similar large
battery of behavioral variables was collected. However,
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the study using HCP fMRI-derived connectivity found also
most of their negative MCC values in early visual areas
being in line with our findings (Smith et al., 2015). This, to-
gether with the observation that CCA identified a MEG-
fMRI link of connectivity patterns (see Materials and
Methods, Validation of CCA results), lends further support
to our findings.

Previous work, other related lines of research and
concepts
The fundamental issue of CP positive and CP negative

brain patterns is also related to another line of research,
which has investigated how neuronal variability predicts
healthy aging and a maintained high level of CP (Garrett et
al., 2011, 2013). While the approach employed here em-
phasized connectivity rather than variability per se, i.e., of
single sensors, sources or voxels, the two concepts are
not entirely unrelated. For example, neuronal variability (or
activity in the widest sense) is a necessary precondition
for meaningful connectivity. However, this type of com-
mon variability as it is reflected in our conceptual
approach of estimating M/EEG connectivity, is not a one-
way road; whether this covariation or connectivity is posi-
tive or negative with regard to CP is very specific and
rather dependent on the locus and the frequency band
the network is operating at.
Regarding previous work from the M/EEG side, the fol-

lowing should be noted: there are decades of studies link-
ing rhythms and cognitive processing and function
(Klimesch, 1999; Arns et al., 2013), with almost every fre-
quency band having been associated with cognitive proc-
essing in one way or another, from d (Harmony, 2013), u
(Finnigan and Robertson, 2011; Vlahou et al., 2014), and a
(Klimesch, 1999), over b (Lundqvist et al., 2018) up to the
g frequency range (Ward, 2003). However, these studies
often focused on sensor-wise or areal spectral features
such as amplitude or phase variability, hence being ag-
nostic of the potential relevance of any longer-distance in-
terareal communication or network activity. Although
these local M/EEG oscillations are also likely to be em-
bedded in small-scale local networks, these are unresolv-
able by M/EEG imaging, we therefore distinguish these
from the longer-range networks that we have investigated
in the foregoing analyses. Thus, while our network-based
results seem in part in line with the general literature, e.g.,
ascribing a and u a role in sleep and relaxation, while
showing a more positive, attention or memory-related role
of u , b , and g activity, a direct comparison is not straight-
forward and may not even be entirely valid. Similarly, the
resulting spatial maps of previous studies, especially at
the sensor level, and our results are only comparable to a
certain degree. This is not to say that there is no overlap,
the spatial maps (especially the accumulated MCC maps)
in u (covering medial temporal lobe areas), a (covering
visual areas), and b (covering precentral motor and pre-
motor areas) are indeed similar to previously reported
RSNs (Biswal et al., 1995; Brookes et al., 2011a,b; Hipp et
al., 2012). However, the networks and maps that we ob-
serve here go beyond simply describing group level rest-
ing-state connectivity patterns or a replication of those,

they describe the edges and nodes that are predictive of
cognitive-behavioral performance as delineated by the
identified mode.
More directly-comparable, i.e., large-scale, network-

based evidence for a link between rhythms and cognitive
functions remains somewhat scarce compared with the
large body of literature focusing on single sensors or sour-
ces. Nevertheless, such evidence is accumulating, and a
more network-centric view is gaining traction (Sadaghiani
and Wirsich, 2020). For example, more recently, it has
been shown that networks of these rhythms and their net-
work properties (such as centrality, degree, small-world-
ness, or path length) can link spontaneous M/EEG
rhythms to CP, both in healthy subjects (Langer et al.,
2012; Vriend et al., 2020; Zakharov et al., 2020) or in pa-
tient populations predicting cognitive decline (Stam et al.,
2006, 2007; Tewarie et al., 2012; Ranasinghe et al., 2014;
Fraga González et al., 2018; Liu et al., 2019) or surgery-re-
lated improvement (van Dellen et al., 2012). While offering
a network view on the functional relevance of M/EEG
rhythms, these studies did not employ an integrated,
spectrally resolved connectivity approach as we have.
The apparent existence of multiple, functionally-rele-

vant frequencies opens up the possibility of multiplexing,
which is an elegant concept of how communication and
information transfer may be realized in the human brain
(Akam and Kullmann, 2014; Fontolan et al., 2014). While
we cannot completely exclude such a scenario, our re-
sults do not support this scenario. Rather, we obtained
evidence for spectrally distinct networks, that are also
spatially distinct in their network characteristics. The dis-
tinct character of these behaviorally relevant components
may not necessarily require multiplexed communication.
This highly complementary nature suggests that the idea
of frequency bands is not just an entirely artificial con-
struct but seems to delineate different functional net-
works. It is important to note that the networks that are
reflected by the identified MCC edges here are different
from pure RSNs that show coherent behavior and as such
are considered connected. The networks that are re-
ported here are rather characterized by their similar func-
tional meaning with respect to the identified brain-
behavior mode. The patterns we find, i.e., the spectrally
resolved MCC edges implicated in the canonical brain-
behavior mode, are for the most part spatially distinct pat-
terns and do not show strong overlap across spectral
boundaries.

Limitations and outlook
As with any study, our study has some potential limita-

tions that are important to keep in mind. First of all, while our
study is a first step into an examination of the functional role
of spectrally resolved neuronal large-scale communication,
our approach is far from providing an exhaustive picture. Two
notable components missing in this picture are the following.
First, directionality is absent in the characterization of connec-
tivity here, because we determine connectivity (and its
strength) by looking at envelope correlations. While this is a
common approach demonstrated to be useful in numerous
scenarios, one apparent extension would be adding
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directionality or, in a stronger sense, causality, e.g., by using
Granger causality or related approaches. Second, another
aspect of our approach is that at the core of our analysis,
while integrating all bands into oneCCA analysis, connectivity
is derived from single, isolated frequency bands. This pre-
vents direct insight into the potential of cross-frequency com-
munication or interaction for explaining behavioral variability.
In fact, one could go even further and claim that all oscillatory
activity is only one part of the broader picture of neuronal dy-
namics and including 1/f dynamics is a crucial extension of
describing neuronal dynamics (and possibly, interaction). As
a last important thought, it has to be emphasized that while
our observation of a brain-behavior mode (with a clear posi-
tive-negative axis related to CP) and its similarity to a previous
fMRI-derived brain-behavior mode (Smith et al., 2015) is reas-
suring, this does by nomeans imply that it is the only possible
mode or that there can be only one (and not several). Future
studies with different imaging modalities, even more subjects
or additional behavioral and subject measures may elucidate
the answer to this question.

Conclusion
In conclusion, we have provided evidence that electro-

physiologically-derived and spectrally resolved connectivity
present in MEG resting-state data can be used to index the
ranking of individuals across a large range of subject meas-
ures. It exhibits highly structured patterns that are function-
ally relevant and provides sensitivity comparable to rs-
fMRI-derived networks in explaining variability of subject
measures across a wide range of different features and do-
mains. Furthermore, the additional dimension afforded by
spectrally resolving connectivity measures opens up new
avenues into a better and more holistic understanding of the
roles and contributions of brain rhythms at rest that ultimately
will help cast light on the intrinsic features of the brain that
determine positive and negative cognitive and behavioral
traits. Given recent breakthroughs in using frequency-tuned
transcranial electrical stimulation techniques to enhance
cognition (Reinhart and Nguyen, 2019), outlining the roles of
spectrally resolved connectivity networks is all the more
timely, and provides a basis for considering potential net-
work-level targets for novel neuromodulatory interventions.
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